1
|
Zhang H, Sun C, Zhang X, Cheng X, Guo G, Geng W, Gong P, Zhang S, Chao M, Shen D. C-N cleavage of secondary amide to access primary amide by a Co(II)/Oxone oxidation system. Org Biomol Chem 2024; 22:8157-8162. [PMID: 39283052 DOI: 10.1039/d4ob00974f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Cleavage of the C-N bond of a secondary amide could provide alternative access to primary amides; however, this strategy remains challenging due to oxidation resistance of the amide. Herein, we employed the cobalt(II)/Oxone catalytic system, one of the advanced oxidation processes (AOPs), to make it available to break the strong C-N bond of various secondary (sulfon)amides, especially those bearing electron-poor or ortho-substituted N-arenes, en route to desirable primary (sulfon)amides. Control experiments showed that it was probably not the generally-considered persulfate anion radical in the cobalt/peroxymonosulfate (Co/PMS) system but the proposed high-valent cobalt-oxo intermediate that should be the major active species for the initial N-H oxidation of N-aryl amides. In the case of N-alkylated secondary amides, the α-C-H bond, rather than the N-H bond, should be oxidized first by both the reactive radicals and high-valent cobalt-oxo species. This work not only establishes an efficient method for removing the N-substituents of secondary amides at low cost, with readily available and eco-friendly reagents, but also demonstrates further synthetic application and provides more insight into intermediates for metal-based AOPs in environmental remediation.
Collapse
Affiliation(s)
- Haixing Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong Province, P. R. China.
| | - Chaoyue Sun
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong Province, P. R. China.
| | - Xuan Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong Province, P. R. China.
| | - Xuan Cheng
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong Province, P. R. China.
| | - Guiwen Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong Province, P. R. China.
| | - Wang Geng
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong Province, P. R. China.
| | - Peiwei Gong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong Province, P. R. China.
| | - Shumiao Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong Province, P. R. China.
| | - Mianran Chao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong Province, P. R. China.
| | - Duyi Shen
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong Province, P. R. China.
| |
Collapse
|
2
|
Bolt RRA, Smallman HR, Leitch JA, Bluck GW, Barreteau F, Iosub AV, Constable D, Dapremont O, Richardson P, Browne DL. Solvent Minimized Synthesis of Amides by Reactive Extrusion. Angew Chem Int Ed Engl 2024; 63:e202408315. [PMID: 39248684 DOI: 10.1002/anie.202408315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Indexed: 09/10/2024]
Abstract
Herein, we report on the translation of a small scale ball-milled amidation protocol into a large scale continuous reactive extrusion process. Critical components to the successful translation were: a) understanding how the different operating parameters of a twin-screw extruder should be harnessed to control prolonged continuous operation, and b) consideration of the physical form of the input materials. The amidation reaction is applied to 36 amides spanning a variety of physical form combinations (liquid-liquid, solid-liquid and solid-solid). Following this learning process, we have developed an understanding for the translation of each physical form combination and demonstrated a 7-hour reactive extrusion process for the synthesis of an amide on 500 gram scale (1.3 mols of product).
Collapse
Affiliation(s)
- Robert R A Bolt
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
| | - Harry R Smallman
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
| | - Jamie A Leitch
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
| | - Gavin W Bluck
- Syngenta Crop Protection AG, Schaffauserstrasse, 4332, Stein, Switzerland
| | - Fabien Barreteau
- Syngenta Crop Protection AG, Schaffauserstrasse, 4332, Stein, Switzerland
| | - Andrei V Iosub
- Syngenta Crop Protection AG, Schaffauserstrasse, 4332, Stein, Switzerland
| | - David Constable
- ACS, Green Chemistry Institute, retired (formally 1155 Sixteenth Street, NW, Washington, DC-20036, USA
| | | | - Paul Richardson
- Medicine Design, Pfizer, 10770 Science Center Drive, La Jolla, California, 92121
| | - Duncan L Browne
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
| |
Collapse
|
3
|
Sánchez JD, Gómez-Carpintero J, González JF, Menéndez JC. Twenty-first century antiepileptic drugs. An overview of their targets and synthetic approaches. Eur J Med Chem 2024; 272:116476. [PMID: 38759456 DOI: 10.1016/j.ejmech.2024.116476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
The therapeutic use of the traditional drugs against epilepsy has been hindered by their toxicity and low selectivity. These limitations have stimulated the design and development of new generations of antiepileptic drugs. This review explores the molecular targets and synthesis of the antiepileptic drugs that have entered the market in the 21st century, with a focus on manufacturer synthesis.
Collapse
Affiliation(s)
- J Domingo Sánchez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Jorge Gómez-Carpintero
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Juan F González
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
| |
Collapse
|
4
|
Lu J, Huang L, Liang H, Wang Z, Kato T, Liu Y, Maruoka K. Asymmetric Phase-Transfer Alkylation of Readily Available Aryl Aldehyde Schiff Bases of Amino Acid Ethyl Esters. Org Lett 2024; 26:4163-4167. [PMID: 38289671 DOI: 10.1021/acs.orglett.3c04290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Asymmetric phase-transfer alkylation of the N-(arylmethylene)-α-alkylamino acid ethyl esters and N-(arylmethylene)glycine ethyl esters was found to be catalyzed by the (R)- or (S)-Simplified Maruoka Catalyst with high efficiency and excellent enantioselectivity. This approach was successfully applied to the enantioselective formal synthesis of the angiotensin II type 2 receptor (AT2R) antagonists Olodanrigan and LX9211, and the practical aspect is demonstrated by the kilogram-scale synthesis of a key intermediate for the synthesis of LX9211.
Collapse
Affiliation(s)
- Jinying Lu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China
| | - Lei Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China
| | - Huatai Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhe Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China
| | - Terumasa Kato
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China
- Laboratory of Organocatalytic Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China
| | - Keiji Maruoka
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China
- Laboratory of Organocatalytic Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Tort R, Bagger A, Westhead O, Kondo Y, Khobnya A, Winiwarter A, Davies BJV, Walsh A, Katayama Y, Yamada Y, Ryan MP, Titirici MM, Stephens IEL. Searching for the Rules of Electrochemical Nitrogen Fixation. ACS Catal 2023; 13:14513-14522. [PMID: 38026818 PMCID: PMC10660346 DOI: 10.1021/acscatal.3c03951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Li-mediated ammonia synthesis is, thus far, the only electrochemical method for heterogeneous decentralized ammonia production. The unique selectivity of the solid electrode provides an alternative to one of the largest heterogeneous thermal catalytic processes. However, it is burdened with intrinsic energy losses, operating at a Li plating potential. In this work, we survey the periodic table to understand the fundamental features that make Li stand out. Through density functional theory calculations and experimentation on chemistries analogous to lithium (e.g., Na, Mg, Ca), we find that lithium is unique in several ways. It combines a stable nitride that readily decomposes to ammonia with an ideal solid electrolyte interphase, balancing reagents at the reactive interface. We propose descriptors based on simulated formation and binding energies of key intermediates and further on hard and soft acids and bases (HSAB principle) to generalize such features. The survey will help the community toward electrochemical systems beyond Li for nitrogen fixation.
Collapse
Affiliation(s)
- Romain Tort
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Alexander Bagger
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
- Department
of Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Olivia Westhead
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | - Yasuyuki Kondo
- Osaka
University, SANKEN (The Institute of Scientific and Industrial Research),
Mihogaoka, Osaka, Ibaraki 567-0047, Japan
| | - Artem Khobnya
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | - Anna Winiwarter
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | | | - Aron Walsh
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | - Yu Katayama
- Osaka
University, SANKEN (The Institute of Scientific and Industrial Research),
Mihogaoka, Osaka, Ibaraki 567-0047, Japan
| | - Yuki Yamada
- Osaka
University, SANKEN (The Institute of Scientific and Industrial Research),
Mihogaoka, Osaka, Ibaraki 567-0047, Japan
| | - Mary P. Ryan
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | | | | |
Collapse
|
6
|
Stolar T, Alić J, Talajić G, Cindro N, Rubčić M, Molčanov K, Užarević K, Hernández JG. Supramolecular intermediates in thermo-mechanochemical direct amidations. Chem Commun (Camb) 2023; 59:13490-13493. [PMID: 37882212 DOI: 10.1039/d3cc04448c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
We present a solvent-free thermo-mechanochemical approach for the direct coupling of carboxylic acids and amines, which avoids activators and additives. Detailed analysis of the reactions by ex situ and in situ monitoring methods led to the observation, isolation, and characterisation of multicomponent crystalline intermediates that precede the formation of amides. We applied our methodology for the quantitative synthesis of the active pharmaceutical ingredient moclobemide.
Collapse
Affiliation(s)
- Tomislav Stolar
- Ruđer Bošković Institute, Bijenička c. 54, Zagreb 10000, Croatia.
| | - Jasna Alić
- Ruđer Bošković Institute, Bijenička c. 54, Zagreb 10000, Croatia.
| | - Gregor Talajić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb 10000, Croatia
| | - Nikola Cindro
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb 10000, Croatia
| | - Mirta Rubčić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb 10000, Croatia
| | | | | | - José G Hernández
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 050010, Colombia.
| |
Collapse
|
7
|
Urbiña-Alvarez J, Rincón-Carvajal S, Gamba-Sánchez D. Ammonia surrogates in the synthesis of primary amines. Org Biomol Chem 2023; 21:7036-7051. [PMID: 37575051 DOI: 10.1039/d3ob01202f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Primary amines are derivatives of ammonia in which one hydrogen atom is replaced by an alkyl or aryl group. Ammonia serves as the primary nitrogen source in amination reactions, and its utilization in solution or as a pure gas has witnessed notable advancements. However, the use of gaseous ammonia remains problematic in academic laboratory settings, while employing aqueous ammonia poses challenges in highly water-sensitive transformations. Consequently, the search for alternative sources of ammonia has garnered considerable attention among the organic chemistry community. This comprehensive literature review focuses on the use of ammonia surrogates in amination reactions, irrespective of the resulting intermediate. The review emphasizes the formation of the C-N bond and underscores the importance of generating intermediate products that can be readily transformed into primary amines through well-established reactions.
Collapse
Affiliation(s)
- Julia Urbiña-Alvarez
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de Los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia.
| | - Sergio Rincón-Carvajal
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de Los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia.
| | - Diego Gamba-Sánchez
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de Los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia.
| |
Collapse
|
8
|
Salami SA, Safari JB, Smith VJ, Krause RWM. Mechanochemically-Assisted Passerini Reactions: A Practical and Convenient Method for the Synthesis of Novel α-Acyloxycarboxamide Derivatives. ChemistryOpen 2023; 12:e202200268. [PMID: 37198143 PMCID: PMC10191865 DOI: 10.1002/open.202200268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/04/2023] [Indexed: 05/19/2023] Open
Abstract
A carboxylic acid, an aldehyde, and an isonitrile were combined in a single step (Passerini reaction) under mechanochemical activation to produce several α-acyloxycarboxamide derivatives in high to excellent yields within 15 min of milling. Mechanochemistry, when combined with the diversity provided by multicomponent reactions, enables the efficient synthesis of the target compounds, with great atom economy, shorter reaction times, and experimental simplicity. The method allows for the rapid production of a vast library of complex compounds from a limited number of substrates.
Collapse
Affiliation(s)
- Sodeeq Aderotimi Salami
- Center for Chemico- and Biomedicinal Research (CCBR) Rhodes UniversityGrahamstown, Makhanda6139South Africa
| | - Justin Bazibuhe Safari
- Center for Chemico- and Biomedicinal Research (CCBR) Rhodes UniversityGrahamstown, Makhanda6139South Africa
| | - Vincent J. Smith
- Center for Chemico- and Biomedicinal Research (CCBR) Rhodes UniversityGrahamstown, Makhanda6139South Africa
| | - Rui W. M. Krause
- Center for Chemico- and Biomedicinal Research (CCBR) Rhodes UniversityGrahamstown, Makhanda6139South Africa
| |
Collapse
|
9
|
Salami SA, Smith VJ, Krause RWM. Water‐Assisted Passerini Reactions under Mechanochemical Activation: A Simple and Straightforward Access to Oxindole Derivatives. ChemistrySelect 2023. [DOI: 10.1002/slct.202204325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Vincent J. Smith
- Department of Chemistry Rhodes University Grahamstown, Makhanda 6139 South Africa
| | - Rui W. M. Krause
- Department of Chemistry Rhodes University Grahamstown, Makhanda 6139 South Africa
| |
Collapse
|
10
|
Sivaraj C, Gandhi T. Solvent-controlled amidation of acid chlorides at room temperature: new route to access aromatic primary amides and imides amenable for late-stage functionalization †. RSC Adv 2023; 13:9231-9236. [PMID: 36959886 PMCID: PMC10028618 DOI: 10.1039/d3ra00403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Herein, we report a solvent-controlled highly selective amidation and imidation of aroyl chlorides using an alkali-metal silyl-amide reagent (LiHMDS), which serves as a nitrogen source at room temperature. A unique feature of this method lies in the sequential silyl amidation of aryol chlorides and nitrogen–silicon bond cleavage of the corresponding N,N-bis(trimethylsilyl)benzamide in a one-pot method in a very short reaction time. This effective strategy was extended to late-stage functionalization. Herein, we report a solvent-controlled highly selective amidation and imidation of aroyl chlorides using an alkali-metal silyl-amide reagent (LiHMDS), which serves as a nitrogen source at room temperature.![]()
Collapse
Affiliation(s)
- Chandrasekaran Sivaraj
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of TechnologyVellore 632014Tamil NaduIndia
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of TechnologyVellore 632014Tamil NaduIndia
| |
Collapse
|
11
|
Haji Abbasi Somehsaraie M, Fathi Vavsari V, Kamangar M, Balalaie S. Chemical Wastes in the Peptide Synthesis Process and Ways to Reduce Them. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e123879. [PMID: 36942077 PMCID: PMC10024322 DOI: 10.5812/ijpr-123879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022]
Abstract
In recent decades, a growing interest has been observed among pharmaceutical companies in producing and selling 80 FDA-approved therapeutic peptides. However, there are many drawbacks to peptide synthesis at the academic and industrial scales, involving the use of large amounts of highly hazardous coupling reagents and solvents. This review focuses on hideous and observant wastes produced before, during, and after peptide synthesis and proposes some solutions to reduce them.
Collapse
Affiliation(s)
| | - Vaezeh Fathi Vavsari
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran
| | - Mohammad Kamangar
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran
- Corresponding Author: Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran.
| |
Collapse
|
12
|
Casti F, Mocci R, Porcheddu A. From amines to (form)amides: a simple and successful mechanochemical approach. Beilstein J Org Chem 2022; 18:1210-1216. [PMID: 36158174 PMCID: PMC9490066 DOI: 10.3762/bjoc.18.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/01/2022] [Indexed: 01/01/2023] Open
Abstract
Two easily accessible routes for preparing an array of formylated and acetylated amines under mechanochemical conditions are presented. The two methodologies exhibit complementary features as they enable the derivatization of aliphatic and aromatic amines.
Collapse
Affiliation(s)
- Federico Casti
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Cagliari, Italy
| | - Rita Mocci
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Cagliari, Italy
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Cagliari, Italy
| |
Collapse
|
13
|
Cuccu F, De Luca L, Delogu F, Colacino E, Solin N, Mocci R, Porcheddu A. Mechanochemistry: New Tools to Navigate the Uncharted Territory of "Impossible" Reactions. CHEMSUSCHEM 2022; 15:e202200362. [PMID: 35867602 PMCID: PMC9542358 DOI: 10.1002/cssc.202200362] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/01/2022] [Indexed: 05/10/2023]
Abstract
Mechanochemical transformations have made chemists enter unknown territories, forcing a different chemistry perspective. While questioning or revisiting familiar concepts belonging to solution chemistry, mechanochemistry has broken new ground, especially in the panorama of organic synthesis. Not only does it foster new "thinking outside the box", but it also has opened new reaction paths, allowing to overcome the weaknesses of traditional chemistry exactly where the use of well-established solution-based methodologies rules out progress. In this Review, the reader is introduced to an intriguing research subject not yet fully explored and waiting for improved understanding. Indeed, the study is mainly focused on organic transformations that, although impossible in solution, become possible under mechanochemical processing conditions, simultaneously entailing innovation and expanding the chemical space.
Collapse
Affiliation(s)
- Federico Cuccu
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| | - Lidia De Luca
- Dipartimento di Chimica e FarmaciaUniversità degli Studi di Sassarivia Vienna 207100SassariItaly
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica e dei MaterialiUniversità degli Studi di CagliariVia Marengo 209123CagliariItaly
| | | | - Niclas Solin
- Department of PhysicsChemistry and Biology (IFM)Electronic and Photonic Materials (EFM)Building Fysikhuset, Room M319, CampusVallaSweden
| | - Rita Mocci
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| |
Collapse
|
14
|
Alfano AI, Lange H, Brindisi M. Amide Bonds Meet Flow Chemistry: A Journey into Methodologies and Sustainable Evolution. CHEMSUSCHEM 2022; 15:e202102708. [PMID: 35015338 PMCID: PMC9304223 DOI: 10.1002/cssc.202102708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Indexed: 06/03/2023]
Abstract
Formation of amide bonds is of immanent importance in organic and synthetic medicinal chemistry. Its presence in "traditional" small-molecule active pharmaceutical ingredients, in linear or cyclic oligo- and polypeptidic actives, including pseudopeptides, has led to the development of dedicated synthetic approaches for the formation of amide bonds starting from, if necessary, suitably protected amino acids. While the use of solid supported reagents is common in traditional peptide synthesis, similar approaches targeting amide bond formation in continuous-flow mode took off more significantly, after a first publication in 2006, only a couple of years ago. Most efforts rely upon the transition of traditional approaches in flow mode, or the combination of solid-phase peptide synthesis principles with flow chemistry, and advantages are mainly seen in improving space-time yields. This Review summarizes and compares the various approaches in terms of basic amide formation, peptide synthesis, and pseudopeptide generation, describing the technological approaches and the advantages that were generated by the specific flow approaches. A final discussion highlights potential future needs and perspectives in terms of greener and more sustainable syntheses.
Collapse
Affiliation(s)
- Antonella Ilenia Alfano
- SPOTS-Lab – Sustainable Pharmaceutical and Organic Technology and Synthesis LaboratoryUniversity of Naples ‘Federico II', Department of PharmacyVia Domenico Montesano 4980131NaplesItaly
| | - Heiko Lange
- University of Milano-Bicocca Department of Earth and Environmental SciencesPiazza della Scienza 120126MilanItaly
| | - Margherita Brindisi
- SPOTS-Lab – Sustainable Pharmaceutical and Organic Technology and Synthesis LaboratoryUniversity of Naples ‘Federico II', Department of PharmacyVia Domenico Montesano 4980131NaplesItaly
| |
Collapse
|
15
|
Bento O, Luttringer F, El Dine TM, Pétry N, Bantreil X, Lamaty F. Sustainable Mechanosynthesis of Biologically Active Molecules. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101516] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ophélie Bento
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | | | | | - Nicolas Pétry
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | - Xavier Bantreil
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | - Frédéric Lamaty
- IBMM: Institut des Biomolecules Max Mousseron Chemistry 1919 Rte de Mende 34293 Montpellier FRANCE
| |
Collapse
|
16
|
Procopio D, Siciliano C, Trombino S, Dumitrescu DE, Suciu F, Di Gioia ML. Green solvents for the formation of amide linkages. Org Biomol Chem 2021; 20:1137-1149. [PMID: 34821895 DOI: 10.1039/d1ob01814k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The formation of the amide bond is among the most commonly performed transformations in the pharmaceutical industry and the wider chemical industry. The current methods for its installation in organic compounds frequently rely on the use of large amounts of organic solvents, mainly N,N-dimethylformamide (DMF), N-methylpyrrolidone (NMP), and dichloromethane (DCM), which have been associated with adverse environmental and health concerns over the last decades. This fact led academia and industry to make significant efforts toward the development of synthetic routes with the aim to avoid, reduce or replace the use of hazardous solvents. The present review fits into this framework and discusses the literature existing over the past ten years on strategies for reducing and replacing hazardous solvents, focusing on the use of biobased and neoteric solvents, such as ionic liquids and deep eutectic solvents (ILs and DESs, respectively), and on the reaction media that proved to be greener alternatives for amide bond formation.
Collapse
Affiliation(s)
- Debora Procopio
- Department of Pharmacy and Health and Nutrition Sciences, Department of Excellence L. 232/2016, Edificio Polifunzionale, Università della Calabria, 87036, Rende, CS, Italy.
| | - Carlo Siciliano
- Department of Pharmacy and Health and Nutrition Sciences, Department of Excellence L. 232/2016, Edificio Polifunzionale, Università della Calabria, 87036, Rende, CS, Italy.
| | - Sonia Trombino
- Department of Pharmacy and Health and Nutrition Sciences, Department of Excellence L. 232/2016, Edificio Polifunzionale, Università della Calabria, 87036, Rende, CS, Italy.
| | - Denisa Elena Dumitrescu
- Faculty of Pharmacy, Ovidius, University Constanta, Str. Cpt. Av. Al. Serbanescu, Campus Corp C, Constanta, Romania
| | - Felicia Suciu
- Faculty of Pharmacy, Ovidius, University Constanta, Str. Cpt. Av. Al. Serbanescu, Campus Corp C, Constanta, Romania
| | - Maria Luisa Di Gioia
- Department of Pharmacy and Health and Nutrition Sciences, Department of Excellence L. 232/2016, Edificio Polifunzionale, Università della Calabria, 87036, Rende, CS, Italy.
| |
Collapse
|