1
|
Li Y, Zhao C, Wang Z, Zeng Y. Halogen Bond Catalysis: A Physical Chemistry Perspective. J Phys Chem A 2024; 128:507-527. [PMID: 38214658 DOI: 10.1021/acs.jpca.3c06363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
As important noncovalent interactions, halogen bonds have been widely used in material science, supramolecular chemistry, medicinal chemistry, organocatalysis, and other fields. In the past 15 years, halogen bond catalysis has become a developed field in organocatalysis for the catalysts' advantages of being environmentally friendly, inexpensive, and recyclable. Halogen bonds can induce various organic reactions, and halogen bond catalysis has become a powerful alternative to the fully explored hydrogen bond catalysis. From a physical chemistry view, this perspective provides an overview of the latest progress and key examples of halogen bond catalysis via activation of the lone pair systems of organic functional group, π systems, and metal complexes. The research progresses in halogen bond catalysis by our group were also introduced.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Chang Zhao
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhuo Wang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
2
|
Il'in MV, Polonnikov DA, Novikov AS, Sysoeva AA, Safinskaya YV, Bolotin DS. Influence of Coordination to Silver(I) Centers on the Activity of Heterocyclic Iodonium Salts Serving as Halogen-Bond-Donating Catalysts. Chempluschem 2023; 88:e202300304. [PMID: 37675949 DOI: 10.1002/cplu.202300304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/08/2023]
Abstract
Kinetic data based on 1 H NMR monitoring and computational studies indicate that in solution, pyrazole-containing iodonium triflates and silver(I) triflate bind to each other, and such an interplay results in the decrease of the total catalytic activity of the mixture of these Lewis acids compared to the separate catalysis of the Schiff condensation, the imine-isocyanide coupling, or the nucleophilic attack on a triple carbon-carbon bond. Moreover, the kinetic data indicate that such a cooperation with the silver(I) triflate results in prevention of decomposition of the iodonium salts during the reaction progress. XRD study confirms that the pyrazole-containing iodonium triflate coordinates to the silver(I) center via the pyrazole N atom to produce a rare example of a pentacoordinated trigonal bipyramidal dinuclear silver(I) complex featuring cationic ligands.
Collapse
Affiliation(s)
- Mikhail V Il'in
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russia
| | - Denis A Polonnikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russia
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russia
- Research Institute of Chemistry, Рeoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russia
| | - Alexandra A Sysoeva
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russia
| | - Yana V Safinskaya
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russia
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russia
| |
Collapse
|
3
|
Novikov AS, Bolotin DS. Xenon Derivatives as Aerogen Bond-Donating Catalysts for Organic Transformations: A Theoretical Study on the Metaphorical "Spherical Cow in a Vacuum" Provides Insights into Noncovalent Organocatalysis. J Org Chem 2023; 88:1936-1944. [PMID: 35679603 DOI: 10.1021/acs.joc.2c00680] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Computations indicate that cationic and noncharged xenon derivatives should exhibit higher catalytic activity than their iodine-based noncovalent organocatalytic congeners. Perfluorophenyl xenonium(II) is expected to demonstrate the best balance between catalytic activity and chemical stability for use in organocatalysis. Comparing its catalytic activity with that of isoelectronic perfluoroiodobenzene indicates that the high catalytic activity of cationic noncovalent organocatalysts is predominantly attributed to the electrostatic interactions with the reaction substrates, which cause the polarization of ligated species during the reaction progress. In contrast, the electron transfer and covalent contributions to the bonding between the catalyst and substrate have negligible effects. The dominant effect of electrostatic interactions results in a strong negative correlation between the calculated Gibbs free energies of activation for the modeled reactions and the highest potentials of the σ-holes on the central atoms of the catalysts. No such correlation is observed for noncharged catalysts.
Collapse
Affiliation(s)
- Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation.,Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| |
Collapse
|
4
|
Non-Covalent Catalysts. Catalysts 2023. [DOI: 10.3390/catal13020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The elementary stages of chemical reactions (including catalytic ones) are caused by such weak inter- and intramolecular contacts as hydrogen, halogen, chalcogen, and tetrel bonds as well as stacking (and other π-system-involved) interactions [...]
Collapse
|
5
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
6
|
Robidas R, Reinhard DL, Huber SM, Legault CY. A Quantum-chemical Analysis on the Lewis Acidity of Diarylhalonium Ions. Chemphyschem 2023; 24:e202200634. [PMID: 36043491 PMCID: PMC10092059 DOI: 10.1002/cphc.202200634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 08/30/2022] [Indexed: 01/07/2023]
Abstract
Cyclic diaryliodonium compounds like iodolium derivatives have increasingly found use as noncovalent Lewis acids in the last years. They are more stable toward nucleophilic substitution than acyclic systems and are markedly more Lewis acidic. Herein, this higher Lewis acidity is analyzed and explained via quantum-chemical calculations and energy decomposition analyses. Its key origin is the change in energy levels and hybridization of iodine's orbitals, leading to both more favorable electrostatic interaction and better charge transfer. Both of the latter seem to contribute in similar fashion, while hydrogen bonding as well as steric repulsion with the phenyl rings play at best a minor role. In comparison to iodolium, bromolium and chlorolium are less Lewis acidic the lighter the halogen, which is predominantly based on less favorable charge-transfer interactions.
Collapse
Affiliation(s)
- Raphaël Robidas
- Department of Chemistry, Université de Sherbrooke, Centre in Green Chemistry and Catalysis, J1K 2R1, Sherbrooke, Québec, Canada
| | - Dominik L Reinhard
- Fakultät für Chemie und Biochemie, Organische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Stefan M Huber
- Fakultät für Chemie und Biochemie, Organische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Claude Y Legault
- Department of Chemistry, Université de Sherbrooke, Centre in Green Chemistry and Catalysis, J1K 2R1, Sherbrooke, Québec, Canada
| |
Collapse
|
7
|
Yoshida Y, Ao T, Mino T, Sakamoto M. Chiral Bromonium Salt (Hypervalent Bromine(III)) with N-Nitrosamine as a Halogen-Bonding Bifunctional Catalyst. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010384. [PMID: 36615579 PMCID: PMC9822295 DOI: 10.3390/molecules28010384] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
There has been a great focus on halogen-bonding as a unique interaction between electron-deficient halogen atoms with Lewis basic moieties. Although the application of halogen-bonded atoms in organic chemistry has been eagerly researched in these decades, the development of chiral molecules with halogen-bonding functionalities and their utilization in asymmetric catalysis are still in the\ir infancy. We have previously developed chiral halonium salts with amide functionalities, which behaved as excellent catalysts albeit in only two reactions due to the lack of substrate activation abilities. In this manuscript, we have developed chiral halonium salts with an N-nitrosamine moiety and applied them to the Mannich reaction of isatin-derived ketimines with malonic esters. The study focused on our novel bromonium salt catalyst which provided the corresponding products in high yields with up to 80% ee. DFT calculations of the chiral catalyst structure suggested that the high asymmetric induction abilities of this catalyst are due to the Lewis basic role of the N-nitrosamine part. To the best of our knowledge, this is the first catalytic application of N-nitrosamines.
Collapse
|
8
|
Green and efficient one-pot three-component synthesis of novel drug-like furo[2,3–d]pyrimidines as potential active site inhibitors and putative allosteric hotspots modulators of both SARS-CoV-2 MPro and PLPro. Bioorg Chem 2023; 135:106390. [PMID: 37037129 PMCID: PMC9883075 DOI: 10.1016/j.bioorg.2023.106390] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/29/2023]
Abstract
In this paper, an environmentally benign, convenient, and efficient one-pot three-component reaction has been developed for the regioselective synthesis of novel 5-aroyl(or heteroaroyl)-6-(alkylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1H,3H)-diones (4a‒n) through the sequential condensation of aryl(or heteroaryl)glyoxal monohydrates (1a‒g), 1,3-dimethylbarbituric acid (2), and alkyl(viz. cyclohexyl or tert-butyl)isocyanides (3a or 3b) catalyzed by ultra-low loading ZrOCl2•8H2O (just 2 mol%) in water at 50 ˚C. After synthesis and characterization of the mentioned furo[2,3-d]pyrimidines (4a‒n), their multi-targeting inhibitory properties were investigated against the active site and putative allosteric hotspots of both SARS-CoV-2 main protease (MPro) and papain-like protease (PLPro) based on molecular docking studies and compare the attained results with various medicinal compounds which approximately in three past years were used, introduced, and or repurposed to fight against COVID-19. Furthermore, drug-likeness properties of the mentioned small heterocyclic frameworks (4a‒n) have been explored using in silico ADMET analyses. Interestingly, the molecular docking studies and ADMET-related data revealed that the novel series of furo[2,3-d]pyrimidines (4a‒n), especially 5-(3,4-methylendioxybenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1H,3H)-dione (4g) as hit one is potential COVID-19 drug candidate, can subject to further in vitro and in vivo studies. It is worthwhile to note that the protein-ligand-type molecular docking studies on the human body temperature-dependent MPro protein that surprisingly contains zincII (ZnII) ion between His41/Cys145 catalytic dyad in the active site, which undoubtedly can make new plans for designing novel SARS-CoV-2 MPro inhibitors, is performed for the first time in this paper, to the best of our knowledge.
Collapse
|
9
|
Baykov SV, Ivanov DM, Kasatkina SO, Galmés B, Frontera A, Resnati G, Kukushkin VY. Stacking Interactions: A Supramolecular Approach to Upgrade Weak Halogen Bond Donors. Chemistry 2022; 28:e202201869. [PMID: 36178324 PMCID: PMC10099561 DOI: 10.1002/chem.202201869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Indexed: 11/10/2022]
Abstract
The co-crystallization of tetracyanobenzene (TCB) with haloarenes ArX provided six new co-crystals TCB ⋅ ArX (ArX=PhCl, PhBr, 4-MeC6 H4 Cl, 4-MeC6 H4 Br, 4-MeOC6 H4 Cl, 1,2-Br2 C6 H4 ) which were studied by X-ray diffraction. In these systems, the strong collective effect of π⋅⋅⋅π stacking interactions and lone pair-(X)⋅⋅⋅π-hole-(C) bondings between TCB and ArX promote the strength of X⋅⋅⋅Ncyano halogen bonding (HaB). Theoretical studies showed that the stacking interactions affect the σ-hole depth of the haloarenes, thus significantly boosting their ability to function as HaB donors. According to the molecular electrostatic potential calculations, the σ- hole-(Cl) value (1.5 kcal/mol) in the haloarene 4-MeOC6 H4 Cl (featuring an electron-rich arene moiety and exhibiting very poor σ-hole-(Cl) ability) increases significantly in the stacked trimer (TCB)2 ⋅ 4-MeOC6 H4 Cl (12.5 kcal/mol). Theoretical DFT calculations demonstrate the dramatic increase of X⋅⋅⋅Ncyano HaB strength for stacked trimers in comparison with parent unstacked haloarenes.
Collapse
Affiliation(s)
- Sergey V. Baykov
- Institute of ChemistrySaint Petersburg State University7/9 Universitetskaya Nab.Saint Petersburg199034Russian Federation
- Research School of Chemistry and Applied Biomedical SciencesTomsk Polytechnic UniversityTomsk634034Russian Federation
| | - Daniil M. Ivanov
- Institute of ChemistrySaint Petersburg State University7/9 Universitetskaya Nab.Saint Petersburg199034Russian Federation
- Research School of Chemistry and Applied Biomedical SciencesTomsk Polytechnic UniversityTomsk634034Russian Federation
| | - Svetlana O. Kasatkina
- Institute of ChemistrySaint Petersburg State University7/9 Universitetskaya Nab.Saint Petersburg199034Russian Federation
| | - Bartomeu Galmés
- Departament de QuímicaUniversitat de les Illes BalearsCrta de Valldemossa km 7.507122Palma de Mallorca, BalearesSpain
| | - Antonio Frontera
- Departament de QuímicaUniversitat de les Illes BalearsCrta de Valldemossa km 7.507122Palma de Mallorca, BalearesSpain
| | - Giuseppe Resnati
- Research School of Chemistry and Applied Biomedical SciencesTomsk Polytechnic UniversityTomsk634034Russian Federation
- NFMLabDepartment of Chemistry, Materials, Chemical Engineering“Giulio Natta Politecnico di Milano”via Mancinelli 7I-20131MilanoItaly
| | - Vadim Y. Kukushkin
- Institute of ChemistrySaint Petersburg State University7/9 Universitetskaya Nab.Saint Petersburg199034Russian Federation
| |
Collapse
|
10
|
Novikov AS, Bolotin DS. Halonium, chalconium, and pnictonium salts as noncovalent organocatalysts: a computational study on relative catalytic activity. Org Biomol Chem 2022; 20:7632-7639. [PMID: 36111866 DOI: 10.1039/d2ob01415g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This theoretical study sheds light on the relative catalytic activity of pnictonium, chalconium, and halonium salts in reactions involving elimination of chloride and electrophilic activation of a carbonyl group. DFT calculations indicate that for cationic aromatic onium salts, values of the electrostatic potential on heteroatom σ-holes gradually increase from pnictogen- to halogen-containing species. The higher values of the potential on the halogen atoms of halonium salts result in the overall higher catalytic activity of these species, but in the case of pnictonium and chalconium cations, weak interactions from the side groups provide an additional stabilization effect on the reaction transition states. Based upon quantum-chemical calculations, the catalytic activity of phosphonium(V) and arsenonium(V) salts is expected to be too low to obtain effective noncovalent organocatalytic compounds, whereas stibonium(V), telluronium(IV) and iodonium(III) salts exhibit higher potential in application as noncovalent organocatalysts.
Collapse
Affiliation(s)
- Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation. .,Infochemistry Scientific Center, ITMO University, Kronverksky Pr. 49, Bldg. A, Saint Petersburg, 197101, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| |
Collapse
|
11
|
Oh YH, Kim DW, Lee S. Ionic Liquids as Organocatalysts for Nucleophilic Fluorination: Concepts and Perspectives. Molecules 2022; 27:5702. [PMID: 36080470 PMCID: PMC9457570 DOI: 10.3390/molecules27175702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Besides their extremely useful properties as solvent, ionic liquids (ILs) are now considered to be highly instructive tools for enhancing the rates of chemical reactions. The ionic nature of the IL anion and cation seems to be the origin of this fascinating function of ILs as organocatalyst/promoter through their strong Coulombic forces on other ionic species in the reaction and also through the formation of hydrogen bonds with various functional groups in substrates. It is now possible to tailor-make ILs for specific purposes as solvent/promoters in a variety of situations by carefully monitoring these interactions. Despite the enormous potentiality, it seems that the application of ILs as organocatalysts/promoters for chemical reactions have not been fully achieved so far. Herein, we review recent developments of ILs for promoting the nucleophilic reactions, focusing on fluorination. Various aspects of the processes, such as organocatalytic capability, reaction mechanisms and salt effects, are discussed.
Collapse
Affiliation(s)
- Young-Ho Oh
- Department of Applied Chemistry, Kyung Hee University, Duckyoung-daero 1732, Yongin City 446-701, Korea
| | - Dong Wook Kim
- Department of Chemistry, Inha University, 100 Inha-ro, Nam-gu, Incheon 402-751, Korea
| | - Sungyul Lee
- Department of Applied Chemistry, Kyung Hee University, Duckyoung-daero 1732, Yongin City 446-701, Korea
| |
Collapse
|
12
|
Denisov MS, Beloglazova YА, Glushkov VА. Microwave synthesis of triterpenoid-annulated imidazo[1,2-a]pyridines. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
13
|
Il'in MV, Novikov AS, Bolotin DS. Sulfonium and Selenonium Salts as Noncovalent Organocatalysts for the Multicomponent Groebke-Blackburn-Bienaymé Reaction. J Org Chem 2022; 87:10199-10207. [PMID: 35858372 DOI: 10.1021/acs.joc.2c01141] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sulfonium and selenonium salts, represented by S-aryl dibenzothiophenium and Se-aryl dibenzoselenophenium triflates, were found to exhibit remarkable catalytic activity in the model Groebke-Blackburn-Bienaymé reaction. Kinetic analysis and density functional theory (DFT) calculations indicated that their catalytic effect is induced by the ligation of the reaction substrates to the σ-holes on the S or Se atom of the cations. The experimental data indicated that although 10-fold excess of the chloride totally inhibits the catalytic activity of the sulfonium salts, the selenonium salt remains catalytically active, which can be explained by the experimentally found lower binding constant of the selenonium derivative to chloride in comparison with the sulfonium analogue. Both types of salts exhibit lower catalytic activity in the model reaction than dibenziodolium species.
Collapse
Affiliation(s)
- Mikhail V Il'in
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| |
Collapse
|
14
|
Karandikar SS, Bhattacharjee A, Metze BE, Javaly N, Valente EJ, McCormick TM, Stuart DR. Orbital analysis of bonding in diarylhalonium salts and relevance to periodic trends in structure and reactivity. Chem Sci 2022; 13:6532-6540. [PMID: 35756513 PMCID: PMC9172531 DOI: 10.1039/d2sc02332f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/10/2022] [Indexed: 12/16/2022] Open
Abstract
Diarylhalonium compounds provide new opportunities as reagents and catalysts in the field of organic synthesis. The three center, four electron (3c-4e) bond is a center piece of their reactivity, but structural variation among the diarylhaloniums, and in comparison with other λ3-iodanes, indicates that the model needs refinement for broader applicability. We use a combination of Density Functional Theory (DFT), Natural Bond Orbital (NBO) Theory, and X-ray structure data to correlate bonding and structure for a λ3-iodane and a series of diarylchloronium, bromonium, and iodonium salts, and their isoelectronic diarylchalcogen counterparts. This analysis reveals that the s-orbital on the central halogen atom plays a greater role in the 3c-4e bond than previously considered. Finally, we show that our revised bonding model and associated structures account for both kinetic and thermodynamic reactivity for both acyclic phenyl(mesityl)halonium and cyclic dibenzohalolium salts.
Collapse
Affiliation(s)
| | - Avik Bhattacharjee
- Department of Chemistry, Portland State University Portland OR 97201 USA
| | - Bryan E Metze
- Department of Chemistry, Portland State University Portland OR 97201 USA
| | - Nicole Javaly
- Department of Chemistry, Portland State University Portland OR 97201 USA
| | - Edward J Valente
- Department of Chemistry, University of Portland Portland OR 97203 USA
| | | | - David R Stuart
- Department of Chemistry, Portland State University Portland OR 97201 USA
| |
Collapse
|