1
|
Weldetsadik ET, Li N, Li J, Shang J, Zhu H, Zhang Y. Undescribed Cyclohexene and Benzofuran Alkenyl Derivatives from Choerospondias axillaris, a Potential Hypoglycemic Fruit. Foods 2024; 13:1495. [PMID: 38790795 PMCID: PMC11119685 DOI: 10.3390/foods13101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The fruit of Choerospondias axillaris (Anacardiaceae), known as south wild jujube in China, has been consumed widely in several regions of the world to produce fruit pastille and leathers, juice, jam, and candy. A comprehensive chemical study on the fresh fruits led to the isolation and identification of 18 compounds, including 7 new (1-7) and 11 known (8-18) comprised of 5 alkenyl (cyclohexenols and cyclohexenones) derivatives (1-5), 3 benzofuran derivatives (6-8), 6 flavonoids (9-14) and 4 lignans (15-18). Their structures were elucidated by extensive spectroscopic analysis. The known lignans 15-18 were isolated from the genus Choerospondias for the first time. Most of the isolates exhibited significant inhibitory activity on α-glucosidase with IC50 values from 2.26 ± 0.06 to 43.9 ± 0.96 μM. Molecular docking experiments strongly supported the potent α-glucosidase inhibitory activity. The results indicated that C. axillaris fruits could be an excellent source of functional foods that acquire potential hypoglycemic bioactive components.
Collapse
Affiliation(s)
- Ermias Tamiru Weldetsadik
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (E.T.W.); (N.L.); (J.L.); (J.S.); (H.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Li
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (E.T.W.); (N.L.); (J.L.); (J.S.); (H.Z.)
| | - Jingjuan Li
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (E.T.W.); (N.L.); (J.L.); (J.S.); (H.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahuan Shang
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (E.T.W.); (N.L.); (J.L.); (J.S.); (H.Z.)
| | - Hongtao Zhu
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (E.T.W.); (N.L.); (J.L.); (J.S.); (H.Z.)
| | - Yingjun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (E.T.W.); (N.L.); (J.L.); (J.S.); (H.Z.)
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
2
|
Rong W, Shi Q, Yang Y, Su W, Li M, Qin M, Bai S, Zhu Q, Wang A. Fructus choerospondiatis: A comprehensive review of its traditional uses, chemical composition, pharmacological activities, and clinical studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117696. [PMID: 38171468 DOI: 10.1016/j.jep.2023.117696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Choerospondiatis is the dried and mature fruit of Choerospondias axillaris (Roxb.) Burtt et Hill. It has been used for a long time in Tibetan and Mongolian medicine, first recorded in the ancient Tibetan medicine book "Medicine Diagnosis of the King of the Moon" in the early 8th century. Fructus Choerospondiatis shows multiple pharmacological activities, especially in treating cardiovascular diseases. AIM OF THIS REVIEW This paper reviews the progress in research on the botanical characteristics, traditional uses, chemical constituents, pharmacological activity, clinical studies, and quality control of Fructus Choerospondiatis. This review aims to summarize current research and provide a reference for further development and utilization of Fructus Choerospondiatis resources. METHOD The sources for this review include the Pharmacopeia of the People's Republic of China (2020), theses, and peer-reviewed papers (in both English and Chinese). Theses and papers were downloaded from electronic databases including Web of Science, PubMed, SciFinder, Scholar, Springer, and China National Knowledge Infrastructure.The search terms used were "Choerospondias axillaris", "C. axillaris", "Choerospondias axillaris (Roxb.) Burtt et Hill", "Fructus choerospondiatis", "Guangzao", "Lapsi", and "Lupsi". RESULTS Fructus Choerospondiatis contains polyphenols, organic acids, amino acids, fatty acids, polysaccharides, and other chemical components. These ingredients contribute to its diverse pharmacological activities such as antioxidant activity, protection against myocardial ischemia-reperfusion injury, anti-myocardial fibrosis, heart rhythm regulation, anti-tumor, liver protection, and immunity enhancement. It also affects the central nervous system, with the ability to repair damaged nerve cells. CONCLUSION Fructus Choerospondiatis, with its various chemical compositions and pharmacological activities, is a promising medicinal resource. However, it remains under-researched, particularly in pharmacodynamic material basis and quality control. These areas require further exploration by researchers in the future.
Collapse
Affiliation(s)
- Weiwei Rong
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, 226001, Jiangsu, China
| | - Qilin Shi
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yuru Yang
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Weiyi Su
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Mingna Li
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Minni Qin
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Shuang Bai
- Livzon Pharmaceutical Group Inc., Zhuhai, 519000, Guangdong, China
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, 226001, Jiangsu, China.
| | - Andong Wang
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
3
|
Hui Z, Wen H, Zhu J, Deng H, Jiang X, Ye XY, Wang L, Xie T, Bai R. Discovery of plant-derived anti-tumor natural products: Potential leads for anti-tumor drug discovery. Bioorg Chem 2024; 142:106957. [PMID: 37939507 DOI: 10.1016/j.bioorg.2023.106957] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/14/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Natural products represent a paramount source of novel drugs. Numerous plant-derived natural products have demonstrated potent anti-tumor properties, thereby garnering considerable interest in their potential as anti-tumor drugs. This review compiles an overview of 242 recently discovered natural products, spanning the period from 2018 to the present. These natural products, which include 69 terpenoids, 42 alkaloids, 39 flavonoids, 21 steroids, 14 phenylpropanoids, 5 quinolines and 52 other compounds, are characterized by their respective chemical structures, anti-tumor activities, and mechanisms of action. By providing an essential reference and fresh insights, this review aims to support and inspire researchers engaged in the fields of natural products and anti-tumor drug discovery.
Collapse
Affiliation(s)
- Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Junlong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Haowen Deng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Liwei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
4
|
Chambon M, Herrscher C, Al Halabi D, François N, Belouzard S, Boutet S, Pham VC, Doan TMH, Séron K, Mavingui P, Litaudon M, El Kalamouni C, Apel C. New Phenolic Lipids from the Leaves of Clausena harmandiana Inhibit SARS-CoV-2 Entry into Host Cells. Molecules 2023; 28:5414. [PMID: 37513285 PMCID: PMC10384782 DOI: 10.3390/molecules28145414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Induced by the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the COVID-19 pandemic underlined the clear need for antivirals against coronaviruses. In an effort to identify new inhibitors of SARS-CoV-2, a screening of 824 extracts prepared from various parts of 400 plant species belonging to the Rutaceae and Annonaceae families was conducted using a cell-based HCoV-229E inhibition assay. Due to its significant activity, the ethyl acetate extract of the leaves of Clausena harmandiana was selected for further chemical and biological investigations. Mass spectrometry-guided fractionation afforded three undescribed phenolic lipids (1-3), whose structures were determined via spectroscopic analysis. The absolute configurations of 1 and 2 were determined by analyzing Mosher ester derivatives. The antiviral activity against SARS-CoV-2 was subsequently shown, with IC50 values of 0.20 and 0.05 µM for 2 and 3, respectively. The mechanism of action was further assessed, showing that both 2 and 3 are inhibitors of coronavirus entry by acting directly on the viral particle. Phenolic lipids from Clausena harmandiana might be a source of new antiviral agents against human coronaviruses.
Collapse
Affiliation(s)
- Marion Chambon
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Charline Herrscher
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France
| | - Dana Al Halabi
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France
| | - Nathan François
- Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université de Lille, INSERM U1019, CNRS UMR 8204, CHU Lille, 59000 Lille, France
| | - Sandrine Belouzard
- Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université de Lille, INSERM U1019, CNRS UMR 8204, CHU Lille, 59000 Lille, France
| | - Stéphanie Boutet
- Institut Jean-Pierre Bourgin (IJPB), AgroParisTech, INRAE, Université Paris-Saclay, 78000 Versailles, France
| | - Van Cuong Pham
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, CauGiay, Hanoi 10072, Vietnam
| | - Thi Mai Huong Doan
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, CauGiay, Hanoi 10072, Vietnam
| | - Karin Séron
- Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université de Lille, INSERM U1019, CNRS UMR 8204, CHU Lille, 59000 Lille, France
| | - Patrick Mavingui
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Chaker El Kalamouni
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France
| | - Cécile Apel
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Puri S, Stefan K, Khan SL, Pahnke J, Stefan SM, Juvale K. Indole Derivatives as New Structural Class of Potent and Antiproliferative Inhibitors of Monocarboxylate Transporter 1 (MCT1; SLC16A1). J Med Chem 2023; 66:657-676. [PMID: 36584238 PMCID: PMC9841531 DOI: 10.1021/acs.jmedchem.2c01612] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 12/31/2022]
Abstract
The solute carrier (SLC) monocarboxylate transporter 1 (MCT1; SLC16A1) represents a promising target for the treatment of cancer; however, the MCT1 modulator landscape is underexplored with only roughly 100 reported compounds. To expand the knowledge about MCT1 modulation, we synthesized a library of 16 indole-based molecules and subjected these to a comprehensive biological assessment platform. All compounds showed functional inhibitory activities against MCT1 at low nanomolar concentrations and great antiproliferative activities against the MCT1-expressing cancer cell lines A-549 and MCF-7, while the compounds were selective over MCT4 (SLC16A4). Lead compound 24 demonstrated a greater potency than the reference compound, and molecular docking revealed strong binding affinities to MCT1. Compound 24 led to cancer cell cycle arrest as well as apoptosis, and it showed to sensitize these cancer cells toward an antineoplastic agent. Strikingly, compound 24 had also significant inhibitory power against the multidrug transporter ABCB1 and showed to reverse ABCB1-mediated multidrug resistance (MDR).
Collapse
Affiliation(s)
- Sachin Puri
- Shobhaben
Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s
NMIMS, V.L. Mehta Road,
Vile Parle (W), Mumbai400056, India
| | - Katja Stefan
- Department
of Pathology, Section of Neuropathology, Translational Neurodegeneration
Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372Oslo, Norway
| | - Sharuk L. Khan
- Department
of Pharmaceutical Chemistry, N.B.S. Institute
of Pharmacy, Ausa413520, Maharashtra, India
| | - Jens Pahnke
- Department
of Pathology, Section of Neuropathology, Translational Neurodegeneration
Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372Oslo, Norway
- Drug
Development and Chemical Biology Lab, Lübeck Institute of Experimental
Dermatology (LIED), University of Lübeck
and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538Lübeck, Germany
- Department
of Pharmacology, Faculty of Medicine, University
of Latvia, Jelgavas iela
4, 1004Ri̅ga, Latvia
| | - Sven Marcel Stefan
- Department
of Pathology, Section of Neuropathology, Translational Neurodegeneration
Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372Oslo, Norway
- Drug
Development and Chemical Biology Lab, Lübeck Institute of Experimental
Dermatology (LIED), University of Lübeck
and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538Lübeck, Germany
| | - Kapil Juvale
- Shobhaben
Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s
NMIMS, V.L. Mehta Road,
Vile Parle (W), Mumbai400056, India
| |
Collapse
|
6
|
Grant CV, Cai S, Risinger AL, Liang H, O’Keefe BR, Doench JG, Cichewicz RH, Mooberry SL. CRISPR-Cas9 Genome-Wide Knockout Screen Identifies Mechanism of Selective Activity of Dehydrofalcarinol in Mesenchymal Stem-like Triple-Negative Breast Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2020; 83:3080-3092. [PMID: 33021790 PMCID: PMC7722265 DOI: 10.1021/acs.jnatprod.0c00642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There are no targeted therapies available for triple-negative breast cancers (TNBCs) in part because they represent a heterogeneous group of tumors with diverse oncogenic drivers. Our goal is to identify targeted therapies for subtypes of these cancers using a mechanism-blind screen of natural product extract libraries. An extract from Desmanthodium guatemalense was 4-fold more potent for cytotoxicity against MDA-MB-231 cells, which represent the mesenchymal stem-like (MSL) subtype, as compared to cells of other TNBC subtypes. Bioassay-guided fractionation led to the isolation of six polyacetylenes, and subsequent investigations of plant sources known to produce polyacetylenes yielded six additional structurally related compounds. A subset of these compounds retained selective cytotoxic effects in MSL subtype cells. Studies suggest that these selective effects do not appear to be due to PPARγ agonist activities that have previously been reported for polyacetylenes. A CRISPR-Cas9-mediated gene knockout screen was employed to identify the mechanism of selective cytotoxic activity of the most potent and selective compound, dehydrofalcarinol (1a). This genomic screen identified HSD17B11, the gene encoding the enzyme 17β-hydroxysteroid dehydrogenase type 11, as a mediator of the selective cytotoxic effects of 1a in MDA-MB-231 cells that express high levels of this protein. The Project Achilles cancer dependency database further identified a subset of Ewing sarcoma cell lines as highly dependent on HSD17B11 expression, and it was found these were also highly sensitive to 1a. This report demonstrates the value of CRISPR-Cas9 genome-wide screens to identify the mechanisms underlying the selective activities of natural products.
Collapse
Affiliation(s)
- Corena V. Grant
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Shengxin Cai
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - April L. Risinger
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Huiyun Liang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Barry R. O’Keefe
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland, 21702, United States and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, United States
| | - John G. Doench
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Robert H. Cichewicz
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Susan L. Mooberry
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| |
Collapse
|