1
|
Alotaibi N, Babaahmadi R, Das S, Richards E, Wirth T, Pramanik M, Melen RL. B(C 6F 5) 3-Catalyzed Regiodivergent Thioetherifications of Alkenes via Thiiranium Intermediates: Experimental and Computational Insights. Chemistry 2024:e202404236. [PMID: 39652309 DOI: 10.1002/chem.202404236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Indexed: 12/25/2024]
Abstract
Precise control of selective alkene functionalization is a continuing challenge in the chemical community. In this study, we develop a substitution-controlled regiodivergent thioetherification of di- or trisubstituted alkenes using 10 mol % tris(pentafluorophenyl)borane [B(C6F5)3] as a catalyst and N-thiosuccinimide as a sulfenylating reagent. This metal-free borane catalyzed C-S bond forming method is utilized for a Csp2-H sulfenylation reaction to synthesize an array of diphenylvinylsulfide derivatives with good to excellent yields (25 examples, up to 91 % yield). Some of the products exhibit aggregation-induced emission luminogen properties used in organic light-emitting diodes (OLEDs), chemical sensors, and biological imaging units. Depending upon the starting alkene, Csp3-S sulfenylation products could also be generated regioselectively. A variety of allylic thioethers from α-alkyl substituted styrenes were isolable in good yields and selectivities (14 examples, up to 67 % yield). The DFT-supported mechanistic study confirms that the reaction proceeds via a thiiranium ion intermediate, where the regioselectivity and product formation is determined by the alkene substituents which influence the activation barriers and energy profiles. Diphenylvinylsulfide derivatives can also be efficiently transformed into a range of synthetically valuable compounds, including vinyl sulfoxides, vinyl sulfones, and vinyl sulfoximines.
Collapse
Affiliation(s)
- Nusaybah Alotaibi
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, Cymru/Wales, CF24 4HQ, UK
- Department of Chemistry, King Faisal University, College of Science, P.O. Box 400, Al-Ahsa, 31982, Saudi Arabia
| | - Rasool Babaahmadi
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, Cymru/Wales, CF24 4HQ, UK
| | - Sampurna Das
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, Cymru/Wales, CF24 4HQ, UK
| | - Emma Richards
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, Cymru/Wales, CF24 4HQ, UK
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, Cymru/Wales, CF10 3AT, UK
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, Cymru/Wales, CF10 3AT, UK
| | - Milan Pramanik
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, Cymru/Wales, CF24 4HQ, UK
| | - Rebecca L Melen
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, Cymru/Wales, CF24 4HQ, UK
| |
Collapse
|
2
|
Azeem Z, Dubey S, Mandal PK. Pd-Catalyzed Synthesis of 1-(Hetero)aryl Thioglycosides: Strategy for the Trapping of an Acyl Group of Glycosylthioesters by Coupling of Bis-Electrophilic-Nucleophilic Partners. J Org Chem 2024; 89:15777-15792. [PMID: 39405505 DOI: 10.1021/acs.joc.4c01867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Herein, we describe a stereoretentive palladium-catalyzed cross-coupling between the in situ-generated glycosyl thiolate anion and diverse (hetero)aryl iodides at room temperature for creating the library of (hetero)aryl thioglycosides. The key to success is the judicious pairing of bis-electrophilic-nucleophilic partners with a variety of thioesters in an atom-economical way in which both the glycosyl thiolate anion and the acylium cation are incorporated into the final analogue. The advantage of this method is the acyl transfer on various nucleophilic partners, including a hydroxyl, a primary or secondary amine, an amino acid, and the biologically active hSGLT1 inhibitor.
Collapse
Affiliation(s)
- Zanjila Azeem
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shashiprabha Dubey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Reddy RJ, Kumar JJ, Kumari AH. Recent trends in the synthesis and applications of β-iodovinyl sulfones: a decade of progress. Org Biomol Chem 2024; 22:2492-2509. [PMID: 38446020 DOI: 10.1039/d3ob01980b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Direct vicinal difunctionalization of π-systems has emerged as a powerful platform for constructing multiple bonds in a single synthetic operation using simple chemical feedstocks. Over the past decade, there has been exponential growth in the direct construction of successive C-S and C-I bonds using a wide variety of sulfonyl and iodide reactants through 1,2-iodosulfonylation of alkynes in a regio- and stereo-selective manner. In this review, we mainly focus on the recent developments in the preparation of β-iodovinyl sulfones and their practical applications in organic synthesis. The most promising photoredox and electrochemical transformations for synthesizing β-iodovinyl sulfones are also reviewed. The multifunctional β-iodovinyl sulfones have recently been burgeoning as versatile synthetic precursors due to the combination of vinyl iodide and vinyl sulfone moieties, essential building blocks for diverse synthetic manipulations. We hereby present the chemistry of β-iodovinyl sulfones, which can be classified into numerous sections based on the sulfonyl surrogates, and potential synthetic approaches are systematically outlined.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India.
| | - Jangam Jagadesh Kumar
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India.
| | - Arram Haritha Kumari
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India.
| |
Collapse
|
4
|
Mou D, Wu Y, Wang L, Fu Y, Du Z. Synthesis of α-sulfenylated carbonyl compounds under metal-free conditions. Org Biomol Chem 2024; 22:274-278. [PMID: 38054500 DOI: 10.1039/d3ob01796f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
An efficient synthesis of α-sulfenylated carbonyl compounds from propargylic alcohols and aryl thiols under heating conditions is described. The method is characterized by mild conditions, simple operation, metal-free catalysis and good functional group tolerance. Mechanistic studies suggest that the reaction involves a radical pathway and an isomerization process.
Collapse
Affiliation(s)
- Dan Mou
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Yuanyuan Wu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Linda Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Ying Fu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Zhengyin Du
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| |
Collapse
|
5
|
Alfieri ML, Panzella L. The Multifaceted Opportunities Provided by the Pheomelanin-Inspired 1,4-Benzothiazine Chromophore: A Still-Undervalued Issue. Molecules 2023; 28:6237. [PMID: 37687069 PMCID: PMC10488698 DOI: 10.3390/molecules28176237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
1,4-Benzothiazines are the main building blocks of the naturally occurring pheomelanin pigments, and their chromophoric properties have been strongly related to the well-known phototoxicity of these pigments, partly responsible for the high incidence of melanoma and other skin cancers in red-haired people. However, some peculiar features of the 1,4-benzothiazine chromophore could be functionally exploited in several sectors. Within this context, in this perspective, an overview of the very recently reported applications of the 1,4-benzothiazine chromophore in pH sensing, filter permeability control, smart packaging, electrochromic device fabrication, bioimaging, photocatalysis, and HPLC detection systems is provided, together with a brief presentation of recently developed synthetic approaches to the 1,4-benzothiazine scaffold, with the aim of emphasizing the still-undervalued multifunctional opportunities offered by this class of compounds.
Collapse
Affiliation(s)
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, I-80126 Naples, Italy;
| |
Collapse
|
6
|
Schwan AL, Nicol EA, Durant AG. Proximal interactions can direct selective sulfenate alkylation chemistry. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2023.2172409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Adrian L. Schwan
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | - Eric A. Nicol
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | - Andrew G. Durant
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Dinda TK, Mal P. Activation of C-Br Bond of CBr 4 and CBrCl 3 Using 9-Mesityl-10-methylacridinium Perchlorate Photocatalyst. J Org Chem 2023; 88:573-584. [PMID: 36516984 DOI: 10.1021/acs.joc.2c02595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we report the activation of the C-Br bond of CBrX3 (X = Cl, Br) using 9-mesityl-10-methylacridinium perchlorate as a visible-light (12W blue LED, 450-455 nm) photocatalyst for the synthesis of gem-dihaloenones from terminal alkynes. An electron transfer from CBrX3 to Mes-Acr-MeClO4 led to the formation of •+CBrX3 which subsequently resulted in the intermediate +CX3. Next, C-C cross-coupling of +CX3 with terminal alkynes was the key path to obtain the gem-dihaloenones. Radical trapping experiments with TEMPO, BHT, and Stern-Volmer quenching studies helped to understand that the reaction proceeded via the SET mechanism.
Collapse
Affiliation(s)
- Tarun Kumar Dinda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
8
|
Ibrahim MAA, Shehata MNI, Rady ASSM, Abuelliel HAA, Abd Elhafez HSM, Shawky AM, Oraby HF, Hasanin THA, Soliman MES, Moussa NAM. Effects of Lewis Basicity and Acidity on σ-Hole Interactions in Carbon-Bearing Complexes: A Comparative Ab Initio Study. Int J Mol Sci 2022; 23:13023. [PMID: 36361812 PMCID: PMC9658749 DOI: 10.3390/ijms232113023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 09/19/2023] Open
Abstract
The effects of Lewis basicity and acidity on σ-hole interactions were investigated using two sets of carbon-containing complexes. In Set I, the effect of Lewis basicity was studied by substituting the X3/X atom(s) of the NC-C6H2-X3 and NCX Lewis bases (LB) with F, Cl, Br, or I. In Set II, the W-C-F3 and F-C-X3 (where X and W = F, Cl, Br, and I) molecules were utilized as Lewis acid (LA) centers. Concerning the Lewis basicity effect, higher negative interaction energies (Eint) were observed for the F-C-F3∙∙∙NC-C6H2-X3 complexes compared with the F-C-F3∙∙∙NCX analogs. Moreover, significant Eint was recorded for Set I complexes, along with decreasing the electron-withdrawing power of the X3/X atom(s). Among Set I complexes, the highest negative Eint was ascribed to the F-C-F3∙∙∙NC-C6H2-I3 complex with a value of -1.23 kcal/mol. For Set II complexes, Eint values of F-C-X3 bearing complexes were noted within the -1.05 to -2.08 kcal/mol scope, while they ranged from -0.82 to -1.20 kcal/mol for the W-C-F3 analogs. However, Vs,max quantities exhibited higher values in the case of W-C-F3 molecules compared with F-C-X3; preferable negative Eint were ascribed to the F-C-X3 bearing complexes. These findings were delineated as a consequence of the promoted contributions of the X3 substituents. Dispersion forces (Edisp) were identified as the dominant forces for these interactions. The obtained results provide a foundation for fields such as crystal engineering and supramolecular chemistry studies that focus on understanding the characteristics of carbon-bearing complexes.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School of Health Sciences, University of Kwa-Zulu-Natal, Westville, Durban 4000, South Africa
| | - Mohammed N. I. Shehata
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Al-shimaa S. M. Rady
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Hassan A. A. Abuelliel
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Heba S. M. Abd Elhafez
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hesham Farouk Oraby
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Tamer H. A. Hasanin
- Department of Chemistry, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mahmoud E. S. Soliman
- Molecular Bio-Computation and Drug Design Research Laboratory, School of Health Sciences, University of Kwa-Zulu-Natal, Westville, Durban 4000, South Africa
| | - Nayra A. M. Moussa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
9
|
Yang F, He GC, Sun SH, Song TT, Min XT, Ji DW, Guo SY, Chen QA. Selective C-S Bond Constructions Using Inorganic Sulfurs via Photoinduced Electron Donor-Acceptor Activation. J Org Chem 2022; 87:14241-14249. [PMID: 36219805 DOI: 10.1021/acs.joc.2c01750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By complementing traditional transition metal catalysis, photoinduced catalysis has emerged as a versatile and sustainable way to achieve carbon-heteroatom bond formation. This work discloses a visible-light-induced reaction for the formation of a C-S bond from aryl halides and inorganic sulfuration agents via electron donor-acceptor (EDA) complex photocatalysis. Divergent formations of organic sulfide and disulfide have been demonstrated under mild conditions. Preliminary mechanistic studies suggest that visible-light-induced intracomplex charge transfer within the monosulfide-anion-containing EDA complex permits the C-S bond construction reactivity.
Collapse
Affiliation(s)
- Fan Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Gu-Cheng He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Shao-Han Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Ting-Ting Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiang-Ting Min
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Shi-Yu Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Bera SK, Maharana RR, Samanta K, Mal P. CBr 4 catalyzed activation of α,β-unsaturated ketones. Org Biomol Chem 2022; 20:7085-7091. [PMID: 36039810 DOI: 10.1039/d2ob01223e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have shown here that weak interactions such as halogen bonding (XB) can be used to activate the carbonyl group of α,β-unsaturated ketones. Carbon tetrabromide (CBr4) has been used as the sole reagent for the selective synthesis of flavanones and aza-flavanones from the corresponding 2'-hydroxy- and 2'-aminochalcones under metal-free and additive-free conditions. DFT calculations support the catalytic role of XB between the oxygen of chalcones and CBr4 in these reactions.
Collapse
Affiliation(s)
- Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| | - Rajat Rajiv Maharana
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India.
| | - Kousik Samanta
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India.
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| |
Collapse
|
11
|
Li J, Liu B, Hu Y, Li X, Huo Y, Chen Q. Hypervalent iodine-induced disulfenylation of thiophene derivatives with thiophenols. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Volkov AA, Bugaenko DI, Bogdanov AV, Karchava AV. Visible-Light-Driven Thioesterification of Aryl Halides with Potassium Thiocarboxylates: Transition-Metal Catalyst-Free Incorporation of Sulfur Functionalities into an Aromatic Ring. J Org Chem 2022; 87:8170-8182. [PMID: 35653579 DOI: 10.1021/acs.joc.2c00913] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reactions of acceptor-substituted aryl iodides and bromides with potassium thiocarboxylates under white light irradiation allow for the preparation of S-aryl thioesters including synthetically versatile S-aryl thioacetates. This transition-metal and external photocatalyst-free method features extremely mild reaction conditions compared with those used in transition-metal-catalyzed protocols. Reactions proceed via the initial formation of an electron donor-acceptor (EDA) complex in the ground state, which was supported by UV-vis spectra. Electron paramagnetic resonance (EPR) spin-trapping experiments using phenyl-N-tert-butylnitrone (PBN) have revealed the radical nature of the reaction.
Collapse
Affiliation(s)
- Alexey A Volkov
- Department of Chemistry, Moscow State University, Moscow 119234, Russia
| | - Dmitry I Bugaenko
- Department of Chemistry, Moscow State University, Moscow 119234, Russia
| | - Alexey V Bogdanov
- Department of Chemistry, Moscow State University, Moscow 119234, Russia
| | | |
Collapse
|
13
|
Mathuri A, Pramanik M, Mal P. 3-Arylsulfonylquinolines from N-Propargylamines via Cascaded Oxidative Sulfonylation Using DABSO. J Org Chem 2022; 87:6812-6823. [PMID: 35509227 DOI: 10.1021/acs.joc.2c00499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We report a cascaded oxidative sulfonylation of N-propargylamine via a three-component coupling reaction using DABCO·(SO2)2 (DABSO). 3-Arylsulfonylquinolines were obtained by mixing diazonium tetrafluoroborate, N-propargylamine, and DABSO under argon atmosphere in dichloroethane (DCE) for 1 h. In a radical pathway, DABSO was utilized as the sulfone source and an oxidant in this radical-mediated cascaded reaction.
Collapse
Affiliation(s)
- Ashis Mathuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Jatni, District Khurda, Odisha 752050, India
| | - Milan Pramanik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
14
|
Shirvandi Z, Rostami A, Ghorbani-Choghamarani A. Magnetic mesocellular foams with nickel complexes: as efficient and reusable nanocatalysts for the synthesis of symmetrical and asymmetrical diaryl chalcogenides. NANOSCALE ADVANCES 2022; 4:2208-2223. [PMID: 36133448 PMCID: PMC9419205 DOI: 10.1039/d1na00822f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
In this work, magnetic mesocellular foam (M-MCF) silica nanoparticles were prepared via inserting magnetic nanoparticles into the pores of mesocellular foams, the inner surface of which was functionalized with a methionine-nickel complex (M-MCF@Met-Ni). The structure of the as-prepared nanocatalysts was studied by FT-IR spectroscopy, BET, TGA, VSM, SEM, HR-TEM, EDS, WDX, XRD, and ICP-OES techniques. Thereafter, this nanocatalyst was used as a new, effective, and magnetically reusable catalyst for C-S and C-Se bond formation under mild conditions. All corresponding products were prepared with good yields and appropriate turnover number (TON) and turnover frequency (TOF), which reveals the high activity of this magnetic nanocatalyst in both reactions. In addition, the recovery and hot filtration tests indicated that this catalyst could be simply separated from the reaction mixture using an outside magnet and reused five consecutive times without any significant loss of its catalyst activity or metal leaching.
Collapse
Affiliation(s)
- Zeinab Shirvandi
- Department of Chemistry, Faculty of Science, University of Kurdistan Zip Code 66177-15175 Sanandaj Iran
| | - Amin Rostami
- Department of Chemistry, Faculty of Science, University of Kurdistan Zip Code 66177-15175 Sanandaj Iran
| | | |
Collapse
|
15
|
Bera SK, Mal P. Regiodivergent C-N Coupling of Quinazolinones Controlled by the Dipole Moments of Tautomers. Org Lett 2022; 24:3144-3148. [PMID: 35446038 DOI: 10.1021/acs.orglett.2c00847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Herein, we report that the dipole moments of tautomers can be the controlling factor for regiodivergent synthesis of either 14H-quinazolino[3,2-f]phenanthridin-14-ones or 6H-quinazolino[1,2-f]phenanthridin-6-ones, selectively, from unmasked 2-([1,1'-biphenyl]-2-yl)quinazolin-4(3H)-one. An intramolecular C(sp2)-NH coupling reaction mediated by PhI(OCOOCF3)2 could lead to two different regioisomers selectively at different temperatures when the dielectric constants of solvents like hexafluoroisopropanol and trifluoroacetic acid matched with the tautomer's dipole moments.
Collapse
Affiliation(s)
- Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
16
|
Pramanik M, Mathuri A, Mal P. t BuOLi-promoted terminal alkyne functionalizations by aliphatic thiols and alcohols. Org Biomol Chem 2022; 20:2671-2680. [PMID: 35293412 DOI: 10.1039/d2ob00079b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective radical addition to terminal alkynes is always a difficult task to achieve because it gives a mixture of stereo- and regioisomers. Herein we describe the selective addition of aliphatic thiols or alcohols to N-phenylpropiolamides (terminal alkynes) using lithium tert-butoxide (tBuOLi) in ethanol as a promoter. Mechanistically, it has been shown that the reaction proceeded through the generation of a thiyl radical intermediate, and the amide group in N-phenylpropiolamide could help in the activation of the alkyne, which led to thioacetalization via the formation of a (Z)-selective anti-Markovnikov vinyl sulfide. The (Z)-selectivity during the formation of vinyl sulfides was controlled by an intramolecular sulfur⋯oxygen interaction.
Collapse
Affiliation(s)
- Milan Pramanik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| | - Ashis Mathuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| |
Collapse
|
17
|
Reddy RJ, Kumari AH, Sharadha N, Krishna GR. Solvent-Driven Mono- and Bis-sulfenylation of ( E)-β-Iodovinyl Sulfones with Thiols for Flexible Synthesis of 1,2-Thiosulfonylalkenes and 1,2-Dithioalkenes. J Org Chem 2022; 87:3934-3951. [PMID: 35245070 DOI: 10.1021/acs.joc.1c02444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nature of solvent is a key factor for stereoselective mono- and bis-thiolation of (E)-β-iodovinyl sulfones with thiols under basic conditions. A novel and unprecedented vicinal bisthiolation of (E)-β-iodovinyl sulfones with thiols under the influence of K2CO3/DMSO at room temperature for quick assembly of (E)-1,2-dithio-1-alkenes is presented. Solvent-induced stereoselective monosulfenylation of (E)-β-iodovinyl sulfones with thiols has also been established for the synthesis of both (E)- and (Z)-1,2-thiosulfonylethenes in MeCN and MeOH, respectively. Moreover, K2CO3-mediated desulfonylative-sulfenylation of (Z)-1,2-thiosulfonylethenes with thiols in DMSO furnished unsymmetrical (Z)-1,2-dithio-1-alkenes for the first time. The solvent-dependent versatile reactivity of (E)-β-iodovinyl sulfones has been successfully explored to provide a set of (E)-/(Z)-1,2-dithio-1-alkenes and (E)-/(Z)-1,2-thiosulfonyl-1-alkenes in good to high yields with excellent stereoselectivities. Notably, this operationally simple process utilizes a broad substrate scope with good functional group tolerance and compatibility. The efficacy of the process has been proven for gram-scale reactions, and plausible mechanistic models are outlined on the basis of experimental results and control experiments.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Arram Haritha Kumari
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Nunavath Sharadha
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Gamidi Rama Krishna
- X-ray Crystallography, CSIR-National Chemical Laboratory, Pune 411 008, India
| |
Collapse
|
18
|
Tang L, Hu Q, Yang K, Elsaid M, Liu C, Ge H. Recent advances in direct α-C(sp3)-H bond functionalization of thioethers. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
19
|
Qi P, Sun F, Chen N, Du H. Direct Bis-Alkyl Thiolation for Indoles with Sulfinothioates under Pummerer-Type Conditions. J Org Chem 2022; 87:1133-1143. [PMID: 35014848 DOI: 10.1021/acs.joc.1c02502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A base-free bis-alkyl thiolation reaction of indoles with sulfinothioates under Pummerer-type conditions is described. Sulfinothioates, activated with 2,2,2-trifluoroacetic anhydride, are demonstrated to be an efficient thiolation reagent for wide applications. This approach enabled double C-H thiolation at the C2 and C3 of the indole in one pot. The mechanism studies suggested the thiolation was realized through the sulfoxonium salt rather than sulfenyl carboxylate.
Collapse
Affiliation(s)
- Peng Qi
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Fang Sun
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Ning Chen
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Hongguang Du
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
20
|
Reddy RJ, Shankar A, Kumar JJ, Sharadha N, Krishna GR. Diethyl phosphite-mediated switchable synthesis of bis(imidazoheterocycles) derived disulfanes and sulfanes using imidazoheterocycles and octasulfur. NEW J CHEM 2022. [DOI: 10.1039/d1nj05226h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique diethyl phosphite-mediated switchable synthesis of bis(imidazoheterocycle)-derived disulfanes and sulfanes using imidazoheterocycles with sulfur is reported. Moreover, imidazo[1,2-a]pyridine-indole derived thioethers were also realized.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Angothu Shankar
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Jangam Jagadesh Kumar
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Nunavath Sharadha
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Gamidi Rama Krishna
- X-ray Crystallography, CSIR-National Chemical Laboratory, Pune 411 008, India
| |
Collapse
|
21
|
Hu C, Liu R, Ning Z, Mou D, Fu Y, Du Z. TsCl-promoted thiolation of quinoline N-oxides with thiophenols. Org Biomol Chem 2022; 20:8280-8284. [DOI: 10.1039/d2ob01425d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A metal- and oxidant-free method for the synthesis of various 2-thioquinolines through p-toluenesulfonyl chloride-promoted thiolation reaction of quinoline N-oxides with thiophenols in water at an ambient temperature is developed.
Collapse
Affiliation(s)
- Chengxian Hu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Ruikai Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zhitao Ning
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Dan Mou
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Ying Fu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zhengyin Du
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
22
|
Ma X, Zhu Y, Yu J, Zhao G, Duanmu J, Yuan Y, Chang XP, Xu D, Zhou Q. Unprecedented observation and characterization of sulfur-centred bifurcated hydrogen bonds. Phys Chem Chem Phys 2021; 23:26519-26523. [PMID: 34807205 DOI: 10.1039/d1cp04601b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Owing to the small electronegativity of the sulfur atom, it is commonly supposed that at most one weak H-bond can be formed between a sulfur atom and an H-bond donor. In this paper, an unprecedented 2 : 1 binding species generated from two molecules of phenol and a molecule of thioether was observed and characterized by various nuclear magnetic resonance (NMR) techniques, Fourier transform-infrared (FT-IR) techniques and density functional theory (DFT) calculations, revealing the formation of sulfur-centred O-H⋯S⋯H-O bifurcated H-bonds. This work may provide a simple and efficient method for the quantitative analysis of weak H-bonds between small organic molecules.
Collapse
Affiliation(s)
- Xiantao Ma
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Yingying Zhu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Jing Yu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Geng Zhao
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Jiaxin Duanmu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Yiyun Yuan
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Dongli Xu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| |
Collapse
|
23
|
Franco M, Vargas EL, Tortosa M, Cid MB. Coupling of thiols and aromatic halides promoted by diboron derived super electron donors. Chem Commun (Camb) 2021; 57:11653-11656. [PMID: 34668910 DOI: 10.1039/d1cc05294b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have proven that pyridine-boryl complexes can be used as superelectron donors to promote the coupling of thiols and aromatic halides through a SRN1 mechanism. The reaction is efficient for a broad substrate scope, tolerating heterocycles including pyridines, enolizable or reducible functional groups. The method has been applied to intermediates in drug synthesis as well as interesting functionalized polythioethers through a controlled and consecutive intramolecular electron transfer process.
Collapse
Affiliation(s)
- Mario Franco
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | - Emily L Vargas
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | - Mariola Tortosa
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - M Belén Cid
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
24
|
Pramanik M, Mathuri A, Sau S, Das M, Mal P. Chlorinative Cyclization of Aryl Alkynoates Using NCS and 9-Mesityl-10-methylacridinium Perchlorate Photocatalyst. Org Lett 2021; 23:8088-8092. [PMID: 34558906 DOI: 10.1021/acs.orglett.1c03100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In a chlorinative cyclization, Mes-Acr-MeClO4 acted as a visible-light photocatalyst to obtain 3-chlorocoumarins from aryl alkynoates and N-chlorosuccinimide (NCS). The radical initiated reaction proceeded in a cascading manner via Cl- addition to alkynoates. Next, 5-exo-trig spirocyclization and subsequent 1,2-ester migration led to the formation of C-C and C-Cl bonds.
Collapse
Affiliation(s)
- Milan Pramanik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Ashis Mathuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Sudip Sau
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Monojit Das
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
25
|
Mathuri A, Pramanik M, Parida A, Mal P. Disulfide metathesis via sulfur⋯iodine interaction and photoswitchability. Org Biomol Chem 2021; 19:8539-8543. [PMID: 34546277 DOI: 10.1039/d1ob01581h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The idea of constitutional dynamic chemistry (CDC) and dynamic combinatorial chemistry (DCC) is widespread in the literature using the chemistry of disulfides. The synthesis of unsymmetrical diaryl disulfides is challenging due to the presence of a weak S-S bond. We report herein the synthesis of unsymmetrical diaryl disulfides from two symmetrical disulfides via a cross-metathesis reaction which was controlled by a weak sulfur⋯iodine (S⋯I) interaction. The unsymmetrical disulfides were stable in acetonitrile solution in the presence of N-iodosuccinimide (NIS), and found to be reversibly photoswitchable to the symmetrical disulfides under visible light irradiation.
Collapse
Affiliation(s)
- Ashis Mathuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| | - Milan Pramanik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| | - Amarchand Parida
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| |
Collapse
|
26
|
Sau S, Pramanik M, Bal A, Mal P. Reported Catalytic Hydrofunctionalizations that Proceed in the Absence of Catalysts: The Importance of Control Experiments. CHEM REC 2021; 22:e202100208. [PMID: 34618401 DOI: 10.1002/tcr.202100208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 01/23/2023]
Abstract
The enlarged landscape of catalysis lies in the heart of chemistry. As the journey has set a milestone in organic synthesis, its darker side has not entered into the limelight. Studies disclose that the reported reactions by using catalysts were also attainable in the absence of catalysts in many cases. This article presents a literature collection that includes the significance of control experiments in hydrofunctionalization reactions. Systematic analysis reveals that the catalysts are ambiguous and might be unessential in chemical reactions enlisted here.
Collapse
Affiliation(s)
- Sudip Sau
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Milan Pramanik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Ankita Bal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| |
Collapse
|
27
|
Bal A, Mal P. A Click Reaction Enabled by Phosphorus‐Oxygen Bond for Synthesis of Triazoles. ChemistrySelect 2021. [DOI: 10.1002/slct.202102758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ankita Bal
- School of Chemical Sciences Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur Via Jatni, District Khurda Odisha 752050 India
| | - Prasenjit Mal
- School of Chemical Sciences Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur Via Jatni, District Khurda Odisha 752050 India
| |
Collapse
|
28
|
Pan D, Xu S, Tian Q, Li Y. Pd‐Catalyzed Intermolecular Transthiolation of Ar‐OTf Using Methyl 3‐(Methylthio) Propanoate as a Thiol Surrogate. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Dandan Pan
- Department Key Laboratory of Agri-Food Safety of Anhui Province School of Resources and Environment Anhui Agricultural University Hefei 230036 China
| | - Shasha Xu
- Department Key Laboratory of Agri-Food Safety of Anhui Province School of Resources and Environment Anhui Agricultural University Hefei 230036 China
| | - Qingqiang Tian
- Department Key Laboratory of Agri-Food Safety of Anhui Province School of Resources and Environment Anhui Agricultural University Hefei 230036 China
| | - Yahui Li
- Department Key Laboratory of Agri-Food Safety of Anhui Province School of Resources and Environment Anhui Agricultural University Hefei 230036 China
| |
Collapse
|
29
|
Shigeno M, Shishido Y, Hayashi K, Nozawa‐Kumada K, Kondo Y. KO‐
t
‐Bu Catalyzed Thiolation of
β
‐(Hetero)arylethyl Ethers via MeOH Elimination/hydrothiolation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| | - Yoshiteru Shishido
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| | - Kazutoshi Hayashi
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| | - Kanako Nozawa‐Kumada
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| |
Collapse
|
30
|
Bera SK, Boruah PJ, Parida SS, Paul AK, Mal P. A Photochemical Intramolecular C-N Coupling Toward the Synthesis of Benzimidazole-Fused Phenanthridines. J Org Chem 2021; 86:9587-9602. [PMID: 34191516 DOI: 10.1021/acs.joc.1c00871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Herein, we report a direct photochemical dehydrogenative C-N coupling of unactivated C(sp2)-H and N(sp2)-H bonds. The catalysts or additive-free transformation of 2-([1,1'-biphenyl]-2-yl)-1H-benzo[d]imidazole to benzo[4,5]imidazo[1,2-f]phenanthridine was achieved at ∼350 nm of irradiation via ε-hydrogen abstraction. DFT calculations helped to understand that the N-H···π interaction was essential for the reaction to proceed at a lower energy than expected.
Collapse
Affiliation(s)
- Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, District Khurda, Jatni, Odisha 752050, India
| | - Palash J Boruah
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, Meghalaya, India
| | - Shraddha Saraswati Parida
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, District Khurda, Jatni, Odisha 752050, India
| | - Amit K Paul
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, Meghalaya, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, District Khurda, Jatni, Odisha 752050, India
| |
Collapse
|
31
|
Uchikura T, Hara Y, Tsubono K, Akiyama T. Visible-Light-Driven C-S Bond Formation Based on Electron Donor-Acceptor Excitation and Hydrogen Atom Transfer Combined System. ACS ORGANIC & INORGANIC AU 2021; 1:23-28. [PMID: 36855634 PMCID: PMC9954416 DOI: 10.1021/acsorginorgau.1c00007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Developed herein is a visible-light-driven synthesis of sulfides by an electron donor-acceptor/single electron transfer and hydrogen atom transfer combined system without transition metals and strong oxidants. This reaction proceeds through the excitation of an electron donor-acceptor complex between a thiolate and an aryl halide, followed by the hydrogen atom transfer from an alkane to the generated aryl radical.
Collapse
|
32
|
Pramanik M, Mathuri A, Mal P. Sulfuroxygen interaction-controlled ( Z)-selective anti-Markovnikov vinyl sulfides. Chem Commun (Camb) 2021; 57:5698-5701. [PMID: 33982682 DOI: 10.1039/d1cc01257f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sulfur oxygen (SO) interaction was used herein to obtain (Z)-selective anti-Markovnikov vinyl sulfides from the addition of thiyl radicals to terminal alkynes. DFT calculations predicted that SO interaction originated from the delocalization of the lone-pair of the carbonyl oxygen to the adjacent σ* orbital of the S atom of C-S.
Collapse
Affiliation(s)
- Milan Pramanik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| | - Ashis Mathuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| |
Collapse
|
33
|
Zhao X, Ou Y, Liu Y, Maruoka K, Chen Q. Recent Progress in the Construction of S—S, P—S and C—S Bonds Involving O2-Initiated Sulfur-Centered Radicals. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Pramanik M, Choudhuri K, Mal P. Metal-free C–S coupling of thiols and disulfides. Org Biomol Chem 2020; 18:8771-8792. [DOI: 10.1039/d0ob01741h] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A literature overview on C–S coupling reactions using thiols or disulfides as sulfur surrogates under metal-free conditions is presented. Reagents for the transformations include polyvalent iodines, peroxides, tert-butyl nitrite (TBN), DDQ, and aerial oxygen, among others.
Collapse
Affiliation(s)
- Milan Pramanik
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- India
| | - Khokan Choudhuri
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- India
| | - Prasenjit Mal
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- India
| |
Collapse
|