1
|
Fang Z, Ding Y, Yuan S, Wang L, Wang M, Li F, Wu X, Sun L, Zhang P. Electrocatalytic Hydrogenation and Deuteration of Unsaturated C-N Bonds to Amines with Vacancy-Rich Cu 3P Nanowires as Catalysts in Aqueous Solution. CHEMSUSCHEM 2024:e202401601. [PMID: 39473356 DOI: 10.1002/cssc.202401601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024]
Abstract
Renewable energy driven electrochemically hydrogenation of unsaturated C-N bonds with water as a hydrogen source provides an eco-friendly route for amine production. However, the potential commercial applications of this strategy were limited by the lack of relevant extended research. Here we demonstrate an efficient electrochemical hydrogenation system for the formation of amines from nitriles by a vacancy-rich copper phosphide catalyst. The catalytic system achieves a yield of 99 % and a Faraday efficiency of 99 % for the hydrogenation of benzonitrile. Mechanism study shows that benzonitrile is spontaneously adsorbed on the electrode surface and the electrogenerated active adsorbed hydrogen is the key reactive intermediate for hydrogenation. Theoretical calculation results show that vacancy-induced active sites chemisorb the N atom, thus accelerating C≡N bond activation for hydrogenation. Encouragingly, good yields of amines (≥99 %) are obtained when benzonitrile is replaced by a series of aromatic nitriles, heterocyclic nitriles, aliphatic nitriles, and imines. These results show the general applicability of this method for the synthesis of various amines.
Collapse
Affiliation(s)
- Zhiyong Fang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Yunxuan Ding
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
| | - Song Yuan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Linqin Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
| | - Mei Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Fusheng Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Xiujuan Wu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
| | - Peili Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
2
|
Hao W, Gao S, Cui H, Ding D, Jiang S, Zhang C, Ji Y, Zhang G. Construction of Trisubstituted Hydrazones via Base-Mediated Cascade Condensation N-Alkylation. J Org Chem 2024; 89:2605-2621. [PMID: 38315164 DOI: 10.1021/acs.joc.3c02621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A practical base-promoted tandem condensation N-alkylation reaction for the formation of trisubstituted hydrazones has been developed employing aldehydes and hydrazines with alkyl halides. Crucially, this reaction successfully overcomes chemoselectivity problems, allowing for the reaction of multiple components in a one-pot manner. Halo- and heterofunctional groups, as well as free hydroxyl and amino groups, are tolerated in this transformation to produce a wide range of trisubstituted hydrazones in good to excellent yields.
Collapse
Affiliation(s)
- Wentao Hao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- College of Ecology, Taiyuan University of Technology, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Gao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyi Cui
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ding Ding
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunyan Zhang
- College of Ecology, Taiyuan University of Technology, Taiyuan 030001, China
| | - Yuqi Ji
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Guoying Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|
3
|
Guin AK, Pal S, Chakraborty S, Chakraborty S, Paul ND. N-Alkylation of Amines by C1-C10 Aliphatic Alcohols Using A Well-Defined Ru(II)-Catalyst. A Metal-Ligand Cooperative Approach. J Org Chem 2023; 88:5944-5961. [PMID: 37052217 DOI: 10.1021/acs.joc.3c00313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A Ru(II)-catalyzed efficient and selective N-alkylation of amines by C1-C10 aliphatic alcohols is reported. The catalyst [Ru(L1a)(PPh3)Cl2] (1a) bearing a tridentate redox-active azo-aromatic pincer, 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (L1a) is air-stable, easy to prepare, and showed wide functional group tolerance requiring only 1.0 mol % (for N-methylation and N-ethylation) and 0.1 mol % of catalyst loading for N-alkylation with C3-C10 alcohols. A wide array of N-methylated, N-ethylated, and N-alkylated amines were prepared in moderate to good yields via direct coupling of amines and alcohols. 1a efficiently catalyzes the N-alkylation of diamines selectively. It is even suitable for synthesizing N-alkylated diamines using (aliphatic) diols producing the tumor-active drug molecule MSX-122 in moderate yield. 1a showed excellent chemo-selectivity during the N-alkylation using oleyl alcohol and monoterpenoid β-citronellol. Control experiments and mechanistic investigations revealed that the 1a-catalyzed N-alkylation reactions proceed via a borrowing hydrogen transfer pathway where the hydrogen removed from the alcohol during the dehydrogenation step is stored in the ligand backbone of 1a, which in the subsequent steps transferred to the in situ formed imine intermediate to produce the N-alkylated amines.
Collapse
Affiliation(s)
- Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Santana Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
4
|
Chakraborty S, Mondal R, Pal S, Guin AK, Roy L, Paul ND. Zn(II)-Catalyzed Selective N-Alkylation of Amines with Alcohols Using Redox Noninnocent Azo-Aromatic Ligand as Electron and Hydrogen Reservoir. J Org Chem 2023; 88:771-787. [PMID: 36577023 DOI: 10.1021/acs.joc.2c01773] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report a sustainable and eco-friendly approach for selective N-alkylation of various amines by alcohols, catalyzed by a well-defined Zn(II)-catalyst, Zn(La)Cl2 (1a), bearing a tridentate arylazo scaffold. A total of 57 N-alkylated amines were prepared in good to excellent yields, out of which 17 examples are new. The Zn(II)-catalyst shows wide functional group tolerance, is compatible with the synthesis of dialkylated amines via double N-alkylation of diamines, and produces the precursors in high yields for the marketed drugs tripelennamine and thonzonium bromide in gram-scale reactions. Control reactions and DFT studies indicate that electron transfer events occur at the azo-chromophore throughout the catalytic process, which shuttles between neutral azo, one-electron reduced azo-anion radical, and two-electron reduced hydrazo forms acting both as electron and hydrogen reservoir, enabling the Zn(II)-catalyst for N-alkylation reaction.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai - IOC Odisha Campus Bhubaneswar, Bhubaneswar 751013, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
5
|
Jafarzadeh M, Sobhani SH, Gajewski K, Kianmehr E. Recent advances in C/ N-alkylation with alcohols through hydride transfer strategies. Org Biomol Chem 2022; 20:7713-7745. [PMID: 36169049 DOI: 10.1039/d2ob00706a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights the most recent reports in three powerful and ever-growing fields of borrowing hydrogen, acceptorless dehydrogenative coupling, and base-mediated hydride transfer strategies; which pave the way for generating reactive intermediates via shuttling hydrogen (or hydride) between starting materials without any need for an external hydrogen source to easily construct more complex structures. There is a thorough focus on diversifying the utility of alcohols for C/N-alkylation leading to the synthesis of branched ketones, alcohols, amines, indols, and 6-membered nitrogen-containing heterocycles such as pyridines and pyrimidines, various transformations with the focus on C-C and C-N bond-forming reactions via metal-based catalysis or metal-free approaches in this context to give a global overview in this area.
Collapse
Affiliation(s)
- Mahdi Jafarzadeh
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran.
| | - Seyed Hasan Sobhani
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran.
| | | | - Ebrahim Kianmehr
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran.
| |
Collapse
|
6
|
Zhang G, Liang Q, Yang W, Jiang S, Wang Z, Zhang C, Zhang G. One Pot Synthesis of 1,2‐Disubstituted Ethanones by Base‐Mediated Reductive Homocoupling of Aldehydes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guohui Zhang
- Qingdao University of Science and Technology CHINA
| | | | - Wei Yang
- Institute of Coal Chemistry CAS CHINA
| | | | - Zhiping Wang
- Qingdao University of Science and Technology CHINA
| | | | | |
Collapse
|
7
|
Zhang C, Zhang Y, Liang Q, Zhang G, Yang W, Li N, Qin G, Zhang G. Formamidation of a wide range of substituted and functionalized amines with CO and a base. Org Chem Front 2022. [DOI: 10.1039/d2qo01312f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have developed a base mediated formamidation of amines with CO under mild conditions, which allows for the synthesis of a wide range of aromatic and aliphatic formamides in high yields and gram amounts in the absence of a transition metal.
Collapse
Affiliation(s)
- Chunyan Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
- Taiyuan University of Technology, Taiyuan, 030001, P. R. China
| | - Yushuang Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Qianqian Liang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guohui Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Wei Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Nanwen Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Guiping Qin
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, P. R. China
| | - Guoying Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| |
Collapse
|
8
|
Shi YF, Jiang YP, Sun PP, Wang K, Zhang ZQ, Zhu NJ, Guo R, Zhang YY, Wang XZ, Liu YY, Huo JZ, Wang XR, Ding B. Solvothermal preparation of luminescent zinc(II) and cadmium(II) coordination complexes based on the new bi-functional building block and photo-luminescent sensing for Cu 2+, Al 3+ and L-lysine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119214. [PMID: 33257240 DOI: 10.1016/j.saa.2020.119214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
In industry, over usage of Cu2+ and Al3+ will lead to toxic wastewater, which further to give serious pollution for the environment. On the other hand, L-lysine can enhance serotonin release in the amygdala, with subsequent changes in psychobehavioral responses to stress. Therefore it is the urgent problem to design a method for detecting the amount of Cu2+, Al3+, and L-lysine. In this work, through the solvothermal synthesis method, two new coordination complexes based on the new bifunctional building block 4'-(1H-1,2,4-triazole-1-yl)- [1,1'-biphenyl]-4-carboxylic acid (HL) have been synthesized, namely, [Zn(L)2·4H2O] (complex 1) and [Cd(L)2·4H2O] (complex 2). X-ray single-crystal diffractometer was used to analyze its structure, powder X-ray diffraction (PXRD) patterns confirmed that 1 and 2 powder's purity and 1 can keep stable during the detection process of Cu2+, Al3+, and L-lysine, respectively. Elemental analysis, thermogravimetric analysis, infrared analysis, ultraviolet analysis and fluorescent spectrum have been used to characterize these complexes. The photo-luminescent test showed that 1 can accurately recognize Al3+ and Cu2+ among various cations. On the other hand, 1 can distinguish L-lysine among amino acid molecules. Therefore, 1 can be utilized as a multifunctional fluorescent probe for Al3+(Ksv = 1.5570 × 104 [M]-1), Cu2+(Ksv = 1.4948 × 104 [M]-1) and L-lysine (Ksv = 4.9118 × 104 [M]-1) with low detection limits (17.5 μM, 18.2 μM, 5.6 μM) respectively.
Collapse
Affiliation(s)
- Yang Fan Shi
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yu Peng Jiang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Ping Ping Sun
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Kuo Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Zi Qing Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Na Jia Zhu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Rui Guo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Yi Yun Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Xing Ze Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yuan Yuan Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Jian Zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xin Rui Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Bin Ding
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
9
|
A review of smart electrospun fibers toward textiles. COMPOSITES COMMUNICATIONS 2020; 22:100506. [PMCID: PMC7497400 DOI: 10.1016/j.coco.2020.100506] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 05/24/2023]
Abstract
Electrospinning as a versatile technology has attracted a large amount of attention in the past few decades due to the facile way to produce micro- and nano-scale fibers featuring flexibility, large specific surface area and high porosity. Stimuli-responsive polymers are a class of smart materials that are capable of sensing surround environment and interacting with them. Therefore, the combination of electrospinning and smart materials could have a great deal of benefits over the development of smart fibers. In this review, it offers a comprehensive understanding of smart electrospun fibers toward textile applications. Firstly, the definition of smart fibers and the differences between interactive fibers and passive interactive fibers are briefly introduced. Then some interactive fibers made from temperature-, pH-, light-, electric field/electricity-, magnetic field-, multi-responsive polymers, as well as some polymers featuring piezoelectric and triboelectric effect which are suitable flexible electrics, are emphasized with their applications in the form of electrospun fibers. Afterwards, some passive and hybrid smart electrospun fibers are introduced. Finally, associated challenges and perspectives are summarized and discussed. Understanding of passive smart electrospun fibers and interactive smart electrospun fibers. The recent progress in flexible electronics from electrospun fibers. The recent progress in stimuli-responsive polymers applied in interactive smart electrospun fibers.
Collapse
|
10
|
Yang X, Wang J, Guo H, Liu L, Xu W, Duan G. Structural design toward functional materials by electrospinning: A review. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0068] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractElectrospinning as one of the most versatile technologies have attracted a lot of scientists’ interests in past decades due to its great diversity of fabricating nanofibers featuring high aspect ratio, large specific surface area, flexibility, structural abundance, and surface functionality. Remarkable progress has been made in terms of the versatile structures of electrospun fibers and great functionalities to enable a broad spectrum of applications. In this article, the electrospun fibers with different structures and their applications are reviewed. First, several kinds of electrospun fibers with different structures are presented. Then the applications of various structural electrospun fibers in different fields, including catalysis, drug release, batteries, and supercapacitors, are reviewed. Finally, the application prospect and main challenges of electrospun fibers are discussed. We hope that this review will provide readers with a comprehensive understanding of the structural design and applications of electrospun fibers in different fields.
Collapse
Affiliation(s)
- Xiuling Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jingwen Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hongtao Guo
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Li Liu
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Wenhui Xu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Gaigai Duan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
11
|
Zhang C, Liang Z, Jia X, Wang M, Zhang G, Hu ML. A practical base mediated synthesis of 1,2,4-triazoles enabled by a deamination annulation strategy. Chem Commun (Camb) 2020; 56:14215-14218. [PMID: 33112300 DOI: 10.1039/d0cc05828a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A rapid and efficient base mediated synthesis of 1,3,5-trisubstituted 1,2,4-triazoles has been developed using the annulation of nitriles with hydrazines, which can be expanded to a wide range of triazoles in good to excellent yields. Ammonia gas is liberated during the reaction, and halo and hetero functional groups as well as free hydroxyl and amino groups are tolerated in this transformation. A variety of alkyl and aryl-substituted nitriles can be functionalized with aromatic and aliphatic hydrazines employing this procedure. This finding provides a practical and useful strategy for the synthesis of various 15N-labeled 1,2,4-triazole derivatives, and two types of mGlu5 receptor pharmaceuticals can be easily assembled in a one-pot manner.
Collapse
Affiliation(s)
- Chunyan Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shan-dong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chem-istry for Life Science in Universities of Shandong, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | | | | | | | | | | |
Collapse
|
12
|
Zhang C, Zhao H, Li Z, Liang Z, Qi S, Cai M, Zhang S, Jia X, Zhang G, Hu ML. Rapid access to 3-aminoindazoles from nitriles with hydrazines: a strategy to overcome the basicity barrier imparted by hydrazines. Chem Commun (Camb) 2020; 56:9521-9524. [PMID: 32686796 DOI: 10.1039/d0cc03789c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A practical and efficient base mediated synthesis of free 3-aminoindazoles has been developed from the reaction of nitriles with hydrazines, which successfully overcomes the difficulty of using aromatic hydrazines as substrates and allows for the synthesis of a wide range of N-aryl substituted free 3-aminoindazoles in moderate to excellent yields under mild conditions in one-pot. This finding provides a rapid and useful strategy for the synthesis of various functionalized 3-aminoindazole derivatives.
Collapse
Affiliation(s)
- Chunyan Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Haowen Zhao
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Zehua Li
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Zuyu Liang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Shuo Qi
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Mingyu Cai
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Sheng Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Xiaofei Jia
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Guoying Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Mao-Lin Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| |
Collapse
|
13
|
Zhang C, Liang Z, Lu F, Jia X, Zhang G, Hu ML. Base-mediated cascade amidination/N-alkylation of amines by alcohols. Chem Commun (Camb) 2020; 56:10489-10492. [DOI: 10.1039/d0cc04831c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient base mediated N-alkylation with nitriles as a water acceptor was described, providing a convenient method to construct the different substituted diamino compounds, 15N labeled amine molecules and could scaled up to 1 mol scale.
Collapse
Affiliation(s)
- Chunyan Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology
| | - Zuyu Liang
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology
| | - Fenghong Lu
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology
| | - Xiaofei Jia
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology
| | - Guoying Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology
| | - Mao-Lin Hu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| |
Collapse
|