1
|
George M, Wright GD. Revisiting the potential of natural products in antimycobacterial therapy: advances in drug discovery and semisynthetic solutions. Curr Opin Microbiol 2025; 83:102576. [PMID: 39742555 DOI: 10.1016/j.mib.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 01/03/2025]
Abstract
Natural products have been pivotal in treating mycobacterial infections with early antibiotics such as streptomycin, forming the foundation of tuberculosis therapy. However, the emergence of multidrug-resistant and extensively drug-resistant Mycobacterium species has intensified the need for novel antimycobacterial agents. In this review, we revisit the historical contributions of natural products to antimycobacterial drug discovery and highlight recent advances in the field. We assess the application of molecular networking and the exploration of unculturable bacteria in identifying new antimycobacterial compounds such as amycobactin and levesquamides. We also highlight the role of semisynthesis in optimizing natural products, exemplified by sequanamycins and spectinomycin analogs that evade M. tuberculosis' intrinsic resistance. Finally, we discuss emerging technologies that are promising to accelerate the discovery and development of next-generation antimycobacterial therapies. Despite ongoing challenges, these innovative approaches offer renewed hope in addressing the growing crisis of drug-resistant mycobacterial infections.
Collapse
Affiliation(s)
- Maya George
- David Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Gerard D Wright
- David Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
2
|
Cao L, Liu Y, Sun L, Zhu Z, Yang D, Xia Z, Jin D, Dai Z, Rang J, Xia L. Enhanced triacylglycerol metabolism contributes to the efficient biosynthesis of spinosad in Saccharopolyspora spinosa. Synth Syst Biotechnol 2024; 9:809-819. [PMID: 39072147 PMCID: PMC11277812 DOI: 10.1016/j.synbio.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 07/30/2024] Open
Abstract
Triacylglycerol (TAG) is crucial for antibiotic biosynthesis derived from Streptomyces, as it serves as an important carbon source. In this study, the supplementation of exogenous TAG led to a 3.92-fold augmentation in spinosad production. The impact of exogenous TAG on the metabolic network of Saccharopolyspora spinosa were deeply analyzed through comparative proteomics. To optimize TAG metabolism and enhance spinosad biosynthesis, the lipase-encoding genes lip886 and lip385 were overexpressed or co-expressed. The results shown that the yield of spinosad was increased by 0.8-fold and 0.4-fold when lip886 and lip385 genes were overexpressed, respectively. Synergistic co-expression of these genes resulted in a 2.29-fold increase in the yield of spinosad. Remarkably, the combined overexpression of lip886 and lip385 in the presence of exogenous TAG elevated spinosad yields by 5.5-fold, led to a drastic increase in spinosad production from 0.036 g/L to 0.234 g/L. This study underscores the modification of intracellular concentrations of free fatty acids (FFAs), short-chain acyl-CoAs, ATP, and NADPH as mechanisms by which exogenous TAG modulates spinosad biosynthesis. Overall, the findings validate the enhancement of TAG catabolism as a beneficial strategy for optimizing spinosad production and provide foundational insights for engineering secondary metabolite biosynthesis pathways in another Streptomyces.
Collapse
Affiliation(s)
- Li Cao
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yangchun Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Lin Sun
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zirong Zhu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Danlu Yang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Duo Jin
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zirui Dai
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| |
Collapse
|
3
|
Zhao P, Hou P, Zhang Z, Li X, Quan C, Xue Y, Lei K, Li J, Gao W, Fu F. Microbial-derived peptides with anti-mycobacterial potential. Eur J Med Chem 2024; 276:116687. [PMID: 39047606 DOI: 10.1016/j.ejmech.2024.116687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Tuberculosis (TB), an airborne infectious disease caused by Mycobacterium tuberculosis, has become the leading cause of death. The subsequent emergence of multidrug-resistant, extensively drug-resistant and totally drug-resistant strains, brings an urgent need to discover novel anti-TB drugs. Among them, microbial-derived anti-mycobacterial peptides, including ribosomally synthesized and post-translationally modified peptides (RiPPs) and multimodular nonribosomal peptides (NRPs), now arise as promising candidates for TB treatment. This review presents 96 natural RiPP and NRP families from bacteria and fungi that have broad spectrum in vitro activities against non-resistant and drug-resistant mycobacteria. In addition, intracellular targets of 22 molecules are the subject of much attention. Meanwhile, chemical features of 38 families could be modified in order to improve properties. In final, structure-activity relationships suggest that the modifications of various groups, especially the peptide side chains, the amino acid moieties, the cyclic peptide skeletons, various special groups, stereochemistry and entire peptide chain length are important for increasing the potency.
Collapse
Affiliation(s)
- Pengchao Zhao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Pu Hou
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhishen Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xin Li
- Shanxi Key Laboratory of Yuncheng Salt Lake Ecological Protection and Resource Utilization, Yuncheng University, 044000, China.
| | - Chunshan Quan
- Department of Life Science, Dalian Nationalities University, Dalian, 116600, China.
| | - Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Kun Lei
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Weina Gao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Fangfang Fu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
4
|
Peng X, Zeng Z, Hassan S, Xue Y. The potential of marine natural Products: Recent Advances in the discovery of Anti-Tuberculosis agents. Bioorg Chem 2024; 151:107699. [PMID: 39128242 DOI: 10.1016/j.bioorg.2024.107699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Tuberculosis (TB) is an infectious airborne disease caused by Mycobacterium tuberculosis. Since the 1990 s, many countries have made significant progress in reducing the incidence of TB and associated mortality by improving health services and strengthening surveillance systems. Nevertheless, due to the emergence of multidrug-resistant TB (MDR-TB), alongside extensively drug-resistant TB (XDR-TB) and TB-HIV co-infection, TB remains one of the lead causes of death arising from infectious disease worldwide, especially in developing countries and disadvantaged populations. Marine natural products (MNPs) have received a large amount of attention in recent years as a source of pharmaceutical constituents and lead compounds, and are expected to offer significant resources and potential in the fields of drug development and biotechnology in the years to come. This review summarizes 169 marine natural products and their synthetic derivatives displaying anti-TB activity from 2013 to the present, including their structures, sources and functions. Partial synthetic information and structure-activity relationships (SARs) are also included.
Collapse
Affiliation(s)
- Xinyu Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Ziqian Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Said Hassan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda 24540, Pakistan
| | - Yongbo Xue
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
5
|
Boshoff HI, Malhotra N, Barry CE, Oh S. The Antitubercular Activities of Natural Products with Fused-Nitrogen-Containing Heterocycles. Pharmaceuticals (Basel) 2024; 17:211. [PMID: 38399426 PMCID: PMC10892018 DOI: 10.3390/ph17020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Tuberculosis (TB) is notorious as the leading cause of death worldwide due to a single infectious entity and its causative agent, Mycobacterium tuberculosis (Mtb), has been able to evolve resistance to all existing drugs in the treatment arsenal complicating disease management programs. In drug discovery efforts, natural products are important starting points in generating novel scaffolds that have evolved to specifically bind to vulnerable targets not only in pathogens such as Mtb, but also in mammalian targets associated with human diseases. Structural diversity is one of the most attractive features of natural products. This review provides a summary of fused-nitrogen-containing heterocycles found in the natural products reported in the literature that are known to have antitubercular activities. The structurally targeted natural products discussed in this review could provide a revealing insight into novel chemical aspects with novel biological functions for TB drug discovery efforts.
Collapse
Affiliation(s)
| | | | | | - Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (H.I.B.); (N.M.); (C.E.B.III)
| |
Collapse
|
6
|
Cesário HPSDF, Silva FCO, Ferreira MKA, de Menezes JESA, Dos Santos HS, Marques da Fonseca A, Nogueira CES, Marinho MM, Marinho ES, Teixeira AMR, Silveira ER, Pessoa ODL. Anxiolytic effects of N-(4,5-dihydro-5-oxo-1,2-dithiolo-[4,3,b]-pyrrole-6-yl)- N-methylformamide, a pyrroloformamide isolated from a marine Streptomyces sp., in adult zebrafish by the 5-HT system. J Biomol Struct Dyn 2024; 42:445-460. [PMID: 37038661 DOI: 10.1080/07391102.2023.2193988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/15/2023] [Indexed: 04/12/2023]
Abstract
General anxiety disorders are among the most prevalent mental health problems worldwide. The emergence and development of anxiety disorders can be due to genetic (30-50%) or non-genetic (50-70%) factors. Despite medical progress, available pharmacotherapies are sometimes ineffective or can cause undesirable side effects. Thus, it becomes necessary to discover new safe and effective drugs against anxiety. This study evaluated the anxiolytic effect in adult zebrafish (Danio rerio) of a natural pyrroloformamide (PFD), N-(4,5-dihydro-5-oxo-1,2-dithiolo-[4,3,b]-pyrrole-6-yl)-N-methylformamide, isolated from a Streptomyces sp. bacterium strain recovered from the ascidian Eudistoma vannamei. The complete structure of PFD was determined by a detailed NMR analysis, including 1H-13C and 1H-15N-HBMC data. In addition, conformational and DFT computational studies also were performed. A group of fishes (n = 6) was treated orally with PFD (0.1, 0.5 and 1.0 mg/mL; 20 μL) and subjected to locomotor activity and light/dark tests, as well as, acute toxicity 96 h. The involvement of the GABAergic and serotonergic (5-HT) systems was investigated using flumazenil (a silent modulator of GABA receptor) and 5-HT1, 5-HT2A/2C and 5-HTR3A/3B receptors antagonists, known as pizotifen, granisetron and cyproheptadine, respectively. PFD was nontoxic, reduced locomotor activity and promoted the anxiolytic effect in zebrafish. Flumazenil did not inhibit the anxiolytic effect of the PFD via the GABAergic system. This effect was reduced by a pretreatment with pizotifen and granisetron, and was not reversed after treatment with cyproheptadine. Molecular docking and dynamics studies confirmed the interaction of PFD with the 5-HT receptor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | | | | | - Hélcio S Dos Santos
- Laboratory of Chemistry of Natural Products, Synthesis and Biocatalysis of Organic Compounds, Vale do Acaraú University, Sobral, CE, Brazil
| | - Aluísio Marques da Fonseca
- Academic Master in Sociobiodiversity and Sustainable Technologies - MASTS, Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusofonia, Acarape, CE, Brazil
| | - Carlos Emídio S Nogueira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
- Department of Physics, Regional University of Cariri, Crato, CE, Brazil
| | - Marcia M Marinho
- Laboratory of Chemistry of Natural Products, Synthesis and Biocatalysis of Organic Compounds, Vale do Acaraú University, Sobral, CE, Brazil
| | | | - Alexandre Magno R Teixeira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
- Course of Physics, State University of Ceará, Fortaleza, CE, Brazil
| | - Edilberto R Silveira
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Otília Deusdênia L Pessoa
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
7
|
Kumar G, C A. Natural products and their analogues acting against Mycobacterium tuberculosis: A recent update. Drug Dev Res 2023; 84:779-804. [PMID: 37086027 DOI: 10.1002/ddr.22063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/28/2023] [Accepted: 04/01/2023] [Indexed: 04/23/2023]
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases caused by Mycobacterium tuberculosis (M.tb). It is responsible for significant causes of mortality and morbidity worldwide. M.tb possesses robust defense mechanisms against most antibiotic drugs and host responses due to their complex cell membranes with unique lipid molecules. Thus, the efficacy of existing front-line drugs is diminishing, and new and recurring cases of TB arising from multidrug-resistant M.tb are increasing. TB begs the scientific community to explore novel therapeutic avenues. A precise knowledge of the compounds with their mode of action could aid in developing new anti-TB agents that can kill latent and actively multiplying M.tb. This can help in the shortening of the anti-TB regimen and can improve the outcome of treatment strategies. Natural products have contributed several antibiotics for TB treatment. The sources of anti-TB drugs/inhibitors discussed in this work are target-based identification/cell-based and phenotypic screening from natural products. Some of the recently identified natural products derived leads have reached clinical stages of TB drug development, which include rifapentine, CPZEN-45, spectinamide-1599 and 1810. We believe these anti-TB agents could emerge as superior therapeutic compounds to treat TB over known Food and Drug Administration drugs.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Telangana, India
| | - Amrutha C
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
8
|
Abstract
The total synthesis of levesquamide, a natural product with an unprecedented pentasubstituted pyridine-isothiazolinone skeleton, has been accomplished from kojic acid for the first time. The key features of the synthesis include a Suzuki coupling reaction between bromopyranone and oxazolyl borate fragments, a copper-mediated introduction of a thioether, a mild hydrolysis of a pyridine 2-N-methoxyamide, and a Pummerer-type cyclization of a tert-butyl sulfoxide to form the key pyridine-isothiazolinone unit of the natural product.
Collapse
Affiliation(s)
- Yingjun Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenxuan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaozhen Jiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ping Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
9
|
Drug repurposing strategy II: from approved drugs to agri-fungicide leads. J Antibiot (Tokyo) 2023; 76:131-182. [PMID: 36707717 PMCID: PMC9880955 DOI: 10.1038/s41429-023-00594-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/28/2023]
Abstract
Epidemic diseases of crops caused by fungi deeply affected the course of human history and processed a major restriction on social and economic development. However, with the enormous misuse of existing antimicrobial drugs, an increasing number of fungi have developed serious resistance to them, making the diseases caused by pathogenic fungi even more challenging to control. Drug repurposing is an attractive alternative, it requires less time and investment in the drug development process than traditional R&D strategies. In this work, we screened 600 existing commercially available drugs, some of which had previously unknown activity against pathogenic fungi. From the primary screen at a fixed concentration of 100 μg/mL, 120, 162, 167, 85, 102, and 82 drugs were found to be effective against Rhizoctonia solani, Sclerotinia sclerotiorum, Botrytis cinerea, Phytophthora capsici, Fusarium graminearum and Fusarium oxysporum, respectively. They were divided into nine groups lead compounds, including quinoline alkaloids, benzimidazoles/carbamate esters, azoles, isothiazoles, pyrimidines, pyridines, piperidines/piperazines, ionic liquids and miscellaneous group, and simple structure-activity relationship analysis was carried out. Comparison with fungicides to identify the most promising drugs or lead structures for the development of new antifungal agents in agriculture.
Collapse
|
10
|
LeClair MM, Maw ZA, Grunwald AL, Kelly JR, Haltli BA, Kerr RG, Cartmell C. Discovery of Levesquamide B through Global Natural Product Social Molecular Networking. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227794. [PMID: 36431895 PMCID: PMC9695545 DOI: 10.3390/molecules27227794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Levesquamide A is an isothiazolinone-containing anti-tubercular natural product isolated from Streptomyces sp. RKND-216. Through the use of Global Natural Product Social Molecular Networking (GNPS), additional members of the levesquamide family were identified (B-G). Levesquamide B is a glycosylated analogue, isolated and structurally elucidated via spectroscopical techniques along with the putative structures of levesquamide C and D. For masses relating to the additional three levesquamides (E-G), their complete structures remain ambiguous.
Collapse
Affiliation(s)
- Mary M. LeClair
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Zacharie A. Maw
- Department of Biomedical Sciences, Atlantic Veterinary College, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Alyssa L. Grunwald
- Nautilus Biosciences Croda, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Joshua R. Kelly
- Nautilus Biosciences Croda, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Bradley A. Haltli
- Department of Biomedical Sciences, Atlantic Veterinary College, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
- Nautilus Biosciences Croda, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Russell G. Kerr
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
- Department of Biomedical Sciences, Atlantic Veterinary College, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
- Nautilus Biosciences Croda, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Christopher Cartmell
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA
- Correspondence: or
| |
Collapse
|
11
|
Liu M, Zhang X, Li G. Structural and Biological Insights into the Hot‐spot Marine Natural Products Reported from 2012 to 2021. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao 266235 China
| |
Collapse
|
12
|
Abstract
Covering: 2020This review covers the literature published in 2020 for marine natural products (MNPs), with 757 citations (747 for the period January to December 2020) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1407 in 420 papers for 2020), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. A meta analysis of bioactivity data relating to new MNPs reported over the last five years is also presented.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
13
|
Prichula J, Primon-Barros M, Luz RCZ, Castro ÍMS, Paim TGS, Tavares M, Ligabue-Braun R, d’Azevedo PA, Frazzon J, Frazzon APG, Seixas A, Gilmore MS. Genome Mining for Antimicrobial Compounds in Wild Marine Animals-Associated Enterococci. Mar Drugs 2021; 19:328. [PMID: 34204046 PMCID: PMC8229437 DOI: 10.3390/md19060328] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
New ecosystems are being actively mined for new bioactive compounds. Because of the large amount of unexplored biodiversity, bacteria from marine environments are especially promising. Further, host-associated microbes are of special interest because of their low toxicity and compatibility with host health. Here, we identified and characterized biosynthetic gene clusters encoding antimicrobial compounds in host-associated enterococci recovered from fecal samples of wild marine animals remote from human-affected ecosystems. Putative biosynthetic gene clusters in the genomes of 22 Enterococcus strains of marine origin were predicted using antiSMASH5 and Bagel4 bioinformatic software. At least one gene cluster encoding a putative bioactive compound precursor was identified in each genome. Collectively, 73 putative antimicrobial compounds were identified, including 61 bacteriocins (83.56%), 10 terpenes (13.70%), and 2 (2.74%) related to putative nonribosomal peptides (NRPs). Two of the species studied, Enterococcus avium and Enterococcus mundtti, are rare causes of human disease and were found to lack any known pathogenic determinants but yet possessed bacteriocin biosynthetic genes, suggesting possible additional utility as probiotics. Wild marine animal-associated enterococci from human-remote ecosystems provide a potentially rich source for new antimicrobial compounds of therapeutic and industrial value and potential probiotic application.
Collapse
Affiliation(s)
- Janira Prichula
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Muriel Primon-Barros
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Romeu C. Z. Luz
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Ícaro M. S. Castro
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Thiago G. S. Paim
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Maurício Tavares
- Centro de Estudos Costeiros, Limnológicos e Marinhos (CECLIMAR), Universidade Federal do Rio Grande do Sul (UFRGS), Campus Litoral Norte, Imbé 95625-000, RS, Brazil;
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, UFCSPA, Porto Alegre 90050-170, RS, Brazil; (R.L.-B.); (A.S.)
| | - Pedro A. d’Azevedo
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Jeverson Frazzon
- Food Science Institute, UFRGS, Porto Alegre 90035-003, RS, Brazil;
| | - Ana P. G. Frazzon
- Department of Microbiology, Immunology and Parasitology, UFRGS, Porto Alegre 90050-170, RS, Brazil;
| | - Adriana Seixas
- Department of Pharmacosciences, UFCSPA, Porto Alegre 90050-170, RS, Brazil; (R.L.-B.); (A.S.)
| | - Michael S. Gilmore
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Liang L, Wang G, Haltli B, Marchbank DH, Stryhn H, Correa H, Kerr RG. Metabolomic Comparison and Assessment of Co-cultivation and a Heat-Killed Inducer Strategy in Activation of Cryptic Biosynthetic Pathways. JOURNAL OF NATURAL PRODUCTS 2020; 83:2696-2705. [PMID: 32869646 DOI: 10.1021/acs.jnatprod.0c00621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Co-cultivation has been used as a promising tool to turn on or up-regulate cryptic biosynthetic pathways for microbial natural product discovery. Recently, a modified culturing strategy similar to co-cultivation was investigated, where heat-killed inducer cultures were supplemented to the culture medium of producer fermentations to induce cryptic pathways. In the present study, the repeatability and effectiveness of both methods in turning on cryptic biosynthetic pathways were unbiasedly assessed using UHPLC-HRESIMS-based metabolomics analysis. Both induction methods had good repeatability, and they resulted in very different induced metabolites from the tested producers. Co-cultivation generated more induced mass features than the heat-killed inducer cultures, while both methods resulted in the induction of mass features not observed using the other induction method. As examples, pathways leading to two new natural products, N-carbamoyl-2-hydroxy-3-methoxybenzamide (1) and carbazoquinocin G (5), were induced and up-regulated through co-culturing a producer Streptomyces sp. RKND-216 with inducers Alteromonas sp. RKMC-009 and M. smegmatis ATCC 120515, respectively.
Collapse
Affiliation(s)
- Libang Liang
- Department of Chemistry, University of Prince Edward Island, Charlottetown C1A 4P3, Canada
| | - Guanqiao Wang
- Department of Chemistry, University of Prince Edward Island, Charlottetown C1A 4P3, Canada
| | - Bradley Haltli
- Nautilus Biosciences Croda, Charlottetown C1A 4P3, Canada
| | - Douglas H Marchbank
- Department of Chemistry, University of Prince Edward Island, Charlottetown C1A 4P3, Canada
- Nautilus Biosciences Croda, Charlottetown C1A 4P3, Canada
| | | | - Hebelin Correa
- Nautilus Biosciences Croda, Charlottetown C1A 4P3, Canada
| | - Russell G Kerr
- Department of Chemistry, University of Prince Edward Island, Charlottetown C1A 4P3, Canada
- Nautilus Biosciences Croda, Charlottetown C1A 4P3, Canada
| |
Collapse
|
15
|
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as baphicacanthcusine A from Baphicacanthus cusia.
Collapse
|