1
|
Hou J, You B, Lv R, Zhang X, Shen J, Li J, Zuo X, Liu Q. Synthesis of 1,4-benzodioxepines via electrochemical oxyselenenylation of 2- O-tethered alkenyl phenylmethanol and diselenides. Org Biomol Chem 2024; 22:9036-9040. [PMID: 39440896 DOI: 10.1039/d4ob01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A highly efficient methodology has been developed for the synthesis of 1,4-benzodioxepines through electrochemical oxyselenenylation of 2-O-tethered alkenyl phenylmethanol and diselenides under external oxidant-free conditions at room temperature. Experimental evidence supports this transformation to occur via a radical mechanism.
Collapse
Affiliation(s)
- Junsheng Hou
- School of Pharmacy, Jiangsu Ocean University, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China.
| | - Bingxin You
- College of Medicine, Lishui University, Lishui, 323000, Zhejiang, China
| | - Ruiqi Lv
- School of Pharmacy, Jiangsu Ocean University, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China.
| | - Xinxin Zhang
- School of Pharmacy, Jiangsu Ocean University, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China.
| | - Jinyang Shen
- School of Pharmacy, Jiangsu Ocean University, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China.
| | - Jiaojiao Li
- School of Pharmacy, Jiangsu Ocean University, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China.
| | - Xi Zuo
- School of Pharmacy, Jiangsu Ocean University, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China.
| | - Qiang Liu
- School of Pharmacy, Jiangsu Ocean University, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China.
| |
Collapse
|
2
|
Raji Reddy C, Islam J, Nagendraprasad T, Ajaykumar U. Electrochemical selenylative ipso-annulation of N-benzylacrylamides to construct seleno-azaspiro[4.5]decadienones. Org Biomol Chem 2024. [PMID: 39011907 DOI: 10.1039/d4ob00805g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Herein, we present the electrochemical synthesis of selenylated azaspiro[4.5]decadienones through domino selenylation/ipso-annulation of N-benzylacrylamides with diselenides. The method showed a wide substrate scope under mild and external oxidant-free reaction conditions, involving the construction of C-Se and C-C bonds. Gram-scale synthesis and further functional group conversion of the product are also demonstrated.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Jannatul Islam
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Thallamapuram Nagendraprasad
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| | - Uprety Ajaykumar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
3
|
Zhou X, Wang J, Ma D, Shen Y, Zhao Y, Wu J. Electrochemical synthesis of phosphorylated azaspiro[4.5]di/trienones through dearomative spirocyclization. Chem Commun (Camb) 2024; 60:7351-7354. [PMID: 38916454 DOI: 10.1039/d4cc02638a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cp2Fe-mediated electrochemical synthesis of a diverse array of phosphorylated azaspiro[4.5]di/trienones has been developed, which demonstrated broad substrate scope and good diastereoselectivity. It represents the first example of electrochemical synthesis of phosphorylated azaspiro[4.5]di/trienones, circumventing the need for external oxidants and high temperatures. Moreover, a plausible mechanism including radical-initiated dearomative cyclization driven by ferrocenium cations has been provided, which was supported by the related mechanistic study.
Collapse
Affiliation(s)
- Xiaocong Zhou
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Jian Wang
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Dumei Ma
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yirui Shen
- School of Materials and Chemical Engineering, Ningbo University of Technology, 315211 Ningbo, Zhejiang, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
- College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, Fujian, China
| | - Ju Wu
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| |
Collapse
|
4
|
Naresh A, Keerthana HS, Mukherjee N, Chatterjee T. Electricity-driven, oxidative C-H selenylative and tellurylative annulation of N-(2-alkynyl)anilines: sustainable synthesis of 3-selanyl/tellanylquinolines. Chem Commun (Camb) 2024; 60:7057-7060. [PMID: 38899771 DOI: 10.1039/d4cc01780c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A metal- and oxidant-free, radical C-H selenylative and tellurylative annulation of N-(2-alkynyl)anilines with diorganyl dichalcogenides is developed under electrochemical conditions for the sustainable synthesis of valuable 3-selanyl/tellanylquinolines up to 92% yield at room temperature. The developed protocol required only electricity as the green reagent and offers high atom economy, broad substrate scope, and efficient scalability.
Collapse
Affiliation(s)
- Ainala Naresh
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad-500078, Telangana, India.
| | - H Sai Keerthana
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad-500078, Telangana, India.
| | - Nilanjana Mukherjee
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad-500078, Telangana, India.
| | - Tanmay Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad-500078, Telangana, India.
| |
Collapse
|
5
|
do Carmo Pinheiro R, Souza Marques L, Ten Kathen Jung J, Nogueira CW, Zeni G. Recent Progress in Synthetic and Biological Application of Diorganyl Diselenides. CHEM REC 2024; 24:e202400044. [PMID: 38976862 DOI: 10.1002/tcr.202400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/08/2024] [Indexed: 07/10/2024]
Abstract
Diorganyl diselenides have emerged as privileged structures because they are easy to prepare, have distinct reactivity, and have broad biological activity. They have also been used in the synthesis of natural products as an electrophile in the organoselenylation of aromatic systems and peptides, reductions of alkenes, and nucleophilic substitution. This review summarizes the advancements in methods for the transformations promoted by diorganyl diselenides in the main functions of organic chemistry. Parallel, it will also describe the main findings on pharmacology and toxicology of diorganyl diselenides, emphasizing anti-inflammatory, hypoglycemic, chemotherapeutic, and antimicrobial activities. Therefore, an examination detailing the reactivity and biological characteristics of diorganyl diselenides provides valuable insights for academic researchers and industrial professionals.
Collapse
Affiliation(s)
- Roberto do Carmo Pinheiro
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Luiza Souza Marques
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Juliano Ten Kathen Jung
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| |
Collapse
|
6
|
Reddy CR, Kolgave DH, Fatima S, Ramesh R. Carbonylative cyclization of biaryl enones with aldehydes and oxamic acids. Org Biomol Chem 2024; 22:4901-4911. [PMID: 38832447 DOI: 10.1039/d4ob00513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
An oxidative radical-promoted carbonylative cyclization strategy for the synthesis of phenanthren-9-(10H)-one frameworks from biaryl enones using aldehydes as the carbonyl radical sources is disclosed. The reaction proceeds through a sequential addition of a carbonyl radical to the olefin followed by cyclization with an aryl ring. The method is further extended to carbamoyl radicals generated from oxamic acids to access the corresponding phenanthrenones with amide functionalities.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Dattahari H Kolgave
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sana Fatima
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Remya Ramesh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
7
|
Jaiswal G, Pan SC. BBr 3-mediated dearomative spirocyclization of biaryl ynones: facile access to spiro[5.5]dienones. Org Biomol Chem 2024; 22:3602-3605. [PMID: 38629922 DOI: 10.1039/d4ob00274a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
This report covers boron tribromide (BBr3) mediated dearomative spirocyclization of biaryl ynones. The direct synthesis of spiro[5.5]dienones with a tri-substituted double bond is described for the first time in this paper. The scope of the reaction is broad and the spirocyclic products were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Gaurav Jaiswal
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, India.
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, India.
| |
Collapse
|
8
|
Zhou W, Li ZQ, Cheng C, Lu L, Yang R, Song XR, Luo MJ, Xiao Q. Electrochemical Arene Radical Cation Promoted Spirocyclization of Biaryl Ynones: Access to Alkoxylated Spiro[5,5]trienones. Org Lett 2023; 25:9158-9163. [PMID: 38101415 DOI: 10.1021/acs.orglett.3c03678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Herein, a novel electrochemical arene radical cation promoted dearomative spirocyclization of biaryl ynones with alcohols is described, providing a conceptually novel transformation mode for producing diverse alkoxylated spiro[5,5]trienones. The catalyst- and chemical-oxidant-free spirocyclization protocol features broad substrate scope and high functional group tolerance. Mechanistic studies reveal that the generation of arene radical cation via anodic single-electron oxidation is crucial, with sequential 6-endo-dig cyclization, dissociation of hemiketal, anodic oxidation, and nucleophilic attack of alcohols.
Collapse
Affiliation(s)
- Wei Zhou
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Zi-Qiong Li
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Chaozhihui Cheng
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Lin Lu
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Ruchun Yang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Xian-Rong Song
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Mu-Jia Luo
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| |
Collapse
|
9
|
Reddy CR, Srinivasu E, Subbarao M. Seleno/Thio-functionalized ipso-Annulation of N-Propiolyl-2-arylbenzimidazole to Construct Azaspiro[5,5]undecatrienones. J Org Chem 2023; 88:16485-16496. [PMID: 37943010 DOI: 10.1021/acs.joc.3c01991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Till date, the ipso-cyclization of propiolamides is limited to provide azaspiro[4,5]decatrienones. Herein, we present the first example of ipso-carbocyclization, leading to azaspiro[5,5]-undecatrienones from N-propiolyl-2-arylbenzimidazoles, involving both the radical-based and electrophilic reactions. This report establishes an access to a wide range of chalcogenated (SCN/SCF3/SePh) benzimidazo-fused azaspiro[5,5]undecatrienones in good yields.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ejjirotu Srinivasu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muppidi Subbarao
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Reddy CR, Ajaykumar U, Patil AD, Ramesh R. ipso-Cyclization of unactivated biaryl ynones leading to thio-functionalized spirocyclic enones. Org Biomol Chem 2023; 21:6379-6388. [PMID: 37492954 DOI: 10.1039/d3ob00974b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Ceric ammonium nitrate (CAN)-promoted oxidative ipso-cyclization of unactivated biaryl ynones with S-centered radicals (SCN/SCF3) to access spiro[5,5]trienones has been established. This approach displayed excellent regioselectivity towards spirocyclization and tolerated a variety of functional groups. Dearomatization of hitherto unknown aryl/heteroaryl groups is also disclosed. DMSO is employed as a low-toxicity, inexpensive solvent as well as a source of oxygen.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| | - Uprety Ajaykumar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| | - Amol D Patil
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| | - Remya Ramesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| |
Collapse
|
11
|
Roy B, Kuila P, Sarkar D. Visible Light Promoted Brominative Dearomatization of Biaryl Ynones to Spirocycles. J Org Chem 2023; 88:10925-10945. [PMID: 37459885 DOI: 10.1021/acs.joc.3c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Bromine induced spiro cyclization of biaryl ynones facilitated the synthesis of spiro[5,5]trienones suitable for extended functionality at the C(3') position. Herein, a step-economic photo-oxidative brominative carbannulation of biaryl ynones employing ammonium bromide and riboflavin tetraacetate (RFTA) has been developed. The reactivity between distal phenyl C-H activated ortho-annulation and dearomative ipso-annulation is well exemplified. The eminent features of the methodology include metal-free, external additive free, low-loading photocatalyst (0.1 mol %), and use of a simple precursor.
Collapse
Affiliation(s)
- Barnali Roy
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Puspendu Kuila
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Debayan Sarkar
- Organic Synthesis and Molecular Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
12
|
Tan P, Lu L, Wang S, Wang J, Chen J, Zhang Y, Xie L, Yang S, Chen J, Zhang Z. Photo- or Electrochemical Cyclization of Dienes with Diselenides to Access Seleno-Benzo[ b]azepines. J Org Chem 2023. [PMID: 37220067 DOI: 10.1021/acs.joc.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A cascade selenylation/cyclization of dienes with diselenides has been realized under visible-light irradiation or electrolysis conditions. Employing O2 or electricity as a "green" oxidant, this protocol provides a green and efficient method for an array of biologically important seleno-benzo[b]azepine derivatives in moderate to good yields. The direct sunlight irradiation and gram-scale reaction render the approach practical and attractive.
Collapse
Affiliation(s)
- Pengpeng Tan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Liwang Lu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Shilong Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Junxin Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Jiayang Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Yijia Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Lei Xie
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, P. R. China
| | - Shubin Yang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Jinchun Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Zhen Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| |
Collapse
|
13
|
Reddy CR, Ajaykumar U, Kolgave DH, Ramesh R. CAN-Promoted Thiolative ipso-Annulation of Unactivated N-Benzyl Acrylamides: Access to SCN/SCF 3/SO 2Ar Containing Azaspirocycles. J Org Chem 2023. [PMID: 37192481 DOI: 10.1021/acs.joc.3c00374] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A variety of acrylamides holding an unactivated N-benzyl group underwent dearomative ipso-cyclization induced by sulfur-centered radicals (SCN/ SCF3/ SO2Ar) in the presence of ceric ammonium nitrate (CAN) as the oxidant to furnish azaspirocycles in good yields. This is the first report on ipso-dearomatization of N-benzyl acrylamides that proceeds without a substituent at the para-position of the aromatic ring. The developed conditions are also found to be suitable for substrates holding substituents such as F, NO2, OMe, OH, and OAc at the para-position. The reaction features water as the source of oxygen, is compatible with a variety of functional groups, and proceeds in a short time.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Uprety Ajaykumar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Dattahari H Kolgave
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Remya Ramesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
14
|
Li Y, Li L, Guo C, Yan Q, Zhou H, Wang Y, Liu ZQ, Li Z. Nitro-Spirocyclization of Biaryl Ynones with tert-Butyl Nitrite: Access to NO 2-Substituted Spiro[5,5]trienones. J Org Chem 2023; 88:4854-4862. [PMID: 36947717 DOI: 10.1021/acs.joc.3c00087] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
A metal/peroxide-free involved simple cascade 6-exo-trig spirocyclization of tert-butyl nitrite with biaryl ynones has been finished, which resulted in various NO2-modified spiro[5,5]trienones with good regioselectivity/yields. A variety of scaled-up experiments, reduction/epoxidation operations, and mechanistic studies were performed to verify the merits and spirocyclization process of this radical system. Finally, the structure of the spirocycles was confirmed by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Lijun Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Changyou Guo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Qinqin Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Hongxun Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Ying Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
| | - Zejiang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| |
Collapse
|
15
|
Wei G, Zhang J, Wang H, Chen Z, Wu XF. Radical selenylative cyclization of trifluoromethyl propargyl imines for the synthesis of trifluoromethyl- and seleno-azaspiro[4,5]-tetraenones and quinolines. Org Biomol Chem 2023; 21:284-288. [PMID: 36484764 DOI: 10.1039/d2ob02033e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A radical selenylative cyclization of trifluoromethyl propargyl imines with diselenides for the regiodivergent construction of diversely functionalized azaspiro[4,5]-tetraenones and quinolines has been developed, which enables dual incorporation of CF3 and Se groups into heterocycles in a one-pot reaction. When using Oxone as a green oxidant, the reaction proceeds through oxidative dearomative ipso-annulation or intramolecular ortho-annulation exhibiting good regioselectivity. The synthetic utility of this method is demonstrated by a scale-up reaction and further modification of the obtained products.
Collapse
Affiliation(s)
- Guangming Wei
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Jiajun Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Haoyuan Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Zhengkai Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China. .,Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059 Rostock, Germany.
| |
Collapse
|
16
|
Zhang Y, Cai Z, Warratz S, Ma C, Ackermann L. Recent advances in electrooxidative radical transformations of alkynes. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractDuring the past few years, electrochemical oxidative reactions through radical intermediates have emerged as an environmentally-benign, powerful platform for the facile formation of C–E (E = C, N, S, Se, O and Hal) bonds through single-electron-transfer (SET) processes at the electrodes. Functionalized unsaturated molecules and unusual structural motifs can, for instance, be directly constructed under exceedingly mild reaction conditions through initial radical attack onto alkynes. This minireview highlights the recent advances in electrooxidation in radical reactions until June 2022, with a particular focus on radical additions onto alkynes.
Collapse
|
17
|
Raji Reddy C, Subbarao M, Kolgave DH, Ajaykumar U, Vinaya PP. Access to Diverse Seleno-spirocyclohexadienones via Ag(II)-Catalyzed Selenylative ipso-Annulation with Se and Boronic Acids. ACS OMEGA 2022; 7:38045-38052. [PMID: 36312410 PMCID: PMC9608386 DOI: 10.1021/acsomega.2c05394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/30/2022] [Indexed: 05/29/2023]
Abstract
An efficient and straightforward synthesis of diversified seleno-azaspiro-2,5-cyclohexadienones from N-(4-methoxy aryl)propiolamides using elemental selenium and boronic acids has been demonstrated. The reaction proceeds through silver-catalyzed oxidative dearomatization in the presence of potassium persulfate (K2S2O8) as the oxidant. Further, this approach was extended to N-(4-methoxy aryl)propiolates and biaryl ynones to access the corresponding selenylated oxospiro-2,5-cyclohexadienones and spiro[5,5]trienones, respectively. The present three-component method offers the diverse substitutions on selenium involving two C-Se and one C-C bond formations.
Collapse
|
18
|
Wang J, Lu XX, Yang RP, Xiang ZH, Zhang BB, Chao S, Liu L, Yan Y, Shang X. Synthesis of Spiro[5.5]trienones- and Spiro[4.5]trienones-Fused Selenocyanates via Electrophilic Selenocyanogen Cyclization and Dearomative Spirocyclization. J Org Chem 2022; 87:13089-13101. [PMID: 36170059 DOI: 10.1021/acs.joc.2c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A practical strategy for the synthesis of spiro[5.5]trienones-fused selenocyanates and spiro[4.5]trienones-fused selenocyanates through electrophilic selenocyanogen cyclization and dearomative spirocyclization is reported. This approach was conducted under mild conditions with broad substrate scope and good functional group tolerance. The utility of this procedure is exhibited in the late-stage functionalization of nature product and drug molecules.
Collapse
Affiliation(s)
- Jia Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xiao-Xiao Lu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Run-Ping Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Zhi-Hao Xiang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Bing-Bing Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Shujun Chao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Lixia Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yunhui Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xuefang Shang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| |
Collapse
|
19
|
Chen Z, Tang W, Yang S, Yang L. Electrochemical synthesis of 3-halogenated spiro [4,5]trienones based on dearomative spirocyclization strategy. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
20
|
Raji Reddy C, Kolgave DH, Ajaykumar U, Ramesh R. Copper(II)-catalyzed oxidative ipso-annulation of N-arylpropiolamides and biaryl ynones with 1,3-diketones: construction of diketoalkyl spiro-trienones. Org Biomol Chem 2022; 20:6879-6889. [PMID: 35972321 DOI: 10.1039/d2ob01282k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented copper-catalyzed ipso-annulation reaction of N-(p-methoxyaryl)propiolamides with 1,3-diketones has been developed, which enables the assembly of diketoalkylated spiro[4.5]trienones involving oxidative dearomatization in the presence of ammonium persulfate [(NH4)2S2O8] as the oxidant. This protocol was extended to biaryl ynones, efficiently affording the diketoalkylated spiro[5.5]trienones in good yields. The significance of the diketoalkyl functionality has been illustrated by further transformation into 3-pyrazoyl spiro-trienone, a structurally unique motif.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Dattahari H Kolgave
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Uprety Ajaykumar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Remya Ramesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
21
|
Raji Reddy C, Bhandari MC, Patil AD, Aila M, Donthiri RR. FeCl 3-mediated selenylative benzannulation of aryl alkynones to 3-selenyl β-naphthols. Org Biomol Chem 2022; 20:4765-4772. [PMID: 35616590 DOI: 10.1039/d2ob00321j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient selenylative cyclization of aryl-alkynones with diselenides in the presence of iron(III)chloride at room temperature to prepare 3-seleno-2-naphthols in good yields has been described. Furthermore, the resulting products were transformed into selenyl-naphthofuran and selenyl-1,2-naphthoquinone derivatives.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Mayur C Bhandari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Amol D Patil
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Mounika Aila
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Ramachandra Reddy Donthiri
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
| |
Collapse
|
22
|
Zhang Z, Wang S, Tan P, Gu X, Sun W, Liu C, Chen J, Li J, Sun K. K 2S 2O 8/I 2-Promoted Electrophilic Selenylative Cyclization To Access Seleno-Benzo[ b]azepines. Org Lett 2022; 24:2288-2293. [PMID: 35319211 DOI: 10.1021/acs.orglett.2c00387] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel and simple organoselenium-involved 7-membered cyclization to access diverse seleno-benzo[b]azepines has been developed. This protocol involves an electrophilic cyclization process and is accomplished under mild conditions. Discussion of the mechanism rationalizes the regioselectivity observed in transformation. The studies of further transformation of seleno-benzo[b]azepines and large-scale experiment reveal the promising utility of this methodology.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Shilong Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Pengpeng Tan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Xiaowen Gu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Wenjie Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Chang Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Jinchun Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Jiazhu Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Kai Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| |
Collapse
|
23
|
Chen F, Zheng Y, Yang H, Yang Q, Wu L, Zhou N. Iron‐Catalyzed Silylation and Spirocyclization of Biaryl‐Ynones: A Radical Cascade Process toward Silylated Spiro[5.5]trienones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fei Chen
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Yang Zheng
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Hao Yang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Qing‐Yun Yang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Lu‐Yan Wu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 People's Republic of China
| |
Collapse
|
24
|
Goulart HA, Bartz RH, Peglow TJ, Barcellos AM, Cervo R, Cargnelutti R, Jacob RG, Lenardão EJ, Perin G. Synthesis of Seleno-Dibenzocycloheptenones/Spiro[5.5]Trienones by Radical Cyclization of Biaryl Ynones. J Org Chem 2022; 87:4273-4283. [PMID: 35245049 DOI: 10.1021/acs.joc.1c03112] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report herein an alternative method for the synthesis of seleno-dibenzocycloheptenones and seleno-spiro[5.5]trienones through the radical cyclization of biaryl ynones in the presence of diorganyl diselenides, using Oxone as a green oxidizing agent. The reactions were conducted using acetonitrile as the solvent in a sealed tube at 100 °C. The protocol is operationally simple and scalable, exhibits high regioselectivity, and allows the synthesis of 24 dibenzocycloheptenones/spiro[5.5]trienones in yields of up to 99%, 17 of which are unpublished compounds. Additionally, synthetic transformations of the prepared compounds, such as oxidation and reduction reactions, are demonstrated.
Collapse
Affiliation(s)
- Helen A Goulart
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354-96010-900, Pelotas, RS, Brazil
| | - Ricardo H Bartz
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354-96010-900, Pelotas, RS, Brazil
| | - Thiago J Peglow
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354-96010-900, Pelotas, RS, Brazil
| | - Angelita M Barcellos
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354-96010-900, Pelotas, RS, Brazil
| | - Rodrigo Cervo
- Departamento de Química, CCNE, Universidade Federal de Santa Maria - UFSM, 97105-900, Santa Maria, RS, Brazil
| | - Roberta Cargnelutti
- Departamento de Química, CCNE, Universidade Federal de Santa Maria - UFSM, 97105-900, Santa Maria, RS, Brazil
| | - Raquel G Jacob
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354-96010-900, Pelotas, RS, Brazil
| | - Eder J Lenardão
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354-96010-900, Pelotas, RS, Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354-96010-900, Pelotas, RS, Brazil
| |
Collapse
|
25
|
Hou ZW, Li L, Wang L. Regio- and stereoselective electrochemical selenoalkylation of alkynes with 1,3-dicarbonyl compounds and diselenides. Org Chem Front 2022. [DOI: 10.1039/d2qo00320a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A regio- and stereoselective electrochemical approach for the selenoalkylation of alkynes with 1,3-dicarbonyl compounds and diselenides has been developed.
Collapse
Affiliation(s)
- Zhong-Wei Hou
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China
| | - Laiqiang Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
26
|
Li N, Shi Z, Yuan Y, Li Z, Ye KY. Rapid synthesis of spirodienones via electrochemical dearomative spirocyclization in flow. Org Chem Front 2022. [DOI: 10.1039/d2qo01392d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An electrochemical dearomative spirocyclization in flow has been developed, featuring the use of electrons as the clean oxidant in a minimum amount of electrolytes to afford diverse spirodienones in a short reaction time.
Collapse
Affiliation(s)
- Nan Li
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhaojiang Shi
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yaofeng Yuan
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Ke-Yin Ye
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
27
|
Li JN, Li ZJ, Shen LY, Li P, Zhang Y, Yang WC. Selective polychloromethylation and halogenation of alkynes with polyhaloalkanes. Org Biomol Chem 2022; 20:6659-6666. [DOI: 10.1039/d2ob01053d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We disclosed a selective polychloromethylation and halogenation reaction of alkynes via a radical addition/spirocyclization cascade sequence, in which applying polyhaloalkanes as the precursor of polyhalomethyl and halogen radical. Across this...
Collapse
|
28
|
Xia D, Shen LY, Zhang Y, Yang WC. Radical spirocyclization of biaryl ynones for the construction of NO 2-containing spiro[5.5]trienones. NEW J CHEM 2022. [DOI: 10.1039/d2nj03670c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An efficient 6-exo-trig radical cascade reaction of biaryl ynones with NaNO2 was developed to afford nitro-functionalized spiro[5.5]trienones with yields of up to 88%.
Collapse
Affiliation(s)
- Dong Xia
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, P. R. China
| | - Liu-Yu Shen
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Wen-Chao Yang
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou, 225009, P. R. China
| |
Collapse
|
29
|
Chen Z, Zheng X, Zhou SF, Cui X. Visible Light-Promoted Selenylative Spirocyclization of Biaryl Ynones toward the Formation of Selenated Spiro[5.5]trienones. Org Biomol Chem 2022; 20:5779-5783. [DOI: 10.1039/d2ob01006b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light induced dearomative cascade cyclization of biaryl ynones with diselenides under photocatalyst and external additive-free conditions has been explored, giving a series of selenated spiro[5.5]trienones in moderate to good...
Collapse
|