1
|
Schmid SP, Schlosser L, Glorius F, Jorner K. Catalysing (organo-)catalysis: Trends in the application of machine learning to enantioselective organocatalysis. Beilstein J Org Chem 2024; 20:2280-2304. [PMID: 39290209 PMCID: PMC11406055 DOI: 10.3762/bjoc.20.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
Organocatalysis has established itself as a third pillar of homogeneous catalysis, besides transition metal catalysis and biocatalysis, as its use for enantioselective reactions has gathered significant interest over the last decades. Concurrent to this development, machine learning (ML) has been increasingly applied in the chemical domain to efficiently uncover hidden patterns in data and accelerate scientific discovery. While the uptake of ML in organocatalysis has been comparably slow, the last two decades have showed an increased interest from the community. This review gives an overview of the work in the field of ML in organocatalysis. The review starts by giving a short primer on ML for experimental chemists, before discussing its application for predicting the selectivity of organocatalytic transformations. Subsequently, we review ML employed for privileged catalysts, before focusing on its application for catalyst and reaction design. Concluding, we give our view on current challenges and future directions for this field, drawing inspiration from the application of ML to other scientific domains.
Collapse
Affiliation(s)
- Stefan P Schmid
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich CH-8093, Switzerland
| | - Leon Schlosser
- Organisch-Chemisches Institut, Universität Münster, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, 48149 Münster, Germany
| | - Kjell Jorner
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich CH-8093, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, ETH Zurich, Zurich CH-8093, Switzerland
| |
Collapse
|
2
|
Ong A, Wong ZC, Chin KLO, Loh WW, Chua MH, Ang SJ, Lim JYC. Enhancing the photocatalytic upcycling of polystyrene to benzoic acid: a combined computational-experimental approach for acridinium catalyst design. Chem Sci 2024; 15:1061-1067. [PMID: 38239702 PMCID: PMC10793207 DOI: 10.1039/d3sc06388g] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024] Open
Abstract
Converting polystyrene into value-added oxygenated aromatic compounds is an attractive end-of-life upcycling strategy. However, identification of appropriate catalysts often involves laborious and time-consuming empirical screening. Herein, after demonstrating the feasibility of using acridinium salts for upcycling polystyrene into benzoic acid by photoredox catalysis for the first time, we applied low-cost descriptor-based combinatorial in silico screening to predict the photocatalytic performance of a family of potential candidates. Through this approach, we identified a non-intuitive fluorinated acridinium catalyst that outperforms other candidates for converting polystyrene to benzoic acid in useful yields at low catalyst loadings (≤5 mol%). In addition, this catalyst also proved effective with real-life polystyrene waste containing dyes and additives. Our study underscores the potential of computer-aided catalyst design for valorizing polymeric waste into essential chemical feedstock for a more sustainable future.
Collapse
Affiliation(s)
- Albert Ong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis #08-03 Singapore 138634 Republic of Singapore
| | - Zi Cheng Wong
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR) 1 Fusionopolis Way, Connexis, #16-16 Singapore 138632 Republic of Singapore
| | - Kang Le Osmund Chin
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR) 1 Pesek Road, Jurong Island Singapore 627833 Republic of Singapore
| | - Wei Wei Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis #08-03 Singapore 138634 Republic of Singapore
| | - Ming Hui Chua
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR) 1 Pesek Road, Jurong Island Singapore 627833 Republic of Singapore
| | - Shi Jun Ang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR) 1 Fusionopolis Way, Connexis, #16-16 Singapore 138632 Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR) 1 Pesek Road, Jurong Island Singapore 627833 Republic of Singapore
| | - Jason Y C Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis #08-03 Singapore 138634 Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS) 9 Engineering Drive 1 Singapore 117576 Republic of Singapore
| |
Collapse
|
3
|
Sharma V, Das R, Sharma D, Mujwar S, Mehta DK. Green chemistry approach towards Piperazine: anticancer agents. J Mol Struct 2023; 1292:136089. [DOI: 10.1016/j.molstruc.2023.136089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Enantioselective Friedel-Crafts Reaction between Indoles and α,β-Unsaturated Aldehydes Catalyzed by Recyclable α,α-Diarylprolinol Derived Chiral Ionic Liquids. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
5
|
Gallarati S, van Gerwen P, Laplaza R, Vela S, Fabrizio A, Corminboeuf C. OSCAR: an extensive repository of chemically and functionally diverse organocatalysts. Chem Sci 2022; 13:13782-13794. [PMID: 36544722 PMCID: PMC9710326 DOI: 10.1039/d2sc04251g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022] Open
Abstract
The automated construction of datasets has become increasingly relevant in computational chemistry. While transition-metal catalysis has greatly benefitted from bottom-up or top-down strategies for the curation of organometallic complexes libraries, the field of organocatalysis is mostly dominated by case-by-case studies, with a lack of transferable data-driven tools that facilitate both the exploration of a wider range of catalyst space and the optimization of reaction properties. For these reasons, we introduce OSCAR, a repository of 4000 experimentally derived organocatalysts along with their corresponding building blocks and combinatorially enriched structures. We outline the fragment-based approach used for database generation and showcase the chemical diversity, in terms of functions and molecular properties, covered in OSCAR. The structures and corresponding stereoelectronic properties are publicly available (https://archive.materialscloud.org/record/2022.106) and constitute the starting point to build generative and predictive models for organocatalyst performance.
Collapse
Affiliation(s)
- Simone Gallarati
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Puck van Gerwen
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- National Center for Competence in Research - Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Ruben Laplaza
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- National Center for Competence in Research - Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Sergi Vela
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Alberto Fabrizio
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- National Center for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Clemence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- National Center for Competence in Research - Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- National Center for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
6
|
Melnyk N, Iribarren I, Mates‐Torres E, Trujillo C. Theoretical Perspectives in Organocatalysis. Chemistry 2022; 28:e202201570. [PMID: 35792702 PMCID: PMC9804221 DOI: 10.1002/chem.202201570] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 01/05/2023]
Abstract
It is clear that the field of organocatalysis is continuously expanding during the last decades. With increasing computational capacity and new techniques, computational methods have provided a more economic approach to explore different chemical systems. This review offers a broad yet concise overview of current state-of-the-art studies that have employed novel strategies for catalyst design. The evolution of the all different theoretical approaches most commonly used within organocatalysis is discussed, from the traditional approach, manual-driven, to the most recent one, machine-driven.
Collapse
Affiliation(s)
- Nika Melnyk
- School of ChemistryTrinity College DublinCollege GreenDublin2Ireland
| | - Iñigo Iribarren
- School of ChemistryTrinity College DublinCollege GreenDublin2Ireland
| | - Eric Mates‐Torres
- School of ChemistryTrinity College DublinCollege GreenDublin2Ireland
| | - Cristina Trujillo
- School of ChemistryTrinity College DublinCollege GreenDublin2Ireland
| |
Collapse
|
7
|
Ahmad T, Khan S, Ullah N. Recent Advances in the Catalytic Asymmetric Friedel-Crafts Reactions of Indoles. ACS OMEGA 2022; 7:35446-35485. [PMID: 36249392 PMCID: PMC9558610 DOI: 10.1021/acsomega.2c05022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Functionalized chiral indole derivatives are privileged and versatile organic frameworks encountered in numerous pharmaceutically active agents and biologically active natural products. The catalytic asymmetric Friedel-Crafts reaction of indoles, catalyzed by chiral metal complexes or chiral organocatalysts, is one of the most powerful and atom-economical approaches to access optically active indole derivatives. Consequently, a wide range of electrophilic partners including α,β-unsaturated ketones, esters, amides, imines, β,γ-unsaturated α-keto- and α-ketiminoesters, ketimines, nitroalkenes, and many others have been successfully employed to achieve a plethora of functionalized chiral indole moieties. In particular, strategies for C-H functionalization in the phenyl of indoles require incorporation of a directing or blocking group in the phenyl or azole ring of indole. The discovery of chiral catalysts which can control enantiodiscrimination has gained a great deal of attention in recent years. This review will provide an updated account on the application of the asymmetric Friedel-Crafts reaction of indoles in the synthesis of diverse chiral indole derivatives, covering the timeframe from 2011 to today.
Collapse
Affiliation(s)
- Tauqir Ahmad
- Chemistry
Department, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
| | - Sardaraz Khan
- Chemistry
Department, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
| | - Nisar Ullah
- Chemistry
Department, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
- The
Center for Refining & Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
8
|
Cicetti S, Maestre E, Spanevello RA, Sarotti A. Towards the Synthesis of Highly Hindered Pyrrolidines by Intramolecular AAC Click Reactions: What Can Be Learned from DFT Calculations? European J Org Chem 2022. [DOI: 10.1002/ejoc.202200478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Soledad Cicetti
- IQUIR: Instituto de Quimica Rosario Organic Chemistry Department ARGENTINA
| | - Eugenia Maestre
- IQUIR: Instituto de Quimica Rosario Organic Chemistry Department ARGENTINA
| | | | - Ariel Sarotti
- IQUIR Química Orgánica Suipacha 570 2000 Rosario ARGENTINA
| |
Collapse
|
9
|
Kawada M, Tsuyusaki R, Nakashima K, Akutsu H, Hirashima SI, Matsumoto T, Yanai H, Miura T. Diaminomethylenemalononitrile as a Chiral Single Hydrogen Bond Catalyst: Application to Enantioselective Conjugate Addition of α-Branched Aldehydes. Chem Asian J 2021; 16:2272-2275. [PMID: 34216113 DOI: 10.1002/asia.202100487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/22/2021] [Indexed: 11/09/2022]
Abstract
An improved diaminomethylenemalononitrile organocatalyst, bearing a N,N-disubstituted structure, promoted enantioselective conjugate addition reaction of α-branched aldehydes with vinyl sulfone, affording adducts with excellent enantioselectivities (up to 96% ee). Mechanistic studies revealed that the diaminomethylenemalononitrile motif holds the vinyl sulfone substrate using a single hydrogen bond accompanied by multiple weak interactions, including electrostatic C-H⋅⋅⋅O interactions.
Collapse
Affiliation(s)
- Masahiro Kawada
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Ryo Tsuyusaki
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Kosuke Nakashima
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hiroshi Akutsu
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Shin-Ichi Hirashima
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Takashi Matsumoto
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hikaru Yanai
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Tsuyoshi Miura
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
10
|
Abstract
Computational methods have emerged as a powerful tool to augment traditional experimental molecular catalyst design by providing useful predictions of catalyst performance and decreasing the time needed for catalyst screening. In this perspective, we discuss three approaches for computational molecular catalyst design: (i) the reaction mechanism-based approach that calculates all relevant elementary steps, finds the rate and selectivity determining steps, and ultimately makes predictions on catalyst performance based on kinetic analysis, (ii) the descriptor-based approach where physical/chemical considerations are used to find molecular properties as predictors of catalyst performance, and (iii) the data-driven approach where statistical analysis as well as machine learning (ML) methods are used to obtain relationships between available data/features and catalyst performance. Following an introduction to these approaches, we cover their strengths and weaknesses and highlight some recent key applications. Furthermore, we present an outlook on how the currently applied approaches may evolve in the near future by addressing how recent developments in building automated computational workflows and implementing advanced ML models hold promise for reducing human workload, eliminating human bias, and speeding up computational catalyst design at the same time. Finally, we provide our viewpoint on how some of the challenges associated with the up-and-coming approaches driven by automation and ML may be resolved.
Collapse
Affiliation(s)
- Ademola Soyemi
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Tibor Szilvási
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
11
|
Affiliation(s)
- Zeynep Dilşad Susam
- Department of Chemistry Middle East Technical University Dumlupınar Bulvarı, No. 1 06800 Çankaya, Ankara Turkey
| | - Cihangir Tanyeli
- Department of Chemistry Middle East Technical University Dumlupınar Bulvarı, No. 1 06800 Çankaya, Ankara Turkey
| |
Collapse
|
12
|
Nakliang P, Yoon S, Choi S. Emerging computational approaches for the study of regio- and stereoselectivity in organic synthesis. Org Chem Front 2021. [DOI: 10.1039/d1qo00531f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Computational chemistry has become important in organic synthesis as it provides a detailed understanding of molecular structures and properties and detailed reaction mechanisms.
Collapse
Affiliation(s)
- Pratanphorn Nakliang
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sanghee Yoon
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sun Choi
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen, 518055, China
| |
Collapse
|
13
|
Gupta PSS, Bhat HR, Biswal S, Rana MK. Computer-aided discovery of bis-indole derivatives as multi-target drugs against cancer and bacterial infections: DFT, docking, virtual screening, and molecular dynamics studies. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114375] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|