1
|
Meunier M, Schinkovitz A, Derbré S. Current and emerging tools and strategies for the identification of bioactive natural products in complex mixtures. Nat Prod Rep 2024. [PMID: 39291767 DOI: 10.1039/d4np00006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Covering: up to 2024The prompt identification of (bio)active natural products (NPs) from complex mixtures poses a significant challenge due to the presence of numerous compounds with diverse structures and (bio)activities. Thus, this review provides an overview of current and emerging tools and strategies for the identification of (bio)active NPs in complex mixtures. Traditional approaches of bioassay-guided fractionation (BGF), followed by nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis for compound structure elucidation, continue to play an important role in the identification of active NPs. However, recent advances (2018-2024) have led to the development of novel techniques such as (bio)chemometric analysis, dereplication and combined approaches, which allow efficient prioritization for the elucidation of (bio)active compounds. For researchers involved in the search for bioactive NPs and who want to speed up their discoveries while maintaining accurate identifications, this review highlights the strengths and limitations of each technique and provides up-to-date insights into their combined use to achieve the highest level of confidence in the identification of (bio)active natural products from complex matrices.
Collapse
Affiliation(s)
- Manon Meunier
- Univ. Angers, SONAS, SFR QUASAV, F-49000 Angers, France.
| | | | | |
Collapse
|
2
|
Olszewska K, Mizera A, Ławniczak P, Kamińska A, Santillan R, Morales-Chamorro M, Ochoa ME, Farfán N, Łapiński A, Górecki M, Jastrzebska I, Runka T. Molecular Dynamics of Steroidal Rotors Probed by Theoretical, Spectroscopic and Dielectric Methods. Chemistry 2024; 30:e202303933. [PMID: 38311598 DOI: 10.1002/chem.202303933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Our study focuses on molecular rotors with fast-moving rotators and their potential applications in the development of new amphidynamic crystals. Steroidal molecular rotors with a dipolar fluorine-substituted phenyl group as the rotator were synthesized and characterized. Three different rotors were investigated with varying numbers of fluorine atoms. A comprehensive analysis was performed using vibrational spectroscopy (Raman, FT-IR), electronic circular dichroism (ECD), and dielectric response to understand the behavior of the investigated model rotors. The results were supported by theoretical calculations using Density Functional Theory (DFT) methods. The angle-dependent polarized Raman spectra confirmed the crystallinity of the samples. Nearly frequency and temperature-independent permittivity suggest low-frequency librational motion of stators. An in-depth analysis of ECD spectra revealed high conformational flexibility in solution, resulting in low ECD effects, while in the solid-state with restricted rotation, significant ECD effects were observed. These findings shed light on the conformational behavior and potential applications of the studied steroidal molecular rotors.
Collapse
Affiliation(s)
- Karolina Olszewska
- Faculty of Materials Engineering and Technical Physics, Institute of Materials Research and Quantum Engineering, Poznan University of Technology Piotrowo, 3, 60-965, Poznań, Poland
| | - Adam Mizera
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179, Poznań, Poland
| | - Paweł Ławniczak
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179, Poznań, Poland
| | - Anna Kamińska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Rosa Santillan
- Departamento de Química Centro de Investigación y de Estudios Avanzados del IPN, México D.F. Apdo. Postal 14-740, 07000, México
| | - Maricela Morales-Chamorro
- Departamento de Química Centro de Investigación y de Estudios Avanzados del IPN, México D.F. Apdo. Postal 14-740, 07000, México
| | - Ma Eugenia Ochoa
- Departamento de Química Centro de Investigación y de Estudios Avanzados del IPN, México D.F. Apdo. Postal 14-740, 07000, México
| | - Norberto Farfán
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Andrzej Łapiński
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179, Poznań, Poland
| | - Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Izabella Jastrzebska
- Institute of Chemistry, University of Białystok, Ciołkowskiego 1 K, 15-254, Białystok, Poland
| | - Tomasz Runka
- Faculty of Materials Engineering and Technical Physics, Institute of Materials Research and Quantum Engineering, Poznan University of Technology Piotrowo, 3, 60-965, Poznań, Poland
| |
Collapse
|
3
|
Sun NB, Min LJ, Sun XP, Zhai ZW, Bajsa-Hirschel J, Wei ZC, Hua XW, Cantrell CL, Xu H, Duke SO, Liu XH. Novel Pyrazole Acyl(thio)urea Derivatives Containing a Biphenyl Scaffold as Potential Succinate Dehydrogenase Inhibitors: Design, Synthesis, Fungicidal Activity, and SAR. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2512-2525. [PMID: 38286814 DOI: 10.1021/acs.jafc.3c07735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
As part of a program to discover novel succinate dehydrogenase inhibitor fungicides, a series of new pyrazole acyl(thio)urea compounds containing a diphenyl motif were designed and synthesized. Their structures were confirmed by 1H NMR, HRMS, and single X-ray crystal diffraction analysis. Most of these compounds possessed excellent activity against 10 fungal plant pathogens at 50 μg mL-1, especially against Rhizoctonia solani, Alternaria solani, Sclerotinia sclerotiorum, Botrytis cinerea, and Cercospora arachidicola. Interestingly, compounds 3-(difluoromethyl)-1-methyl-N-((3',4',5'-trifluoro-[1,1'-biphenyl]-2-yl)carbamoyl)-1H-pyrazole-4-carboxamide (9b, EC50 = 0.97 ± 0.18 μg mL-1), 1,3-dimethyl-N-((3',4',5'-trifluoro-[1,1'-biphenyl]-2-yl)carbamoyl)-1H-pyrazole-4-carboxamide (9a, EC50 = 2.63 ± 0.41 μg mL-1), and N-((4'-chloro-[1,1'-biphenyl]-2-yl)carbamoyl)-1,3-dimethyl-1H-pyrazole-4-carboxamide (9g, EC50 = 1.31 ± 0.15 μg mL-1) exhibited activities against S. sclerotiorum that were better than the commercial fungicide bixafen (EC50 = 9.15 ± 0.05 μg mL-1) and similar to the positive control fluxapyroxad (EC50 = 0.71 ± 0.11 μg mL-1). These compounds were not significantly phytotoxic to monocotyledonous and dicotyledonous plants. Structure-activity relationships (SAR) are discussed by substituent effects/molecular docking, and density functional theory analysis indicated that these compounds are succinate dehydrogenase inhibitors.
Collapse
Affiliation(s)
- Na-Bo Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015 Zhejiang China
| | - Li-Jing Min
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Xin-Peng Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015 Zhejiang China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhi-Wen Zhai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Joanna Bajsa-Hirschel
- Natural Products Utilization Research Unit, United States Department of Agriculture, Agricultural Research Service, University, Mississippi 38677, United States
| | - Zhe-Cheng Wei
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xue-Wen Hua
- College of Agriculture, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Charles L Cantrell
- Natural Products Utilization Research Unit, United States Department of Agriculture, Agricultural Research Service, University, Mississippi 38677, United States
| | - Hao Xu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015 Zhejiang China
| | - Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
4
|
Gaudêncio SP, Bayram E, Lukić Bilela L, Cueto M, Díaz-Marrero AR, Haznedaroglu BZ, Jimenez C, Mandalakis M, Pereira F, Reyes F, Tasdemir D. Advanced Methods for Natural Products Discovery: Bioactivity Screening, Dereplication, Metabolomics Profiling, Genomic Sequencing, Databases and Informatic Tools, and Structure Elucidation. Mar Drugs 2023; 21:md21050308. [PMID: 37233502 DOI: 10.3390/md21050308] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Natural Products (NP) are essential for the discovery of novel drugs and products for numerous biotechnological applications. The NP discovery process is expensive and time-consuming, having as major hurdles dereplication (early identification of known compounds) and structure elucidation, particularly the determination of the absolute configuration of metabolites with stereogenic centers. This review comprehensively focuses on recent technological and instrumental advances, highlighting the development of methods that alleviate these obstacles, paving the way for accelerating NP discovery towards biotechnological applications. Herein, we emphasize the most innovative high-throughput tools and methods for advancing bioactivity screening, NP chemical analysis, dereplication, metabolite profiling, metabolomics, genome sequencing and/or genomics approaches, databases, bioinformatics, chemoinformatics, and three-dimensional NP structure elucidation.
Collapse
Affiliation(s)
- Susana P Gaudêncio
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Engin Bayram
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
| | - Ana R Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
- Instituto Universitario de Bio-Orgánica (IUBO), Universidad de La Laguna, 38206 La Laguna, Spain
| | - Berat Z Haznedaroglu
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Carlos Jimenez
- CICA- Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, HCMR Thalassocosmos, 71500 Gournes, Crete, Greece
| | - Florbela Pereira
- LAQV, REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Fernando Reyes
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Armilla, Spain
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
- Faculty of Mathematics and Natural Science, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
5
|
5,5,7,7-Tetrametyl-6,7-dihydro-5H-dibenzo[c,e]azepine. MOLBANK 2023. [DOI: 10.3390/m1554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
5,5,7,7-Tetrametyl-6,7-dihydro-5H-dibenzo[c,e]azepine has been synthesized as a possible pro-chiral (or tropos) unit for the construction of a chiral catalyst and as a molecular chirality sensor for the absolute configuration assignment by chiroptical spectroscopy. A straightforward synthetic strategy for the preparation of the title compound in high overall yield through sequential addition of the four methyl groups on benzylic positions has been described. A VT-NMR study was used to determine the rotational barrier of the aryl–aryl bond in this biphenylazepine, revealing its torsional flexibility at room temperature, which makes the biphenylazepine suitable as both a chirality probe and a tropos moiety in chiral ligands.
Collapse
|
6
|
Markovič M, Koóš P, Sokoliová S, Boháčiková N, Vyskočil T, Moncoľ J, Gracza T. A Universal Strategy for Synthesis of Agropyrenol Family. Total Synthesis of Agropyrenol, Sordarial, and Heterocornol A and B. J Org Chem 2022; 87:15947-15962. [PMID: 36378998 DOI: 10.1021/acs.joc.2c02092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A divergent strategy for natural polyketides synthesis has been designed. This synthetic route allowed chemical alterations leading to all stereoisomers of the natural agropyrenol 1, sordarial 2, and heterocornol B 4. Key steps involve desymmetrization of divinylcarbinol using asymmetric Sharpless epoxidation and Heck coupling of an easily available aromatic partner and prepared chiral alkene. The versatility of the synthetic method was demonstrated on the preparation of heterocornol A 3 and sordariol 5. The absolute and relative configurations of prepared natural compounds 2·1/3C6H12 and 4 were confirmed and assigned by single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Martin Markovič
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia.,Georganics Ltd., Koreničova 1, SK-811 03 Bratislava, Slovakia
| | - Peter Koóš
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia.,Georganics Ltd., Koreničova 1, SK-811 03 Bratislava, Slovakia
| | - Saskia Sokoliová
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Nikola Boháčiková
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Tomáš Vyskočil
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Ján Moncoľ
- Department of Inorganic Chemistry, Institute of Inorganic Chemistry, Technology and Materials, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Tibor Gracza
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| |
Collapse
|
7
|
Wang Y, Huang Q, Zhang L, Zheng C, Xu H. Biphenyls in Clusiaceae: Isolation, structure diversity, synthesis and bioactivity. Front Chem 2022; 10:987009. [PMID: 36531325 PMCID: PMC9751493 DOI: 10.3389/fchem.2022.987009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Clusiaceae plants contain a wide range of biologically active metabolites that have gotten a lot of interest in recent decades. The chemical compositions of these plants have been demonstrated to have positive effects on a variety of ailments. The species has been studied for over 70 years, and many bioactive compounds with antioxidant, anti-proliferative, and anti-inflammatory properties have been identified, including xanthones, polycyclic polyprenylated acylphloroglucinols (PPAPs), benzophenones, and biphenyls. Prenylated side chains have been discovered in many of these bioactive substances. To date, there have been numerous studies on PPAPs and xanthones, while no comprehensive review article on biphenyls from Clusiaceae has been published. The unique chemical architectures and growing biological importance of biphenyl compounds have triggered a flurry of research and interest in their isolation, biological evaluation, and mechanistic studies. In particular, the FDA-approved drugs such as sonidegib, tazemetostat, daclatasvir, sacubitril and trifarotene are closely related to their biphenyl-containing moiety. In this review, we summarize the progress and development in the chemistry and biological activity of biphenyls in Clusiaceae, providing an in-depth discussion of their structural diversity and medicinal potential. We also present a preliminary discussion of the biological effects with or without prenyl groups on the biphenyls.
Collapse
Affiliation(s)
- Youyi Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Changwu Zheng, ; Hongxi Xu,
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Changwu Zheng, ; Hongxi Xu,
| |
Collapse
|
8
|
Masi M, Di Lecce R, Calice U, Linaldeddu BT, Maddau L, Superchi S, Evidente A. Diplofuranoxin, a disubstituted dihydrofuranone, was produced together with sphaeropsidin A and epi-sphaeropsidone by Diplodia subglobosa, an emerging ash (Fraxinus excelsior L.) pathogen in Europe. PHYTOCHEMISTRY 2022; 202:113302. [PMID: 35810877 DOI: 10.1016/j.phytochem.2022.113302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
An undescribed disubstituted dihydrofuranone, named diplofuranoxin, was isolated, together with the six well known metabolites sphaeropsidins A and C, epi-sphaeropsidone, mellein and cis- and trans-4-hydroxymelleins, from the fungal species Diplodia subglobosa, an emerging pathogen involved in the ash dieback aetiology in Europe. Currently, the disease represents the main threat to European ash heritage and the wood associated industry. Diplofuranoxin, was characterized essentially by NMR and HRESIMS spectra as (3Z)-3-(2,3-dihydroxybutylidene)-5-methyldihydrofuran-2(3H)-one. Its relative and absolute configuration was determined by joining NOESY NMR experiments and computational analysis of electronic circular dichroism spectrum. All the metabolites were screened for phytotoxic, antioomycetes and zootoxic activities and only sphaeropsidin A and epi-sphaeropsidone were active in two out of three bioassays performed. In addition, sphaeropsidin A completely inhibited mycelium growth of Phytophthora cambivora, whereas the inhibition rate of epi-sphaeropsidone was less than 50% at the higher concentration used. Both metabolites were inactive in the Artemia salina assay. Results obtained in this study have allowed to characterize for the first time the main metabolites produced in vitro by D. subglobosa and to increase the knowledge on the metabolic profile of Botryosphaeriaceae for a correct taxonomic classification of the strains belonging to this family.
Collapse
Affiliation(s)
- Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Roberta Di Lecce
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Umberto Calice
- Dipartimento di Scienze, Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Benedetto Teodoro Linaldeddu
- Dipartimento Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Viale dell'Università 16, Legnaro, 35020, Italy
| | - Lucia Maddau
- Dipartimento di Agraria, Sezione di Patologia Vegetale ed Entomologia, Università degli Studi di Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Stefano Superchi
- Dipartimento di Scienze, Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Napoli, Italy.
| |
Collapse
|
9
|
Summa A, Scafato P, Belviso S, Monaco G, Zanasi R, Longhi G, Abbate S, Superchi S. Synthesis and Stereochemical Characterization of a Novel Chiral α-Tetrazole Binaphthylazepine Organocatalyst. Molecules 2022; 27:molecules27165113. [PMID: 36014353 PMCID: PMC9413694 DOI: 10.3390/molecules27165113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 12/03/2022] Open
Abstract
A novel α-tetrazole-substituted 1,1′-binaphthylazepine chiral catalyst has been synthesized and its absolute configuration has been determined by DFT computational analysis of the vibrational circular dichroism (VCD) spectrum of its precursor. The VCD analysis, carried out through the model averaging method, allowed to assign the absolute configuration of a benzylic stereocenter in the presence of a chiral binaphthyl moiety. The 1,1′-binaphthylazepine tetrazole and the nitrile its immediate synthetic precursor, have been preliminarily tested as chiral organocatalysts in the asymmetric intramolecular oxa-Michael cyclization of 2-hydroxy chalcones for the synthesis of chiral flavanones obtaining low enantioselectivity.
Collapse
Affiliation(s)
- Assunta Summa
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Patrizia Scafato
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Sandra Belviso
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Guglielmo Monaco
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 84084 Salerno, Italy
| | - Riccardo Zanasi
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 84084 Salerno, Italy
| | - Giovanna Longhi
- Department Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123 Brescia, Italy
- Unit of Brescia, Consiglio Nazionale delle Ricerche-I.N.O. c/o CSMT, 25123 Brescia, Italy
| | - Sergio Abbate
- Department Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123 Brescia, Italy
- Unit of Brescia, Consiglio Nazionale delle Ricerche-I.N.O. c/o CSMT, 25123 Brescia, Italy
| | - Stefano Superchi
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
- Correspondence:
| |
Collapse
|
10
|
Huo ZQ, Zhu F, Zhang XW, Zhang X, Liang HB, Yao JC, Liu Z, Zhang GM, Yao QQ, Qin GF. Approaches to Configuration Determinations of Flexible Marine Natural Products: Advances and Prospects. Mar Drugs 2022; 20:333. [PMID: 35621984 PMCID: PMC9143581 DOI: 10.3390/md20050333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Flexible marine natural products (MNPs), such as eribulin and bryostatin, play an important role in the development of modern marine drugs. However, due to the multiple chiral centers and geometrical uncertainty of flexible systems, configuration determinations of flexible MNPs face great challenges, which, in turn, have led to obstacles in druggability research. To resolve this issue, the comprehensive use of multiple methods is necessary. Additionally, configuration assignment methods, such as X-ray single-crystal diffraction (crystalline derivatives, crystallization chaperones, and crystalline sponges), NMR-based methods (JBCA and Mosher's method), circular dichroism-based methods (ECCD and ICD), quantum computational chemistry-based methods (NMR calculations, ECD calculations, and VCD calculations), and chemical transformation-based methods should be summarized. This paper reviews the basic principles, characteristics, and applicability of the methods mentioned above as well as application examples to broaden the research and applications of these methods and to provide a reference for the configuration determinations of flexible MNPs.
Collapse
Affiliation(s)
- Zong-Qing Huo
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China; (Z.-Q.H.); (F.Z.); (H.-B.L.); (J.-C.Y.); (Z.L.); (G.-M.Z.)
| | - Feng Zhu
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China; (Z.-Q.H.); (F.Z.); (H.-B.L.); (J.-C.Y.); (Z.L.); (G.-M.Z.)
| | - Xing-Wang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiao Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Hong-Bao Liang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China; (Z.-Q.H.); (F.Z.); (H.-B.L.); (J.-C.Y.); (Z.L.); (G.-M.Z.)
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Jing-Chun Yao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China; (Z.-Q.H.); (F.Z.); (H.-B.L.); (J.-C.Y.); (Z.L.); (G.-M.Z.)
| | - Zhong Liu
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China; (Z.-Q.H.); (F.Z.); (H.-B.L.); (J.-C.Y.); (Z.L.); (G.-M.Z.)
| | - Gui-Min Zhang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China; (Z.-Q.H.); (F.Z.); (H.-B.L.); (J.-C.Y.); (Z.L.); (G.-M.Z.)
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Qing-Qiang Yao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China;
| | - Guo-Fei Qin
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China; (Z.-Q.H.); (F.Z.); (H.-B.L.); (J.-C.Y.); (Z.L.); (G.-M.Z.)
| |
Collapse
|
11
|
Marsico G, Calice U, Scafato P, Belviso S, Evidente A, Superchi S. Computational Approaches and Use of Chiroptical Probes in the Absolute Configuration Assignment to Natural Products by ECD Spectroscopy: A 1,2,3-Trihydroxy-p-menthane as a Case Study. Biomolecules 2022; 12:biom12030421. [PMID: 35327613 PMCID: PMC8945943 DOI: 10.3390/biom12030421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 12/13/2022] Open
Abstract
In this study, the computational analysis of electronic circular dichroism (ECD) spectra and the employment of biphenyl chiroptical probes were compared in the absolute configuration assignment of (-)-1α,2α,3β-trihydroxy-p-menthane (1), taken as a representative example of a UV-transparent chiral natural product. The usefulness of chiroptical probes in the configurational assignments of natural products and their complementarity to the computational protocols is herein highlighted. The biphenyl probe approach proves to be straightforward, reliable, and suitable for conformationally mobile and ECD silent compounds, not treatable by computational analysis of chiroptical data.
Collapse
Affiliation(s)
- Giulia Marsico
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.M.); (U.C.); (P.S.); (S.B.)
| | - Umberto Calice
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.M.); (U.C.); (P.S.); (S.B.)
| | - Patrizia Scafato
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.M.); (U.C.); (P.S.); (S.B.)
| | - Sandra Belviso
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.M.); (U.C.); (P.S.); (S.B.)
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy;
| | - Stefano Superchi
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.M.); (U.C.); (P.S.); (S.B.)
- Correspondence: ; Tel.: +39-0971206098
| |
Collapse
|
12
|
Masi M, Di Lecce R, Maddau L, Marsico G, Superchi S, Evidente A. Argyrotoxins A-C, a trisubstituted dihydroisobenzofuranone, a tetrasubstituted 2-hydroxyethylbenzamide and a tetrasubstitutedphenyl trisubstitutedbutyl ether produced by Alternaria argyroxiphii, the causal agent of leaf spot on African mahogany trees (Khaya senegalensis). PHYTOCHEMISTRY 2021; 191:112921. [PMID: 34425462 DOI: 10.1016/j.phytochem.2021.112921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Three previously undescribed metabolites named argyrotoxins A-C, were isolated, together with the well known porritoxinol, its closely related phthalide, a phthalide derivative, zinniol, alternariol and its 4-methyl ether from Alternaria argyroxiphii E.G. Simmons & Aragaki, the causal agent of leaf spot on African mahogany trees, Khaya senegalensis A. Juss. (Meliaceae). The known compounds were identified comparing their physical and spectroscopic properties to those previously reported in literature. Argyrotoxins A-C were characterized essentially by NMR (1H, 13C, COSY, HSQC, HMBC and NOESY NMR spectra) and HRESIMS spectra as 4-(7-methoxy-6-methyl-3-oxo-1,3-dihydro-isobenzofuran-5-yloxy)-2-methyl-butyric acid, 5-but-2-enyloxy-N-(2-hydroxyethyl)-2-hydroxymethyl-3-methoxy-4-methyl-benzamide and 1-(5-(hydroxymethyl)-3-methoxy-4-(methoxymethyl)-2-methylphenoxy)-3-methylbutane-2,3-diol, respectively. The absolute configuration of argyrotoxin A was determined through electronic circular dichroism, by applying the biphenyl chiroptical probe approach. The phytoxicity of all metabolites isolated was evaluated by leaf puncture assay at concentration of 1 mg/mL. Zinniol proved to be the most active compound causing necrotic lesions on young leaves of Hedera elix L., Phaseolus vulgaris L. and Quercus ilex L. Argirotoxins A and B were found active, to a minor extent, on Phaseolus vulgaris L. leaves, while porritoxinol exhibited activity on holm oak leaves. The other secondary metabolites herein reported for A. argyroxiphii were inactive.
Collapse
Affiliation(s)
- Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Roberta Di Lecce
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Lucia Maddau
- Dipartimento di Agraria, Sezione di Patologia Vegetale ed Entomologia, Università degli Studi di Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Giulia Marsico
- Dipartimento di Scienze, Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Stefano Superchi
- Dipartimento di Scienze, Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Napoli, Italy.
| |
Collapse
|
13
|
Masi M, Di Lecce R, Marsico G, Linaldeddu BT, Maddau L, Superchi S, Evidente A. Pinofuranoxins A and B, Bioactive Trisubstituted Furanones Produced by the Invasive Pathogen Diplodia sapinea. JOURNAL OF NATURAL PRODUCTS 2021; 84:2600-2605. [PMID: 34469140 PMCID: PMC8477388 DOI: 10.1021/acs.jnatprod.1c00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 06/13/2023]
Abstract
Two new bioactive trisubstituted furanones, named pinofuranoxins A and B (1 and 2), were isolated from Diplodia sapinea, a worldwide conifer pathogen causing severe disease. Pinofuranoxins A and B were characterized essentially by NMR and HRESIMS spectra, and their relative and absolute configurations were assigned by NOESY experiments and computational analyses of electronic circular dichroism spectra. They induced necrotic lesions on Hedera helix L., Phaseolus vulgaris L., and Quercus ilex L. Compound 1 completely inhibited the growth of Athelia rolfsii and Phytophthora cambivora, while 2 showed antioomycetes activity against P. cambivora. In the Artemia salina assay both toxins showed activity inducing larval mortality.
Collapse
Affiliation(s)
- Marco Masi
- Dipartimento
di Scienze Chimiche, Università di
Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Roberta Di Lecce
- Dipartimento
di Scienze Chimiche, Università di
Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Giulia Marsico
- Dipartimento
di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano
10, 85100 Potenza, Italy
| | - Benedetto Teodoro Linaldeddu
- Dipartimento
Territorio e Sistemi Agro-Forestali, Università
di Padova, Viale dell’Università
16, 35020 Legnaro, Italy
| | - Lucia Maddau
- Dipartimento
di Agraria, Sezione di Patologia Vegetale ed Entomologia, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Stefano Superchi
- Dipartimento
di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano
10, 85100 Potenza, Italy
| | - Antonio Evidente
- Dipartimento
di Scienze Chimiche, Università di
Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy
| |
Collapse
|
14
|
Chiroptical Sensing of Amino Acid Derivatives by Host-Guest Complexation with Cyclo[6]aramide. Molecules 2021; 26:molecules26134064. [PMID: 34279403 PMCID: PMC8271771 DOI: 10.3390/molecules26134064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 02/03/2023] Open
Abstract
A hydrogen-bonded (H-bonded) amide macrocycle was found to serve as an effective component in the host–guest assembly for a supramolecular chirality transfer process. Circular dichroism (CD) spectroscopy studies showed that the near-planar macrocycle could produce a CD response when combined with three of the twelve L-α-amino acid esters (all cryptochiral molecules) tested as possible guests. The host–guest complexation between the macrocycle and cationic guests was explored using NMR, revealing the presence of a strong affinity involving the multi-point recognition of guests. This was further corroborated by density functional theory (DFT) calculations. The present work proposes a new strategy for amplifying the CD signals of cryptochiral molecules by means of H-bonded macrocycle-based host–guest association, and is expected to be useful in designing supramolecular chiroptical sensing materials.
Collapse
|
15
|
Absolute Configuration Sensing of Chiral Aryl- and Aryloxy-Propionic Acids by Biphenyl Chiroptical Probes. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The absolute configuration of chiral 2-aryl and 2-aryloxy propionic acids, which are among the most common chiral environmental pollutants, has been readily and reliably established by either electronic circular dichroism spectroscopy or optical rotation measurements employing suitably designed 4,4′-disubstituted biphenyl probes. In fact, the 4,4′-biphenyl substitution gives rise to a red shift of the diagnostic electronic circular dichroism signal of the biphenyl A band employed for the configuration assignment, removing its overlap with other interfering dichroic bands and allowing its clear sign identification. The largest A band red shift, and thus the most reliable results, are obtained by employing as a probe the 4,4′-dinitro substituted biphenylazepine 3c. The method was applied to the absolute configuration assignment of 2-arylpropionic acids ibuprofen (1a), naproxen (1b), ketoprofen (1c) and flurbiprofen (1d), as well as to the 2-aryloxypropionic acids 2-phenoxypropionic acid (2a) and 2-naphthoxypropionic acid (2b). This approach, allowing us to reveal the sample’s absolute configuration by simple optical rotation measurements, is potentially applicable to online analyses of both the enantiomeric composition and absolute configuration of these chiral pollutants.
Collapse
|
16
|
Masi M, Santoro E, Clement S, Meyer S, Scafato P, Superchi S, Evidente A. Further secondary metabolites produced by the fungus
Pyricularia grisea
isolated from buffelgrass (
Cenchrus ciliaris
). Chirality 2020; 32:1234-1242. [DOI: 10.1002/chir.23270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Marco Masi
- Dipartimento di Scienze Chimiche Università di Napoli Federico II, Complesso Universitario Monte S. Angelo Naples Italy
| | - Ernesto Santoro
- Dipartimento di Scienze Università della Basilicata Potenza Italy
| | - Suzette Clement
- Shrub Sciences Laboratory U.S. Forest Service Rocky Mountain Research Station Provo Utah USA
| | - Susan Meyer
- Shrub Sciences Laboratory U.S. Forest Service Rocky Mountain Research Station Provo Utah USA
| | - Patrizia Scafato
- Dipartimento di Scienze Università della Basilicata Potenza Italy
| | - Stefano Superchi
- Dipartimento di Scienze Università della Basilicata Potenza Italy
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche Università di Napoli Federico II, Complesso Universitario Monte S. Angelo Naples Italy
| |
Collapse
|
17
|
Mahesh G, Raghavaiah J, Sudhakar G. A unified approach to the salicylaldehyde containing polyketide natural products: Total synthesis of ent-pyriculol, ent-epipyriculol, ent-dihydropyriculol, ent-epidihydropyriculol, sordariol, sordarial, 12-methoxy sordariol, and agropyrenol. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Padula D, Mazzeo G, Santoro E, Scafato P, Belviso S, Superchi S. Amplification of the chiroptical response of UV-transparent amines and alcohols by N-phthalimide derivatization enabling absolute configuration determination through ECD computational analysis. Org Biomol Chem 2020; 18:2094-2102. [PMID: 32107518 DOI: 10.1039/d0ob00052c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The stereoselective transformation of chiral UV-transparent amines and alcohols to phthalimides has proved to be a simple and efficient method to enhance the chiroptical response of these substrates allowing their reliable absolute configuration determination by computational analysis of ECD spectra. Such a transformation also leads to a significant reduction in the molecular conformational flexibility thus simplifying the conformational analysis required by the computational treatment. The method described herein thus allows the absolute configuration assignment to these challenging substrates to be much easier and reliable.
Collapse
Affiliation(s)
- Daniele Padula
- Dipartimento di Scienze, Università della Basilicata, via dell'Ateneo Lucano, 85100, Potenza, Italy.
| | | | | | | | | | | |
Collapse
|