1
|
Zhao M, Ren F, Zhou Y. Construction of Boron Difluoride Complexes with Asymmetric N,N'-Bidentate Ligands. Chemistry 2024; 30:e202401784. [PMID: 38866701 DOI: 10.1002/chem.202401784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Boron difluoride (BF2) complexes with asymmetrical N,N'-bidentate ligands have received increasing attention due to their fascinating properties and broad applications. They are generally constructed in two steps: ligand formation, followed by boron complexation. This review focuses on categorizing these BF2 complexes based on the key synthetic strategies that have been applied in the ligand formation steps. The post-functionalization, properties and applications of different types of BF2 complexes are presented. Their challenges and opportunities are also discussed. This should help the future rational design and synthesis of BF2 complexes with intriguing properties and practical applications.
Collapse
Affiliation(s)
- Mengna Zhao
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang, China
| | - Fangqin Ren
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang, China
| | - Yifeng Zhou
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Liu Y, Zhou S, Liu Z. Synthesis, structure, photophysical property, stability of tetraphenylethylene-based boranil, and applications in cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123730. [PMID: 38061107 DOI: 10.1016/j.saa.2023.123730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
A new family of tetraphenylethylene-based N,O-chelated boranil complexes (TPE-BAs) with aggregation-induced emission (AIE) characteristics were developed. X-ray crystallographic analysis indicated that the terminal substituents on the aniline moiety significantly affected the intermolecular stacking mode, thereby influencing the photophysical properties. The stabilities of these compounds are closely related to the substituents on the aniline moiety. Electron-donor-substituted TPE-BA-OMe exhibited the best stability, whereas the electron-acceptor-substituted compounds exhibited poor stability. Benefitting from its AIE properties and suitable lipophilicity, TPE-BA-OMe served as an excellent fluorescent probe for the specific bioimaging of lipid droplets in living cells.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Shimin Zhou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; Shenzhen Research Institute of Shandong University, Shenzhen 518057, China.
| |
Collapse
|
3
|
Figliola C, Sutter A, Papineau TV, Chériaux C, Retailleau P, Jacquemin D, Ulrich G. Difluoro Dipyridomethene Boron Complexes: Synthesis, Characterization, and Ab Initio Calculations. J Org Chem 2024; 89:3020-3032. [PMID: 38359404 DOI: 10.1021/acs.joc.3c02491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Molecular engineering studies on the meso-cyano difluoro dipyridomethene boron complexes are presented and two series (a and b) of novel fluorophores are extensively studied. Halogenated derivatives were reacted under Suzuki-Miyaura or Sonogashira cross coupling reactions to introduce electron-donating or electron-withdrawing functional groups on positions 1 and 2 of the aromatic ligand. All derivatives were obtained in 14-90% yields and studied in detail by structural, photophysical, and computational analyses. Both series display excellent emissive properties in solution with blue to orange fluorescence emission upon blue light absorption and promising features as solid emitters. All the spectroscopic measurements are supported and confirmed by first-principles theoretical calculations combining TD-DFT and CC2. Series b, featuring an aryl substituent onto position 1 of the aromatic core, showed significantly large Stokes shifts values.
Collapse
Affiliation(s)
- Carlotta Figliola
- Institut de Chimie pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Alexandra Sutter
- Institut de Chimie pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | | | - Camille Chériaux
- Institut de Chimie pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Pascal Retailleau
- Service de Cristallographie Structurale, ICSN-CNRS Université Paris-Saclay, 1 Avenue de la Terrasse, Bât.27, 91198 Gif-sur-Yvette Cedex, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Gilles Ulrich
- Institut de Chimie pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| |
Collapse
|
4
|
He J, Chang X, Zou C, Yu Y, Han S, Wu C, Ou S, Lu W, Li K. Tunable Yellow to Near-Infrared Fluorescent Boron-Amino-Chelating Complexes with Stokes Shifts >100 nm. J Org Chem 2023; 88:14836-14841. [PMID: 37779438 DOI: 10.1021/acs.joc.3c01818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
A series of diphenylboron-chelating N-substituent 8-aminoquinoline, 5-aminoquinoxaline, and 1-aminophenazine were prepared. They exhibit lowest energy absorption peaks of 444-766 nm, emission peaks of 563-820 nm, and quantum yields of up to 46.5%. Electrochemical and theoretical studies indicate that the N-substituent mainly determines the HOMO and the framework determines the LUMO, thus allowing for a wide-tuning of absorptions/emissions. Intramolecular charge transfer transition leads to large Stokes shifts of up to 166 nm. One selected compound showed satisfactory cytocompatibility and cytoplasm-targeting cell imaging ability.
Collapse
Affiliation(s)
- Jiang He
- Colleges of Materials Sciences and Engineering, Shenzhen University, Shenzhen 518055, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Chao Zou
- Functional Coordination Material Group-Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan 523808, P. R. China
| | - Yanqin Yu
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang 550025, P. R. China
| | - Shuang Han
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang 550025, P. R. China
| | - Cuifang Wu
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang 550025, P. R. China
| | - Sha Ou
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang 550025, P. R. China
| | - Wei Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Kai Li
- Colleges of Materials Sciences and Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| |
Collapse
|
5
|
Yamamoto K, Matsui S, Kato SI, Nakamura Y. A series of boron difluoride complexes of azinylcarbazoles: synthesis and structure-property relationships. Org Biomol Chem 2023. [PMID: 37334470 DOI: 10.1039/d3ob00795b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
A series of boron difluoride (BF2) complexes of azinylcarbazoles 1b-1h were synthesized, and the effects of the structure of azine moieties on the photophysical and electrochemical properties of the BF2 complexes were clarified. UV-vis analysis of 1b with quinoline, 1c with isoquinoline, and fully fused 1d revealed that fusion with a benzene ring to a pyridylcarbazole BF2 complex (1a) resulted in red shifts of longest-maximum absorption wavelengths (λmax). UV-vis analysis of 1e and 1f with pyrimidine, 1g with pyridazine, and 1h with pyrazine revealed that substitution of a carbon atom to a nitrogen atom in 1a also resulted in red shifts of λmax. The fluorescence quantum yields (Φf) decreased from 1a to 1b-1h, and especially, the fluorescence of 1e, 1g, and 1h was quenched in solution. At 77 K, the emission intensities of 1b-1h were significantly increased compared with those at ambient temperature, and they also exhibited phosphorescence with relatively narrow energy gaps between the singlet and triplet excited states. These results on the emission at 77 K indicate that the quench of fluorescence from 1e, 1g, and 1h at ambient temperature originates from both internal conversions and intersystem crossing. In the solid state, all of the complexes including 1e, 1g, and 1h exhibited emission. Distinctive aggregation-induced emission properties were observed for 1e-1h. Electrochemical measurements revealed that the replacement of the pyridine moiety in 1a with azine moieties reduced electrochemical gaps mainly due to a decrease in the LUMO levels. The effects of azine moieties on electronic structures were also discussed based on theoretical calculations.
Collapse
Affiliation(s)
- Koji Yamamoto
- Department of Pharmaceutical Sciences, Shujitsu University, 1-6-1 Nishigawara, Okayama 703-8516, Japan.
| | - Shun Matsui
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | - Shin-Ichiro Kato
- Department of Materials Chemistry, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga, 522-8533, Japan
| | - Yosuke Nakamura
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| |
Collapse
|
6
|
Guang J, Fan W, Liu Z, Huang D. Synthesis of N,O-bidentate organic difluoroboron complexes and their photophysical studies. BMC Chem 2023; 17:53. [PMID: 37303046 DOI: 10.1186/s13065-023-00974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023] Open
Abstract
We disclose a novel boron trifluoride induced C-H activation and difluoroboronation at room temperature, thus providing a straightforward gateway to a series of N,O-bidentate organic BF2 complexes. The scope of the method is demonstrated with 24 examples. All the synthesized compounds exhibit fluorescence and some of them have large Stokes shifts.
Collapse
Affiliation(s)
- Jin Guang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian,, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weibin Fan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian,, China
| | - Zhiqi Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian,, China
| | - Deguang Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian,, China.
| |
Collapse
|
7
|
Surface regulation by bifunctional BODIPY to fabricate stable CsPbBr3 for multi-layered optical anti-counterfeiting. J Colloid Interface Sci 2023; 629:63-72. [DOI: 10.1016/j.jcis.2022.08.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/20/2022]
|
8
|
Hoang MD, Savina F, Durand P, Méallet-Renault R, Clavier G, Chevalier A. Tunable Naphthalimide/Cinnoline‐Fused (CinNapht) Hybrid Dyes for Fluorescence Imaging in Living Cells. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Minh-Duc Hoang
- ICSN: Institut de Chimie des Substances Naturelles Chemical Biology FRANCE
| | - Farah Savina
- ISMO: Institut des Sciences Moleculaires d'Orsay SYSTEMAE FRANCE
| | - Philippe Durand
- ICSN: Institut de Chimie des Substances Naturelles Chemical Biology FRANCE
| | | | - Gilles Clavier
- ENS Paris-Saclay: Ecole Normale Superieure Paris-Saclay PPSM FRANCE
| | - Arnaud Chevalier
- ICSN: Institut de Chimie des Substances Naturelles Biological Chemistry 1 Avenue de la terrasse 91198 Gif-Sur-Yvette FRANCE
| |
Collapse
|
9
|
Nakano T, Fujikawa S. Aryl/Heteroaryl Substituted Boron-Difluoride Complexes Bearing 2-(Isoquinol-1-yl)pyrrole Ligands Exhibiting High Luminescence Efficiency with a Large Stokes Shift. J Org Chem 2022; 87:11708-11721. [PMID: 35969831 DOI: 10.1021/acs.joc.2c01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of 2-(isoquinol-1-yl)pyrrole-boron complexes possessing (hetero)aryl substituents on the pyrrole and/or isoquinoline moiety were prepared. These compounds exhibited the fluorescence emission character in both solution and solid state. In most cases, the large Stokes shift and high fluorescence quantum yield in the solution were compatible. Furthermore, the structural diversity allowed the precise tuning of emitting colors from light blue to red with strong emission intensity. The present paper describes their comprehensive optical characteristics dependent on the type and position of the substituted aryl groups by the experimental and computational studies.
Collapse
Affiliation(s)
- Takeo Nakano
- Research Center for Negative Emissions Technologies (K-NETs), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shigenori Fujikawa
- Research Center for Negative Emissions Technologies (K-NETs), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
10
|
Floyd MD, Ryan LY, Hendsey JL, Nicholson JM, Palaia AT, Isaacs AK. Copper-catalyzed three-component synthesis of pyrrole-substituted 1,2-dihydroisoquinolines. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Matthew D. Floyd
- Department of Chemistry, College of the Holy Cross, Worcester, MA, USA
| | - Lianne Y. Ryan
- Department of Chemistry, College of the Holy Cross, Worcester, MA, USA
| | | | | | - Andrew T. Palaia
- Department of Chemistry, College of the Holy Cross, Worcester, MA, USA
| | - André K. Isaacs
- Department of Chemistry, College of the Holy Cross, Worcester, MA, USA
| |
Collapse
|
11
|
Tasior M, Kowalczyk P, Przybył M, Czichy M, Janasik P, Bousquet MHE, Łapkowski M, Rammo M, Rebane A, Jacquemin D, Gryko DT. Going beyond the borders: pyrrolo[3,2- b]pyrroles with deep red emission. Chem Sci 2021; 12:15935-15946. [PMID: 35024117 PMCID: PMC8672719 DOI: 10.1039/d1sc05007a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/19/2021] [Indexed: 01/21/2023] Open
Abstract
A two-step route to strongly absorbing and efficiently orange to deep red fluorescent, doubly B/N-doped, ladder-type pyrrolo[3,2-b]pyrroles has been developed. We synthesize and study a series of derivatives of these four-coordinate boron-containing, nominally quadrupolar materials, which mostly exhibit one-photon absorption in the 500-600 nm range with the peak molar extinction coefficients reaching 150 000, and emission in the 520-670 nm range with the fluorescence quantum yields reaching 0.90. Within the family of these ultrastable dyes even small structural changes lead to significant variations of the photophysical properties, in some cases attributed to reversal of energy ordering of alternate-parity excited electronic states. Effective preservation of ground-state inversion symmetry was evidenced by very weak two-photon absorption (2PA) at excitation wavelengths corresponding to the lowest-energy, strongly one-photon allowed purely electronic transition. π-Expanded derivatives and those possessing electron-donating groups showed the most red-shifted absorption- and emission spectra, while displaying remarkably high peak 2PA cross-section (σ 2PA) values reaching ∼2400 GM at around 760 nm, corresponding to a two-photon allowed higher-energy excited state. At the same time, derivatives lacking π-expansion were found to have a relatively weak 2PA peak centered at ca. 800-900 nm with the maximum σ 2PA ∼50-250 GM. Our findings are augmented by theoretical calculations performed using TD-DFT method, which reproduce the main experimental trends, including the 2PA, in a nearly quantitative manner. Electrochemical studies revealed that the HOMO of the new dyes is located at ca. -5.35 eV making them relatively electron rich in spite of the presence of two B--N+ dative bonds. These dyes undergo a fully reversible first oxidation, located on the diphenylpyrrolo[3,2-b]pyrrole core, directly to the di(radical cation) stage.
Collapse
Affiliation(s)
- Mariusz Tasior
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| | - Paweł Kowalczyk
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| | - Marta Przybył
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| | - Małgorzata Czichy
- Faculty of Chemistry, Silesian University of Technology Strzody 9 44-100 Gliwice Poland
| | - Patryk Janasik
- Faculty of Chemistry, Silesian University of Technology Strzody 9 44-100 Gliwice Poland
| | | | - Mieczysław Łapkowski
- Faculty of Chemistry, Silesian University of Technology Strzody 9 44-100 Gliwice Poland .,Centre of Polymer and Carbon Materials, Polish Academy of Sciences Curie-Sklodowskiej 34 41-819 Zabrze Poland
| | - Matt Rammo
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Aleksander Rebane
- National Institute of Chemical Physics and Biophysics Tallinn Estonia.,Department of Physics, Montana State University Bozeman MT 59717 USA
| | - Denis Jacquemin
- CEISAM Lab-UMR 6230, CNRS, University of Nantes Nantes France
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| |
Collapse
|
12
|
Wang S, Zhu S, Tanzeng Y, Zhang Y, Li C, Ma M, Lu W. Design, Synthesis, and Evaluation of Near-Infrared Fluorescent Molecules Based on 4H-1-Benzopyran Core. Molecules 2021; 26:molecules26226986. [PMID: 34834079 PMCID: PMC8620761 DOI: 10.3390/molecules26226986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/02/2022] Open
Abstract
A series of novel fluorescent 4H-1-benzopyrans was designed and developed as near-infrared fluorescent molecules with a compact donor–acceptor-donor architecture. Spectral intensity of the fluorescent molecules M-1, M-2, M-3 varied significantly with the increasing polarities of solvents, where M-3 showed high viscosity sensitivity in glycerol-ethanol system with a 3-fold increase in emission intensity. Increasing concentrations of compound M-3 to 5% BSA in PBS elicited a 4-fold increase in fluorescence intensity, exhibiting a superior environmental sensitivity. Furthermore, the in vitro cellular uptake behavior and CLSM assay of cancer cell lines demonstrated that M-3 could easily enter the cell nucleus and bind to proteins with low toxicity. Therefore, the synthesized near-infrared fluorescent molecules could provide a new direction for the development of optical imaging probes and potential further drugs.
Collapse
Affiliation(s)
- Shuting Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; (S.W.); (S.Z.); (C.L.); (W.L.)
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Shulei Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; (S.W.); (S.Z.); (C.L.); (W.L.)
| | - Yawen Tanzeng
- Key Laboratory of Brain Functional Genomics-Ministry of Education, School of Life Science, East China Normal University, Shanghai 200062, China;
| | - Yuexing Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
| | - Chuchu Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; (S.W.); (S.Z.); (C.L.); (W.L.)
| | - Mingliang Ma
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; (S.W.); (S.Z.); (C.L.); (W.L.)
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Correspondence:
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; (S.W.); (S.Z.); (C.L.); (W.L.)
| |
Collapse
|
13
|
Nakano T, Sumida A, Naka K. Mechanochromic Properties of Boron‐Difluoride Complexes Bearing π‐Expanded Pyridine Ligands: Effects of π‐Conjugated Skeletons and Halogen Atoms. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takeo Nakano
- Material Innovation Lab Kyoto Institute of Technology Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585 Japan
- Research Center for Negative Emission Technologies Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI−I2CNER) Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Akifumi Sumida
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585 Japan
| | - Kensuke Naka
- Material Innovation Lab Kyoto Institute of Technology Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585 Japan
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585 Japan
| |
Collapse
|
14
|
Li C, Wang J, Yang SD. Visible-light-facilitated P-center radical addition to C[double bond, length as m-dash]X (X = C, N) bonds results in cyclizations. Chem Commun (Camb) 2021; 57:7997-8002. [PMID: 34319325 DOI: 10.1039/d1cc02604f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Visible-light-facilitated phosphorus radical reactions have been developed as a powerful and sustainable tool for the synthesis of various organophosphorus compounds. In general, these reactions require stoichiometric amounts of oxidants, and reductants, bases, and radical initiators, leading to uneconomical and complicated processes. Progress has been made over the past few years toward using reactions that proceed under eco-benign and mild reaction conditions. Furthermore, these reactions have broad functional group tolerance, with some facile and economical pathways. Herein, we summarize the discoveries and achievements pertaining to C-P bond formation through a visible light photocatalysis procedure with high atom economy, made by our group and other research groups. It was established that greener and more environmentally friendly approaches do not require an additional oxidant or base. Moreover, we have designed and synthesized a new type of P-radical precursor, which can take part in reactions without the requirement for any additional bases, oxidants, and additives. This breakthrough, pertaining to novel visible-light-induced transformations, will be discussed and a plausible mechanism is proposed, based on corresponding experiments and the literature.
Collapse
Affiliation(s)
- Chong Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | | | | |
Collapse
|