1
|
Wei H, Chen H, Chen J, Gridnev ID, Zhang W. Nickel-Catalyzed Asymmetric Hydrogenation of α-Substituted Vinylphosphonates and Diarylvinylphosphine Oxides. Angew Chem Int Ed Engl 2023; 62:e202214990. [PMID: 36507919 DOI: 10.1002/anie.202214990] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Chiral α-substituted ethylphosphonate and ethylphosphine oxide compounds are widely used in drugs, pesticides, and ligands. However, their catalytic asymmetric synthesis is still rare. Of the only asymmetric hydrogenation methods available at present, all cases use rare metal catalysts. Herein, we report an efficient earth-abundant transition-metal nickel catalyzed asymmetric hydrogenation affording the corresponding chiral ethylphosphine products with up to 99 % yield, 96 % ee (enantiomeric excess) (99 % ee, after recrystallization) and 1000 S/C (substrate/catalyst); this is also the first study on the asymmetric hydrogenation of terminal olefins using a nickel catalyst under a hydrogen atmosphere. The catalytic mechanism was investigated via deuterium-labelling experiments and calculations which indicate that the two added hydrogen atoms of the products come from hydrogen gas. Additionally, it is believed that the reaction involves a NiII rather than Ni0 cyclic process based on the weak attractive interactions between the Ni catalyst and terminal olefin substrate.
Collapse
Affiliation(s)
- Hanlin Wei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Hao Chen
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jianzhong Chen
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Ilya D Gridnev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Prospekt 47, Moscow, 119991, Russian Federation
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
2
|
Li H, Cheng L, Li G, Xu T, Zhang S, Zeng F. Copper-Catalyzed Asymmetric Boroprotonation of Phosphinylallenes. Org Lett 2023; 25:488-493. [PMID: 36637444 DOI: 10.1021/acs.orglett.2c04180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Synthesis of chiral phosphorus compounds from readily available substrates by a facile method is an attractive strategy. In this study, an efficient route for copper-catalyzed asymmetric boroprotonation of phosphinylallenes with bis(pinacolato)diboron with high regioselectivity was developed, affording chiral allylphosphine oxides in high yields with high enantioselectivities of up to 98% ee. The synthetic utility was further demonstrated by the facile transformation of the chiral allylphosphine oxides to several stereospecific products.
Collapse
Affiliation(s)
- Huijun Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an 710127, P. R. China
| | - Long Cheng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an 710127, P. R. China
| | - Guiqin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an 710127, P. R. China
| | - Tongyu Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an 710127, P. R. China
| | - Shengjun Zhang
- State Energy Key Lab of Clean Coal Grading Conversion, Modern Chemical Technology Department, Shaanxi Key Laboratory of Low Rank Coal Pyrolysis, Shaanxi Coal and Chemical Technology Institute Co., Ltd., 166 Seventh Shenzhou Road, Xi'an 710100, P. R. China
| | - Fanlong Zeng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an 710127, P. R. China
| |
Collapse
|
3
|
Abstract
The current review is devoted to the achievements in the development of methods for the catalytic asymmetric synthesis of phosphonates containing a chiral center in the side chain. C-chiral phosphonates are widely represented among natural compounds with various biological activities as insecticides, herbicides, antibiotics, and bioregulators. Synthetic representatives of this class have found practical application as biologically active compounds. The review summarizes methods of asymmetric metal complex catalysis and organocatalysis as applied to such reactions as phospha-aldol reaction, two-component and three-component phospha-Mannich reaction, phospha-Michael reaction, as well as hydrogenation of unsaturated phosphonates and phosphine oxides, ketophosphonates, and iminophosphonates. Methods for the asymmetric hydride reduction of C=X phosphonates (X=O, S, NR) are also discussed in detail. The review presents updated literature reports, as well as original research by the author.
Collapse
|
4
|
Sun JT, Li X, Yang TY, Lv M, Chen LY, Wei BG. In(OTf) 3-catalyzed N-α phosphonylation of N, O-acetals with triethyl phosphite. Org Biomol Chem 2022; 20:6571-6581. [PMID: 35904891 DOI: 10.1039/d2ob01196d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical approach to α-aminophosphonates has been developed through an In(OTf)3-catalyzed N-α phosphonylation of N,O-acetals with triethyl phosphite 7. Indoline and isoindoline N,O-acetals 6a-6j and 9a-9j and chain N,O-acetals 11a-11p were subjected to a Lewis acid catalyzed N-α phosphonylation process. As a result, the desired α-aminophosphonates 8a-8j, 10a-10j and 12a-12p were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Jian-Ting Sun
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China. .,School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, 201620 China.
| | - Xin Li
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Tian-Yu Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Min Lv
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Ling-Yan Chen
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, 201620 China.
| | - Bang-Guo Wei
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
5
|
Feng Y, Viereck P, Li SG, Tsantrizos YS. Rh(I)-catalyzed asymmetric transfer hydrogenation of α-enamidophosphonates to α-aminophosphonates. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Lenartowicz P, Witkowska D, Żyszka-Haberecht B, Dziuk B, Ejsmont K, Świątek-Kozłowska J, Kafarski P. A novel approach for obtaining α,β-diaminophosphonates bearing structurally diverse side chains and their interactions with transition metal ions studied by ITC. RSC Adv 2020; 10:24045-24056. [PMID: 35517327 PMCID: PMC9055133 DOI: 10.1039/d0ra03764h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/17/2020] [Indexed: 11/21/2022] Open
Abstract
Aminophosphonates are an important group of building blocks in medicinal and pharmaceutical chemistry. Novel representatives of this class of compounds containing nontypical side chains are still needed. The aza-Michael-type addition of amines to phosphonodehydroalanine derivatives provides a simple and effective approach for synthesizing N′-substituted α,β-diaminoethylphosphonates and thus affords general access to aminophosphonates bearing structurally diverse side chains. Thermodynamic analysis of the chosen aminophosphonates at physiological pH proves that they serve as potent chelators for copper(ii) ions and moderate chelators for nickel(ii) ions. A convenient and general reaction is presented for the preparation of diaminophosphonates further evaluated as chelators of metal ions.![]()
Collapse
Affiliation(s)
| | - Danuta Witkowska
- Public Higher Medical Professional School in Opole
- 45-060 Opole
- Poland
| | | | - Błażej Dziuk
- Faculty of Chemistry
- University of Opole
- 45-052 Opole
- Poland
- Faculty of Chemistry
| | | | | | - Paweł Kafarski
- Department of Bioorganic Chemistry
- Faculty of Chemistry
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| |
Collapse
|