1
|
Gesmundo NJ, Rago AJ, Young JM, Keess S, Wang Y. At the Speed of Light: The Systematic Implementation of Photoredox Cross-Coupling Reactions for Medicinal Chemistry Research. J Org Chem 2024; 89:16070-16092. [PMID: 38442262 DOI: 10.1021/acs.joc.3c02351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The adoption of new and emerging techniques in organic synthesis is essential to promote innovation in drug discovery. In this Perspective, we detail the strategy we used for the systematic deployment of photoredox-mediated, metal-catalyzed cross-coupling reactions in AbbVie's medicinal chemistry organization, focusing on topics such as assessment, evaluation, implementation, and accessibility. The comprehensive evaluation of photoredox reaction setups and published methods will be discussed, along with internal efforts to build expertise and photoredox high-throughput experimentation capabilities. We also highlight AbbVie's academic-industry collaborations in this field that have been leveraged to develop new synthetic strategies, along with discussing the internal adoption of photoredox cross-coupling reactions. The work described herein has culminated in robust photocatalysis and cross-coupling capabilities which are viewed as key platforms for medicinal chemistry research at AbbVie.
Collapse
Affiliation(s)
- Nathan J Gesmundo
- Advanced Chemistry Technologies Group, Small Molecule Therapeutics & Platform Technologies, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Alexander J Rago
- Advanced Chemistry Technologies Group, Small Molecule Therapeutics & Platform Technologies, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jonathon M Young
- Advanced Chemistry Technologies Group, Small Molecule Therapeutics & Platform Technologies, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Sebastian Keess
- Global Medicinal Chemistry, Small Molecule Therapeutics & Platform Technologies, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| | - Ying Wang
- Advanced Chemistry Technologies Group, Small Molecule Therapeutics & Platform Technologies, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
2
|
Bone KI, Puleo TR, Delost MD, Shimizu Y, Bandar JS. Direct Benzylic C-H Etherification Enabled by Base-Promoted Halogen Transfer. Angew Chem Int Ed Engl 2024; 63:e202408750. [PMID: 38937258 DOI: 10.1002/anie.202408750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
We disclose a benzylic C-H oxidative coupling reaction with alcohols that proceeds through a synergistic deprotonation, halogenation and substitution sequence. The combination of tert-butoxide bases with 2-halothiophene halogen oxidants enables the first general protocol for generating and using benzyl halides through a deprotonative pathway. In contrast to existing radical-based methods for C-H functionalization, this process is guided by C-H acidity trends. This gives rise to new synthetic capabilities, including the ability to functionalize diverse methyl(hetero)arenes, tolerance of oxidizable and nucleophilic functional groups, precision site-selectivity for polyalkylarenes and use of a double C-H etherification process to controllably oxidize methylarenes to benzaldehydes.
Collapse
Affiliation(s)
- Kendelyn I Bone
- Department of Chemistry, Colorado State University, Fort Collins, CO-80523, United States
| | - Thomas R Puleo
- Department of Chemistry, Colorado State University, Fort Collins, CO-80523, United States
| | - Michael D Delost
- Department of Chemistry, Colorado State University, Fort Collins, CO-80523, United States
| | - Yuka Shimizu
- Department of Chemistry, Colorado State University, Fort Collins, CO-80523, United States
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University, Fort Collins, CO-80523, United States
| |
Collapse
|
3
|
Castagna D, Gourdet B, Hjerpe R, MacFaul P, Novak A, Revol G, Rochette E, Jordan A. To homeostasis and beyond! Recent advances in the medicinal chemistry of heterobifunctional derivatives. PROGRESS IN MEDICINAL CHEMISTRY 2024; 63:61-160. [PMID: 39370242 DOI: 10.1016/bs.pmch.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The field of induced proximity therapeutics has expanded dramatically over the past 3 years, and heterobifunctional derivatives continue to form a significant component of the activities in this field. Here, we review recent advances in the field from the perspective of the medicinal chemist, with a particular focus upon informative case studies, alongside a review of emerging topics such as Direct-To-Biology (D2B) methodology and utilities for heterobifunctional compounds beyond E3 ligase mediated degradation. We also include a critical evaluation of the latest thinking around the optimisation of physicochemical and pharmacokinetic attributes of these beyond Role of Five molecules, to deliver appropriate therapeutic exposure in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Allan Jordan
- Sygnature Discovery, Nottingham, United Kingdom; Sygnature Discovery, Macclesfield, United Kingdom.
| |
Collapse
|
4
|
Bellenger J, Koos MRM, Avery M, Bundesmann M, Ciszewski G, Khunte B, Leverett C, Ostner G, Ryder TF, Farley KA. An Automated Purification Workflow Coupled with Material-Sparing High-Throughput 1H NMR for Parallel Medicinal Chemistry. ACS Med Chem Lett 2024; 15:1635-1644. [PMID: 39291006 PMCID: PMC11403749 DOI: 10.1021/acsmedchemlett.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 09/19/2024] Open
Abstract
In medicinal chemistry, purification and characterization of organic compounds is an ever-growing challenge, with an increasing number of compounds being synthesized at a decreased scale of preparation. In response to this trend, we developed a parallel medicinal chemistry (PMC)-tailored platform, coupling automated purification to mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR) on a range of synthetic scales (∼3.0-75.0 μmol). Here, the generation and acquisition of 1.7 mm NMR samples is fully integrated into a high-throughput automated workflow, processing 36 000 compounds yearly. Utilizing dead volume, which is inaccessible in conventional liquid handling, NMR samples are generated on as little as 10 μg without consuming material prioritized for biological assays. As miniaturized PMC synthesis becomes the industry standard, we can now obtain quality NMR spectra from limited material. Paired with automated structure verification, this platform has the potential to allow NMR to become as important for high-throughput analysis as ultrahigh performance liquid chromatography (UPLC)-MS.
Collapse
Affiliation(s)
- Justin Bellenger
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Martin R M Koos
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Melissa Avery
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Mark Bundesmann
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Gregory Ciszewski
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Bhagyashree Khunte
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Carolyn Leverett
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Gregory Ostner
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Tim F Ryder
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Kathleen A Farley
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| |
Collapse
|
5
|
Hu C, Tsien J, Chen SJ, Kong M, Merchant RR, Kanda Y, Qin T. A General Three-Component Alkyl Petasis Boron-Mannich Reaction. J Am Chem Soc 2024; 146:21769-21777. [PMID: 39072677 DOI: 10.1021/jacs.4c05940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Aryl amines are one of the most common moieties in biologically active molecules, and approximately 37% of drug candidates contain aromatic amines. Recent advancements in medicinal chemistry, coined "escaping from flatland", have led to a greater focus on accessing highly functionalized C (sp3)-rich amines to improve the physicochemical and pharmacokinetic properties of compounds. This article presents a modular and operationally straightforward three-component alkyl Petasis boron-Mannich (APBM) reaction that utilizes ubiquitous starting materials, including amines, aldehydes, and alkyl boronates. By adaptation of this transformation to high-throughput experimentation (HTE), it offers rapid access to an array of diverse C(sp3)-rich complex amines, amenable for rapid identification of drug candidates.
Collapse
Affiliation(s)
- Chao Hu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Si-Jie Chen
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - May Kong
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Yuzuru Kanda
- Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| |
Collapse
|
6
|
Raghavan P, Rago AJ, Verma P, Hassan MM, Goshu GM, Dombrowski AW, Pandey A, Coley CW, Wang Y. Incorporating Synthetic Accessibility in Drug Design: Predicting Reaction Yields of Suzuki Cross-Couplings by Leveraging AbbVie's 15-Year Parallel Library Data Set. J Am Chem Soc 2024; 146:15070-15084. [PMID: 38768950 PMCID: PMC11157529 DOI: 10.1021/jacs.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
Despite the increased use of computational tools to supplement medicinal chemists' expertise and intuition in drug design, predicting synthetic yields in medicinal chemistry endeavors remains an unsolved challenge. Existing design workflows could profoundly benefit from reaction yield prediction, as precious material waste could be reduced, and a greater number of relevant compounds could be delivered to advance the design, make, test, analyze (DMTA) cycle. In this work, we detail the evaluation of AbbVie's medicinal chemistry library data set to build machine learning models for the prediction of Suzuki coupling reaction yields. The combination of density functional theory (DFT)-derived features and Morgan fingerprints was identified to perform better than one-hot encoded baseline modeling, furnishing encouraging results. Overall, we observe modest generalization to unseen reactant structures within the 15-year retrospective library data set. Additionally, we compare predictions made by the model to those made by expert medicinal chemists, finding that the model can often predict both reaction success and reaction yields with greater accuracy. Finally, we demonstrate the application of this approach to suggest structurally and electronically similar building blocks to replace those predicted or observed to be unsuccessful prior to or after synthesis, respectively. The yield prediction model was used to select similar monomers predicted to have higher yields, resulting in greater synthesis efficiency of relevant drug-like molecules.
Collapse
Affiliation(s)
- Priyanka Raghavan
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Alexander J. Rago
- Advanced
Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Pritha Verma
- Advanced
Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Majdi M. Hassan
- RAIDERS
Group, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Gashaw M. Goshu
- Advanced
Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Amanda W. Dombrowski
- Advanced
Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Abhishek Pandey
- RAIDERS
Group, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Connor W. Coley
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Ying Wang
- Advanced
Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| |
Collapse
|
7
|
Pijper B, Martín R, Huertas-Alonso AJ, Linares ML, López E, Llaveria J, Díaz-Ortiz Á, Dixon DJ, de la Hoz A, Alcázar J. Fully Automated Flow Protocol for C(sp 3)-C(sp 3) Bond Formation from Tertiary Amides and Alkyl Halides. Org Lett 2024; 26:2724-2728. [PMID: 37219892 PMCID: PMC11020161 DOI: 10.1021/acs.orglett.3c01390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 05/24/2023]
Abstract
Herein, we present a novel C(sp3)-C(sp3) bond-forming protocol via the reductive coupling of abundant tertiary amides with organozinc reagents prepared in situ from their corresponding alkyl halides. Using a multistep fully automated flow protocol, this reaction could be used for both library synthesis and target molecule synthesis on the gram-scale starting from bench-stable reagents. Additionally, excellent chemoselectivity and functional group tolerance make it ideal for late-stage diversification of druglike molecules.
Collapse
Affiliation(s)
- Brenda Pijper
- Global
Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S. A., Jarama 75 A, 45007 Toledo, Spain
| | - Raúl Martín
- Facultad
de Ciencias Químicas, Universidad
de Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Alberto J. Huertas-Alonso
- Facultad
de Ciencias Químicas, Universidad
de Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Maria Lourdes Linares
- Global
Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S. A., Jarama 75 A, 45007 Toledo, Spain
| | - Enol López
- Facultad
de Ciencias Químicas, Universidad
de Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Josep Llaveria
- Global
Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S. A., Jarama 75 A, 45007 Toledo, Spain
| | - Ángel Díaz-Ortiz
- Facultad
de Ciencias Químicas, Universidad
de Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Darren J. Dixon
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford. Oxford OX1 3TA, United
Kingdom
| | - Antonio de la Hoz
- Facultad
de Ciencias Químicas, Universidad
de Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Jesús Alcázar
- Global
Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S. A., Jarama 75 A, 45007 Toledo, Spain
| |
Collapse
|
8
|
Alcázar J, Anderson EA, Davies HML, Febrian R, Kelly CB, Noël T, Voight EA, Zarate C, Zysman-Colman E. Better Together: Catalyzing Innovation in Organic Synthesis via Academic-Industrial Consortia. Org Lett 2024; 26:2677-2681. [PMID: 38284620 DOI: 10.1021/acs.orglett.4c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Affiliation(s)
- Jesús Alcázar
- Global Discovery Chemistry, Johnson & Johnson Innovative Medicine, Janssen-Cilag, S. A., Jarama 75 A, 45007 Toledo, Spain
| | - Edward A Anderson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Huw M L Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Rio Febrian
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Christopher B Kelly
- Discovery Process Research, Johnson & Johnson Innovative Medicine, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Timothy Noël
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Eric A Voight
- Discovery Research, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Cayetana Zarate
- Chemical Process R&D, Johnson & Johnson Innovative Medicine, Janssen-Cilag AG, Hochstrasse 201, 8200 Schaffhausen, Switzerland
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, North Haugh, KY16 9ST St Andrews, U.K
| |
Collapse
|
9
|
Glogowski MP, Cercizi N, Lynch-Colameta T, Ridgers LH, Phelan JP, Rowley AM, Rauch MP. Utilization of High-Throughput Experimentation (HTE) and ChemBeads Toward the Development of an Aryl Bromide and Benzyl Bromide Photoredox Cross-Electrophile Coupling. Org Lett 2024. [PMID: 38498905 DOI: 10.1021/acs.orglett.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The discussion herein describes a metallaphotoredox reaction that allows for efficient exploration of benzyl structure-activity relationships in medicinal chemistry. The use of HTE (high-throughput experimentation) and ChemBeads allows for rapid reaction optimization. The formation of di(hetero)arylmethanes via cross-electrophile coupling between aryl bromides and benzyl bromides provides access to diverse chemical space. The breadth of the substrate scope will be discussed, along with the utilization of batch photochemistry for the preparation of this di(hetero)arylmethane motif on a larger scale.
Collapse
Affiliation(s)
- Michal P Glogowski
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Noel Cercizi
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Tessa Lynch-Colameta
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Lance H Ridgers
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - James P Phelan
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Ann M Rowley
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Martin P Rauch
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
10
|
Brocklehurst CE, Altmann E, Bon C, Davis H, Dunstan D, Ertl P, Ginsburg-Moraff C, Grob J, Gosling DJ, Lapointe G, Marziale AN, Mues H, Palmieri M, Racine S, Robinson RI, Springer C, Tan K, Ulmer W, Wyler R. MicroCycle: An Integrated and Automated Platform to Accelerate Drug Discovery. J Med Chem 2024; 67:2118-2128. [PMID: 38270627 DOI: 10.1021/acs.jmedchem.3c02029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
We herein describe the development and application of a modular technology platform which incorporates recent advances in plate-based microscale chemistry, automated purification, in situ quantification, and robotic liquid handling to enable rapid access to high-quality chemical matter already formatted for assays. In using microscale chemistry and thus consuming minimal chemical matter, the platform is not only efficient but also follows green chemistry principles. By reorienting existing high-throughput assay technology, the platform can generate a full package of relevant data on each set of compounds in every learning cycle. The multiparameter exploration of chemical and property space is hereby driven by active learning models. The enhanced compound optimization process is generating knowledge for drug discovery projects in a time frame never before possible.
Collapse
Affiliation(s)
- Cara E Brocklehurst
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Eva Altmann
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Corentin Bon
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Holly Davis
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - David Dunstan
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Peter Ertl
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Carol Ginsburg-Moraff
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Jonathan Grob
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Daniel J Gosling
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Guillaume Lapointe
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Alexander N Marziale
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Heinrich Mues
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Marco Palmieri
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Sophie Racine
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Richard I Robinson
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Clayton Springer
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Kian Tan
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - William Ulmer
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - René Wyler
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| |
Collapse
|
11
|
Wang JY, Stevens JM, Kariofillis SK, Tom MJ, Golden DL, Li J, Tabora JE, Parasram M, Shields BJ, Primer DN, Hao B, Del Valle D, DiSomma S, Furman A, Zipp GG, Melnikov S, Paulson J, Doyle AG. Identifying general reaction conditions by bandit optimization. Nature 2024; 626:1025-1033. [PMID: 38418912 DOI: 10.1038/s41586-024-07021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
Reaction conditions that are generally applicable to a wide variety of substrates are highly desired, especially in the pharmaceutical and chemical industries1-6. Although many approaches are available to evaluate the general applicability of developed conditions, a universal approach to efficiently discover these conditions during optimizations is rare. Here we report the design, implementation and application of reinforcement learning bandit optimization models7-10 to identify generally applicable conditions by efficient condition sampling and evaluation of experimental feedback. Performance benchmarking on existing datasets statistically showed high accuracies for identifying general conditions, with up to 31% improvement over baselines that mimic state-of-the-art optimization approaches. A palladium-catalysed imidazole C-H arylation reaction, an aniline amide coupling reaction and a phenol alkylation reaction were investigated experimentally to evaluate use cases and functionalities of the bandit optimization model in practice. In all three cases, the reaction conditions that were most generally applicable yet not well studied for the respective reaction were identified after surveying less than 15% of the expert-designed reaction space.
Collapse
Affiliation(s)
- Jason Y Wang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Jason M Stevens
- Chemical Process Development, Bristol Myers Squibb, Summit, NJ, USA
| | - Stavros K Kariofillis
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Mai-Jan Tom
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Dung L Golden
- Chemical Process Development, Bristol Myers Squibb, Summit, NJ, USA
| | - Jun Li
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Jose E Tabora
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Marvin Parasram
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry, New York University, New York, NY, USA
| | - Benjamin J Shields
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Molecular Structure and Design, Bristol Myers Squibb, Cambridge, MA, USA
| | - David N Primer
- Chemical Process Development, Bristol Myers Squibb, Summit, NJ, USA
- Loxo Oncology at Lilly, Louisville, CO, USA
| | - Bo Hao
- Janssen Research and Development, Spring House, PA, USA
| | - David Del Valle
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Stacey DiSomma
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Ariel Furman
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - G Greg Zipp
- Discovery Synthesis, Bristol Myers Squibb, Princeton, NJ, USA
| | | | - James Paulson
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Abigail G Doyle
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Plesniak MP, Taylor EK, Eisele F, Kourra CMK, Michaelides IN, Oram A, Wernevik J, Valencia ZS, Rowbottom H, Mann N, Fredlund L, Pivnytska V, Novén A, Pirmoradian M, Lundbäck T, Storer RI, Pettersson M, De Donatis GM, Rehnström M. Rapid PROTAC Discovery Platform: Nanomole-Scale Array Synthesis and Direct Screening of Reaction Mixtures. ACS Med Chem Lett 2023; 14:1882-1890. [PMID: 38116431 PMCID: PMC10726452 DOI: 10.1021/acsmedchemlett.3c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/21/2023] Open
Abstract
Precise length, shape, and linker attachment points are all integral components to designing efficacious proteolysis targeting chimeras (PROTACs). Due to the synthetic complexity of these heterobifunctional degraders and the difficulty of computational modeling to aid PROTAC design, the exploration of structure-activity relationships remains mostly empirical, which requires a significant investment of time and resources. To facilitate rapid hit finding, we developed capabilities for PROTAC parallel synthesis and purification by harnessing an array of preformed E3-ligand-linker intermediates. In the next iteration of this approach, we developed a rapid, nanomole-scale PROTAC synthesis methodology using amide coupling that enables direct screening of nonpurified reaction mixtures in cell-based degradation assays, as well as logD and EPSA measurements. This approach greatly expands and accelerates PROTAC SAR exploration (5 days instead of several weeks) as well as avoids laborious and solvent-demanding purification of the reaction mixtures, thus making it an economical and more sustainable methodology for PROTAC hit finding.
Collapse
Affiliation(s)
- Mateusz P. Plesniak
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Emilia K. Taylor
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Frederik Eisele
- Mechanistic
& Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | | | - Iacovos N. Michaelides
- Fragment
Based Lead Generation, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K.
| | - Alice Oram
- iLAB,
Compound Synthesis & Management, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Johan Wernevik
- Mechanistic
& Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | | | - Hannah Rowbottom
- Mechanistic
& Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Nadia Mann
- Mechanistic
& Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Linda Fredlund
- Mechanistic
& Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Valentyna Pivnytska
- Mechanistic
& Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Anna Novén
- Mechanistic
& Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Mohammad Pirmoradian
- Mechanistic
& Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Thomas Lundbäck
- Mechanistic
& Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - R. Ian Storer
- Hit
Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K.
| | - Mariell Pettersson
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Gian M. De Donatis
- Cellular
Assay Development, Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K.
| | - Marie Rehnström
- Cell
Culture Sciences & Banking, Discovery Biology, Discovery Sciences,
R&D, AstraZeneca, Gothenburg 431 83, Sweden
| |
Collapse
|
13
|
Rayala R, Chaudhari P, Bunnell A, Roberts B, Chakrabarti D, Nefzi A. Parallel Synthesis of Piperazine Tethered Thiazole Compounds with Antiplasmodial Activity. Int J Mol Sci 2023; 24:17414. [PMID: 38139243 PMCID: PMC10743568 DOI: 10.3390/ijms242417414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Thiazole and piperazine are two important heterocyclic rings that play a prominent role in nature and have a broad range of applications in agricultural and medicinal chemistry. Herein, we report the parallel synthesis of a library of diverse piperazine-tethered thiazole compounds. The reaction of piperazine with newly generated 4-chloromethyl-2-amino thiazoles led to the desired piperazine thiazole compounds with high purities and good overall yields. Using a variety of commercially available carboxylic acids, the parallel synthesis of a variety of disubstituted 4-(piperazin-1-ylmethyl)thiazol-2-amine derivatives is described. the screening of the compounds led to the identification of antiplasmodial compounds that exhibited interesting antimalarial activity, primarily against the Plasmodium falciparum chloroquine-resistant Dd2 strain. The hit compound 2291-61 demonstrated an antiplasmodial EC50 of 102 nM in the chloroquine-resistant Dd2 strain and a selectivity of over 140.
Collapse
Affiliation(s)
- Ramanjaneyulu Rayala
- Herbert Wertheim College of Medicine, Center for Translational Science, Florida International University, Miami, FL 33199, USA; (R.R.); (P.C.); (A.B.)
| | - Prakash Chaudhari
- Herbert Wertheim College of Medicine, Center for Translational Science, Florida International University, Miami, FL 33199, USA; (R.R.); (P.C.); (A.B.)
| | - Ashley Bunnell
- Herbert Wertheim College of Medicine, Center for Translational Science, Florida International University, Miami, FL 33199, USA; (R.R.); (P.C.); (A.B.)
| | - Bracken Roberts
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA; (B.R.); (D.C.)
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA; (B.R.); (D.C.)
| | - Adel Nefzi
- Herbert Wertheim College of Medicine, Center for Translational Science, Florida International University, Miami, FL 33199, USA; (R.R.); (P.C.); (A.B.)
| |
Collapse
|
14
|
Stolar T, Alić J, Talajić G, Cindro N, Rubčić M, Molčanov K, Užarević K, Hernández JG. Supramolecular intermediates in thermo-mechanochemical direct amidations. Chem Commun (Camb) 2023; 59:13490-13493. [PMID: 37882212 DOI: 10.1039/d3cc04448c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
We present a solvent-free thermo-mechanochemical approach for the direct coupling of carboxylic acids and amines, which avoids activators and additives. Detailed analysis of the reactions by ex situ and in situ monitoring methods led to the observation, isolation, and characterisation of multicomponent crystalline intermediates that precede the formation of amides. We applied our methodology for the quantitative synthesis of the active pharmaceutical ingredient moclobemide.
Collapse
Affiliation(s)
- Tomislav Stolar
- Ruđer Bošković Institute, Bijenička c. 54, Zagreb 10000, Croatia.
| | - Jasna Alić
- Ruđer Bošković Institute, Bijenička c. 54, Zagreb 10000, Croatia.
| | - Gregor Talajić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb 10000, Croatia
| | - Nikola Cindro
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb 10000, Croatia
| | - Mirta Rubčić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb 10000, Croatia
| | | | | | - José G Hernández
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 050010, Colombia.
| |
Collapse
|
15
|
Lai EY, Yuan B, Ackermann L, Johansson MJ. Ruthenium-Catalyzed Aminocarbonylation with Isocyanates Through Weak Coordinating Groups. Chemistry 2023; 29:e202302023. [PMID: 37737512 DOI: 10.1002/chem.202302023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Indexed: 09/23/2023]
Abstract
Introducing amide functional groups under mild conditions has growing importance owing to the prevalence of such moiety in biologically active molecules. Herein, we disclose a mild protocol for the directed ruthenium-catalyzed C-H aminocarbonylation with isocyanates as the amidating agents developed through high-throughput experimentation (HTE). The redox-neutral and base-free reaction is guided by weakly Lewis basic functional groups, including anilides, lactams and carbamates to access anthranilamide derivatives. The synthetic utility of this transformation is reflected by large-scale synthesis and late-stage functionalization.
Collapse
Affiliation(s)
- Elisa Y Lai
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden1, 431 50, Mölndal, Sweden
- Institut für Organische und Biomolekulare Chemie and, Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Binbin Yuan
- Institut für Organische und Biomolekulare Chemie and, Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and, Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Potsdamer Strasse 58, 10785, Berlin, Germany
| | - Magnus J Johansson
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden1, 431 50, Mölndal, Sweden
- Department of Organic Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| |
Collapse
|
16
|
Rourke MJ, McGill MJ, Yang D, Farnam EJ, Zhu JL, Scheidt KA. Photoredox-Catalyzed Radical-Radical Coupling of Potassium Trifluoroborates with Acyl Azoliums. Synlett 2023; 34:2175-2180. [PMID: 38948905 PMCID: PMC11210951 DOI: 10.1055/s-0041-1738448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Potassium trifluoroborates have gained significant utility as coupling partners in organic synthesis, particularly in the Suzuki-Miyaura coupling reaction. Recently, they have also been used as radical precursors under oxidative conditions to generate carbon-centered radicals. These versatile reagents have found new applications in photoredox catalysis, including radical substitution, conjugate addition reactions, and transition metal dual catalysis. In addition, this photomediated redox neutral process has enabled radical-radical coupling with persistent radicals in the absence of a metal, and this process remains to be fully explored. In this study, we report the radical-radical coupling of benzylic potassium trifluoroborate salts with isolated acyl azolium triflates, which are persistent radical precursors. The reaction is catalyzed by an organic photocatalyst and forms isolable tertiary alcohol species. These compounds can be transformed into a range of substituted ketone products by simple treatment with a mild base.
Collapse
Affiliation(s)
- Michael J. Rourke
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| | - Matthew J. McGill
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| | - Daniel Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| | - Emelia J. Farnam
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| | - Joshua L. Zhu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| | - Karl A. Scheidt
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| |
Collapse
|
17
|
Chen SJ, He CQ, Kong M, Wang J, Lin S, Krska SW, Stahl SS. Accessing three-dimensional molecular diversity through benzylic C-H cross-coupling. NATURE SYNTHESIS 2023; 2:998-1008. [PMID: 38463240 PMCID: PMC10923599 DOI: 10.1038/s44160-023-00332-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 04/25/2023] [Indexed: 03/12/2024]
Abstract
Pharmaceutical and agrochemical discovery efforts rely on robust methods for chemical synthesis that rapidly access diverse molecules1,2. Cross-coupling reactions are the most widely used synthetic methods3, but these methods typically form bonds to C(sp2)-hybridized carbon atoms (e.g., amide coupling, biaryl coupling) and lead to a prevalence of "flat" molecular structures with suboptimal physicochemical and topological properties4. Benzylic C(sp3)-H cross-coupling methods offer an appealing strategy to address this limitation by directly forming bonds to C(sp3)-hybridized carbon atoms, and emerging methods exhibit synthetic versatility that rivals conventional cross-coupling methods to access products with drug-like properties. Here, we use a virtual library of >350,000 benzylic ethers and ureas derived from benzylic C-H cross-coupling to test the widely held view that coupling at C(sp3)-hybridized carbon atoms affords products with improved three-dimensionality. The results show that the conformational rigidity of the benzylic scaffold strongly influences the product dimensionality. Products derived from flexible scaffolds often exhibit little or no improvement in three-dimensionality, unless they adopt higher energy conformations. This outcome introduces an important consideration when designing routes to topologically diverse molecular libraries. The concepts elaborated herein are validated experimentally through an informatics-guided synthesis of selected targets and the use of high-throughput experimentation to prepare a library of three-dimensional products that are broadly distributed across drug-like chemical space.
Collapse
Affiliation(s)
- Si-Jie Chen
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI, USA
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Cyndi Qixin He
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - May Kong
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Jun Wang
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Shishi Lin
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Shane W. Krska
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI, USA
| |
Collapse
|
18
|
DeCicco EM, Berritt S, Knauber T, Coffey SB, Hou J, Dowling MS. Decarboxylative Cross-Electrophile Coupling of (Hetero)Aromatic Bromides and NHP Esters. J Org Chem 2023; 88:12329-12340. [PMID: 37609685 DOI: 10.1021/acs.joc.3c01072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Aryl bromides are known to be challenging substrates in the decarboxylative cross-electrophile coupling with redox-active NHP esters-the majority of such processes utilize aryl iodides. Herein, we describe the development of conditions that are suitable for the decarboxylative cross-electrophile coupling of NHP esters and a wide range of (hetero)aryl bromides. The key advances that allowed for the use of aryl bromides in this reaction are (1) the identification of ligand L3 as an optimal ligand for the use of electron-neutral and deficient aryl bromides and (2) the significant improvement in yield that iodide salts and excess heterogenous zinc impart to this reaction. A wide variety of NHP esters perform well under the optimized conditions, including methyl, primary, secondary, and several strained tertiary systems. Likewise, a variety of aromatic and heteroaromatic bromides relevant to medicinal chemistry perform well in this transformation, including an aryl bromide precursor to the known drug dapagliflozin.
Collapse
Affiliation(s)
- Ethan M DeCicco
- Medicine Design, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Simon Berritt
- Medicine Design, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Thomas Knauber
- Medicine Design, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Steven B Coffey
- Medicine Design, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jie Hou
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Matthew S Dowling
- Medicine Design, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
19
|
Taylor CJ, Pomberger A, Felton KC, Grainger R, Barecka M, Chamberlain TW, Bourne RA, Johnson CN, Lapkin AA. A Brief Introduction to Chemical Reaction Optimization. Chem Rev 2023; 123:3089-3126. [PMID: 36820880 PMCID: PMC10037254 DOI: 10.1021/acs.chemrev.2c00798] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 02/24/2023]
Abstract
From the start of a synthetic chemist's training, experiments are conducted based on recipes from textbooks and manuscripts that achieve clean reaction outcomes, allowing the scientist to develop practical skills and some chemical intuition. This procedure is often kept long into a researcher's career, as new recipes are developed based on similar reaction protocols, and intuition-guided deviations are conducted through learning from failed experiments. However, when attempting to understand chemical systems of interest, it has been shown that model-based, algorithm-based, and miniaturized high-throughput techniques outperform human chemical intuition and achieve reaction optimization in a much more time- and material-efficient manner; this is covered in detail in this paper. As many synthetic chemists are not exposed to these techniques in undergraduate teaching, this leads to a disproportionate number of scientists that wish to optimize their reactions but are unable to use these methodologies or are simply unaware of their existence. This review highlights the basics, and the cutting-edge, of modern chemical reaction optimization as well as its relation to process scale-up and can thereby serve as a reference for inspired scientists for each of these techniques, detailing several of their respective applications.
Collapse
Affiliation(s)
- Connor J. Taylor
- Astex
Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K.
- Innovation
Centre in Digital Molecular Technologies, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Alexander Pomberger
- Innovation
Centre in Digital Molecular Technologies, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Kobi C. Felton
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Rachel Grainger
- Astex
Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K.
| | - Magda Barecka
- Chemical
Engineering Department, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Chemistry
and Chemical Biology Department, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Cambridge
Centre for Advanced Research and Education in Singapore, 1 Create Way, 138602 Singapore
| | - Thomas W. Chamberlain
- Institute
of Process Research and Development, School of Chemistry and School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Richard A. Bourne
- Institute
of Process Research and Development, School of Chemistry and School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Alexei A. Lapkin
- Innovation
Centre in Digital Molecular Technologies, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
20
|
Alonso M, Cañellas S, Delgado F, Serrano M, Diéguez-Vázquez A, Gómez JE. Accelerated Synthesis of Bicyclo[1.1.1]pentylamines: A High-Throughput Approach. Org Lett 2023; 25:771-776. [PMID: 36724762 DOI: 10.1021/acs.orglett.2c04226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Strained bicyclic substructures such as bicyclo[1.1.1]pentylamines (BCPAs) are increasingly targeted in medicinal chemistry as arylamine bioisosteres. Here, we leverage high-throughput automated synthesis to rapidly develop library-amenable reaction conditions and maximize design space to expand access to BCPAs. This new protocol relies on a copper-mediated C-N coupling approach and uses accessible and bench-stable iodo-BCP building blocks. Its applicability has been exemplified by incorporating BCPs in drug-like compounds, providing straightforward access to a library of valuable aniline-like isosteres.
Collapse
Affiliation(s)
- Maialen Alonso
- Chemical Capabilities, Analytical & Purification, Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, E-45007 Toledo, Spain
| | - Santiago Cañellas
- Chemical Capabilities, Analytical & Purification, Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, E-45007 Toledo, Spain
| | - Francisca Delgado
- Chemical Capabilities, Analytical & Purification, Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, E-45007 Toledo, Spain
| | - Marta Serrano
- Chemical Capabilities, Analytical & Purification, Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, E-45007 Toledo, Spain
| | - Alejandro Diéguez-Vázquez
- Chemical Capabilities, Analytical & Purification, Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, E-45007 Toledo, Spain
| | - José Enrique Gómez
- Chemical Capabilities, Analytical & Purification, Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, E-45007 Toledo, Spain
| |
Collapse
|
21
|
Abdiaj I, Cañellas S, Dieguez A, Linares ML, Pijper B, Fontana A, Rodriguez R, Trabanco A, Palao E, Alcázar J. End-to-End Automated Synthesis of C(sp 3)-Enriched Drug-like Molecules via Negishi Coupling and Novel, Automated Liquid-Liquid Extraction. J Med Chem 2023; 66:716-732. [PMID: 36520521 PMCID: PMC9841985 DOI: 10.1021/acs.jmedchem.2c01646] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Indexed: 12/23/2022]
Abstract
Herein, we report an end-to-end process including synthesis, work-up, purification, and post-purification with minimal human intervention using Negishi coupling as a key transformation to increase Fsp3 in bioactive molecules. The main advantages of this protocol are twofold. First, the automated sequential generation of organozinc reagents from readily available alkyl halides offers a large diversity of alkyl groups to functionalize (hetero)aryl halide scaffolds via Pd-catalyzed Negishi coupling in continuous flow. Second, a fully automated liquid-liquid extraction has been developed and successfully applied for unattended operations. The workflow was completed with mass-triggered preparative high-performance liquid chromatography HPLC, providing an efficient production line of compounds with enriched sp3 character and better drug-like properties. The modular nature allows a smooth adaptation to a wide variety of synthetic methods and protocols and makes it applicable to any medchem laboratory.
Collapse
Affiliation(s)
- Irini Abdiaj
- Discovery Chemistry, Janssen Research
and Development, Janssen-Cilag, S.A., C/ Jarama 75, E-45007Toledo, Spain
| | - Santiago Cañellas
- Discovery Chemistry, Janssen Research
and Development, Janssen-Cilag, S.A., C/ Jarama 75, E-45007Toledo, Spain
| | - Alejandro Dieguez
- Discovery Chemistry, Janssen Research
and Development, Janssen-Cilag, S.A., C/ Jarama 75, E-45007Toledo, Spain
| | - Maria Lourdes Linares
- Discovery Chemistry, Janssen Research
and Development, Janssen-Cilag, S.A., C/ Jarama 75, E-45007Toledo, Spain
| | - Brenda Pijper
- Discovery Chemistry, Janssen Research
and Development, Janssen-Cilag, S.A., C/ Jarama 75, E-45007Toledo, Spain
| | - Alberto Fontana
- Discovery Chemistry, Janssen Research
and Development, Janssen-Cilag, S.A., C/ Jarama 75, E-45007Toledo, Spain
| | - Raquel Rodriguez
- Discovery Chemistry, Janssen Research
and Development, Janssen-Cilag, S.A., C/ Jarama 75, E-45007Toledo, Spain
| | - Andres Trabanco
- Discovery Chemistry, Janssen Research
and Development, Janssen-Cilag, S.A., C/ Jarama 75, E-45007Toledo, Spain
| | - Eduardo Palao
- Discovery Chemistry, Janssen Research
and Development, Janssen-Cilag, S.A., C/ Jarama 75, E-45007Toledo, Spain
| | - Jesus Alcázar
- Discovery Chemistry, Janssen Research
and Development, Janssen-Cilag, S.A., C/ Jarama 75, E-45007Toledo, Spain
| |
Collapse
|
22
|
Nie Q, Sun J, Fang X, He X, Xiong F, Zhang G, Li Y, Li Y. Antimony salt-promoted cyclization facilitating on-DNA syntheses of dihydroquinazolinone derivatives and its applications. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
23
|
Rago AJ, Vasilopoulos A, Dombrowski AW, Wang Y. Di(2-picolyl)amines as Modular and Robust Ligands for Nickel-Catalyzed C(sp 2)–C(sp 3) Cross-Electrophile Coupling. Org Lett 2022; 24:8487-8492. [DOI: 10.1021/acs.orglett.2c03346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Alexander J. Rago
- Advanced Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Aristidis Vasilopoulos
- Advanced Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Amanda W. Dombrowski
- Advanced Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ying Wang
- Advanced Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
24
|
M. Baldwin O, Conrad-Marut LH, Beutner GL, Vosburg DA. Facile Amide Bond Formation with TCFH-NMI in an Organic Laboratory Course. JOURNAL OF CHEMICAL EDUCATION 2022; 99:3747-3751. [PMID: 36398314 PMCID: PMC9661732 DOI: 10.1021/acs.jchemed.2c00760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/12/2022] [Indexed: 06/16/2023]
Abstract
A new undergraduate organic laboratory experiment has been developed for amide bond formation between biorenewable 2-furoic acid and either of two substituted piperazines to prepare medicinally relevant amide products using a procedure with industrial significance. The reactions proceeded smoothly under ambient conditions using the combination of N,N,N',N'-tetramethylchloroformamidinium hexafluorophosphate (TCFH) and N-methylimidazole (NMI) in a minimal volume of acetonitrile with a direct crystallization upon addition of water. Students successfully collected their product by filtration and then characterized it by NMR (1H, 13C, COSY, DEPT-135, HSQC), IR, MS, and melting point. Students also explored the reaction mechanism and compared green chemistry aspects of their procedure with literature routes. A virtual version of the experiment was adapted for remote instruction.
Collapse
Affiliation(s)
- Oliver
W. M. Baldwin
- Department
of Chemistry, Harvey Mudd College, 301 Platt Boulevard, Claremont, California 91711, United States
| | - Linden H. Conrad-Marut
- Department
of Chemistry, Harvey Mudd College, 301 Platt Boulevard, Claremont, California 91711, United States
| | - Gregory L. Beutner
- Chemical
and Synthetic Development, Bristol Myers
Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - David A. Vosburg
- Department
of Chemistry, Harvey Mudd College, 301 Platt Boulevard, Claremont, California 91711, United States
| |
Collapse
|
25
|
Bartoccini F, Retini M, Crinelli R, Menotta M, Fraternale A, Piersanti G. Dithiol Based on l-Cysteine and Cysteamine as a Disulfide-Reducing Agent. J Org Chem 2022; 87:10073-10079. [PMID: 35862282 PMCID: PMC9361291 DOI: 10.1021/acs.joc.2c01050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We report the synthesis, chemical properties, and disulfide
bond-reducing
performance of a dithiol called NACMEAA, conceived as a hybrid of
two biologically relevant thiols: cysteine and cysteamine. NACMEAA
is conveniently prepared from inexpensive l-cystine in an
efficient manner. As a nonvolatile, highly soluble, and neutral compound
at physiological pH with the first thiol pKa value of 8.0, NACMEAA is reactive and user-friendly. We also demonstrate
that NACMEAA reduces disulfide bonds in GSSG and lysozyme.
Collapse
Affiliation(s)
- Francesca Bartoccini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
| | - Michele Retini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
| | - Rita Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
| |
Collapse
|
26
|
Wang Y, Haight I, Gupta R, Vasudevan A. What is in Our Kit? An Analysis of Building Blocks Used in Medicinal Chemistry Parallel Libraries. J Med Chem 2021; 64:17115-17122. [PMID: 34807604 DOI: 10.1021/acs.jmedchem.1c01139] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Building blocks are the molecular foundations for drug molecule design. The building block is one of the determining factors of final compound qualities in any given medicinal chemistry campaign. Herein, we describe our analysis of the building blocks used in parallel library synthesis at AbbVie. The results gave insights into the synthetic tractability and accessibilities of building blocks used in medicinal chemistry. Furthermore, our analysis showed that opportunities still exist for the identification and future incorporation of underrepresented building blocks, even for commonly used reactions, to obtain intellectual and competitive advantages in drug discovery.
Collapse
Affiliation(s)
- Ying Wang
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Isabella Haight
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Rishi Gupta
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Anil Vasudevan
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|