1
|
Savaş İ, Çelik ME, Barsella A, Dengiz C. Carbamate-Functionalized NLOphores via a Formal [2+2] Cycloaddition-Retroelectrocyclization Strategy. Chemistry 2025; 31:e202404778. [PMID: 39844739 PMCID: PMC11874901 DOI: 10.1002/chem.202404778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
This study introduces a new donor group capable of activating click-type [2+2] cycloaddition-retroelectrocyclizations, generally known for their limited scope. Target chromophores were synthesized using isocyanate-free urethane synthesis. The developed synthetic method allows for the tuning of the optical properties of the chromophores by modifying the donor groups, the acceptor units, and the side chains. The charge transfer (CT) bands of the chromophores exhibit λmax values ranging from 363 to 692 nm. The CT bands observed have been supported by solvatochromism and protonation experiments. The synthesized compounds exhibit positive solvatochromism. Due to their potential as NLOphore candidates, the stability of the synthesized compounds have been investigated both experimentally through TGA and theoretically by calculating parameters such as frontier orbital energy differences, electronegativity, and global hardness/softness. TD-DFT calculations were used to elucidate the nature of the electronic transitions, revealing that the bands correspond to CT arising from HOMO-to-LUMO excitations. The NLO properties of the chromophores were investigated theoretically by DFT methods and experimentally by the EFISHG technique. Both results are shown to be in agreement with HOMO-LUMO energy differences. The experimental μβ values of the selected molecules range from 470×10-48 to 5400×10-48 esu.
Collapse
Affiliation(s)
- İpek Savaş
- Department of ChemistryMiddle East Technical University06800AnkaraTurkey
| | - Mehmet Efe Çelik
- Department of ChemistryMiddle East Technical University06800AnkaraTurkey
| | - Alberto Barsella
- Département d'Optique Ultra-Rapide et Nanophotonique, IPCMS-CNRS23 Rue du Loess, BP 4367034Strasbourg, Cedex 2France
| | - Cagatay Dengiz
- Department of ChemistryMiddle East Technical University06800AnkaraTurkey
| |
Collapse
|
2
|
Chen X, Michinobu T. Synthesis of Nonplanar Push-Pull Chromophores with Various Heterocyclic Moieties via [2 + 2] Cycloaddition-Retroelectrocyclization Reaction. J Org Chem 2025; 90:1561-1570. [PMID: 39817696 DOI: 10.1021/acs.joc.4c02595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
A series of 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) derivatives with various heterocyclic moieties, including pyridine, carbazole, indole, and benzothiadiazole, was newly synthesized through a [2 + 2] cycloaddition-retroelectrocyclization reaction. Symmetric electron-rich 1,3-butadiynes with end-capped heterocyclic substituents were reacted with tetracyanoethylene (TCNE), yielding the target TCBD products in 60-80% yields under ambient or mild heating conditions. The thermal stability and optical and electrochemical properties of both 1,3-butadiyne precursors and the corresponding TCBD derivatives were investigated by using thermogravimetric analysis (TGA), UV-vis spectroscopy, and cyclic voltammetry (CV). The TCBD derivatives featured narrow bandgaps due to the intramolecular charge transfer interactions of push-pull chromophores. In addition, the optimized structures and frontier molecular orbitals with their energy levels were determined by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Xu Chen
- Department of Materials Science and Engineering, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and Engineering, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
3
|
Dhayalan V, Dodke VS, Pradeep Kumar M, Korkmaz HS, Hoffmann-Röder A, Amaladass P, Dandela R, Dhanusuraman R, Knochel P. Recent synthetic strategies for the functionalization of fused bicyclic heteroaromatics using organo-Li, -Mg and -Zn reagents. Chem Soc Rev 2024; 53:11045-11099. [PMID: 39311874 DOI: 10.1039/d4cs00369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
This review highlights the use of functionalized organo-Li, -Mg and -Zn reagents for the construction and selective functionalization of 5- and 6-membered fused bicyclic heteroaromatics. Special attention is given to the discussion of advanced syntheses for the preparation of highly functionalized heteroaromatic scaffolds, including quinolines, naphthyridines, indoles, benzofurans, benzothiophenes, benzoxazoles, benzothiazoles, benzopyrimidines, anthranils, thienothiophenes, purine coumarins, chromones, quinolones and phthalazines and their fused heterocyclic derivatives. The organometallic reagents used for the desired functionalizations of these scaffolds are generally prepared in situ using the following methods: (i) through directed selective metalation reactions (DoM), (ii) by means of halogen/metal exchange reactions, (iii) through oxidative metal insertions (Li, Mg, Zn), and (iv) by transmetalation reactions (organo-Li and Mg transmetalations with ZnCl2 or ZnO(Piv)2). The resulting reactive organometallic reagents allow a wide range of C-C, C-N and C-X cross-coupling reactions with different electrophiles, employing in particular Kumada or Negishi protocols among other transition metal (Pd, Ni, Co, Cu, Cr, Fe, etc.)-catalyzed processes. In addition, key developments concerning selective metalation techniques will be presented, which rely on the use of RLi, LDA and TMP metal bases. These methods are now widely employed in organic synthetic chemistry and have proven to be particularly valuable for drug development programs in the pharmaceutical industry. New and improved protocols have resulted in many Li, Mg and Zn organyls now being compatible with functionalized aryl, heteroaryl, alkenyl, alkynyl and alkyl compounds even in the presence of labile functional groups, making these reagents well-suited for C(sp2)-C(sp2), C(sp2)-C(sp) and C(sp2)-C(sp3) cross-coupling reactions with fused heteroaryl halides. In addition, the use of some transition metal-catalyzed processes occasionally allows a reversed role of the reactants in cross-coupling reactions, providing alternative synthetic routes for the preparation of fused heteroaromatic-based bioactive drugs and natural products. In line with this, this article points to novel methods for the functionalization of bicyclic heteroaromatic scaffolds by organometallic reagents that have been published in the period 2010-2023.
Collapse
Affiliation(s)
- Vasudevan Dhayalan
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Vishal S Dodke
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Marappan Pradeep Kumar
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Hatice Seher Korkmaz
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Anja Hoffmann-Röder
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Pitchamuthu Amaladass
- Department of Chemistry, Madanapalle Institute of Technology & Science, Madanapalle 517325, Andhra Pradesh, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Ragupathy Dhanusuraman
- Central Instrumentation Facility (CIF), School of Physical, Chemical and Applied Sciences, Pondicherry University, Puducherry-605014, India
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| |
Collapse
|
4
|
Erden K, Soyler D, Barsella A, Şahin O, Soylemez S, Dengiz C. Synthesis and Optical Characterization of Hydrazone-Substituted Push-Pull-Type NLOphores. J Org Chem 2024; 89:13192-13207. [PMID: 39255504 PMCID: PMC11421011 DOI: 10.1021/acs.joc.4c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Two distinct families of NLOphores featuring hydrazone donors were synthesized using click-type [2 + 2] cycloaddition retroelectrocyclizations (CA-RE). Despite the limitations in the substrate scope, it was shown for the first time that hydrazone-activated alkynes could undergo reactions with TCNE/TCNQ. The electrochemical, photophysical, and second-order nonlinear optical (NLO) characteristics of the chromophores were analyzed utilizing experimental and computational approaches. Chromophores 17-21 and 23-27 exhibited two reduction waves, along with one oxidation wave that can be attributed to the hydrazone moiety. All chromophores exhibit charge-transfer bands extending from the visible to the near-infrared region. The λmax of hydrazone-based chromophores falls within the range of 473 to 725 nm. Additionally, all chromophores exhibited positive solvatochromism. Computational studies have been performed to elucidate the origin of the low-energy absorption bands. Parameters such as dipole moment, band gaps, electronegativity, global chemical hardness/softness, average polarizability, and first hyperpolarizability were calculated to obtain information about NLO properties of the target structures. The thermal stabilities of the NLOphores were assessed through TGA. Experimental NLO measurements were conducted using the electric field-induced second harmonic generation (EFISHG) technique. The studied structures demonstrated NLO responses, with μβ values between 520 × 10-48 esu and 5300 × 10-48 esu.
Collapse
Affiliation(s)
- Kübra Erden
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Dilek Soyler
- Department of Biomedical Engineering, Necmettin Erbakan University, 42090 Konya, Turkey
- Science and Technology Research and Application Center (BİTAM), Necmettin Erbakan University, 42090 Konya, Turkey
| | - Alberto Barsella
- Département d'Optique Ultra-Rapide et Nanophotonique, IPCMS-CNRS, 23 Rue du Loess, BP 43, 67034 Strasbourg, Cedex 2, France
| | - Onur Şahin
- Department of Occupational Health & Safety, Faculty of Health Sciences, Sinop University, Sinop 57000, Turkey
| | - Saniye Soylemez
- Department of Biomedical Engineering, Necmettin Erbakan University, 42090 Konya, Turkey
- Science and Technology Research and Application Center (BİTAM), Necmettin Erbakan University, 42090 Konya, Turkey
| | - Cagatay Dengiz
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
5
|
Wazid M, Misra R. NIR absorbing ferrocenyl perylenediimide-based donor-acceptor chromophores. Dalton Trans 2024; 53:15164-15175. [PMID: 39219489 DOI: 10.1039/d4dt01661k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A set of ferrocenyl-functionalized perylenediimide (PDI) compounds and their 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) derivatives 1-5 were designed and synthesized using palladium-catalyzed Sonogashira cross-coupling, followed by a thermally activated [2 + 2] cycloaddition-retroelectrocyclization [CA-RE] reaction with a 1,1,2,2-tetracyanoethylene (TCNE) acceptor in good yields. The TCBD group works as an acceptor, whereas the ferrocenyl group acts as a donor at the central PDI core. The effects of varying the number of ferrocenyl and TCNE groups on the photophysical, thermal, electrochemical, and spectroelectrochemical properties were studied. The di-substituted PDI derivatives 3, 4, and 5 exhibit bathochromic shifts in the absorption spectra compared to 1 and 2, attributed to the extended π-conjugation. The electrochemical analysis of derivatives 2, 4, and 5 shows multiple reduction waves in the low potential region due to the presence of TCBD and perylenediimide acceptor units. Spectroelectrochemical studies were performed, showing that upon applying redox potentials, the absorption spectra shifted from the visible to the near-infrared (NIR) region. Computational calculations indicate that in the HOMO, the electron density is localized on the ferrocene unit, while in the LUMO, it is distributed over the PDI-TCBD unit, indicating a strong D-A interaction.
Collapse
Affiliation(s)
- Mohd Wazid
- Department of Chemistry, Indian Institute of Technology Indore (M.P.), 453552, India.
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore (M.P.), 453552, India.
| |
Collapse
|
6
|
Kumar Gupta P, Das S, Misra R, D'Souza F. Near-IR Capturing N-Methylbenzene Sulfonamide-Phenothiazine Incorporating Strong Electron Acceptor Push-Pull Systems: Photochemical Ultrafast Carrier Dynamics. Chemistry 2024; 30:e202304313. [PMID: 38410932 DOI: 10.1002/chem.202304313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/09/2024] [Accepted: 02/25/2024] [Indexed: 02/28/2024]
Abstract
Unraveling the intriguing aspects of the intramolecular charge transfer (ICT) phenomenon of multi-modular donor-acceptor-based push-pull systems are of paramount importance considering their promising applications, particularly in solar energy harvesting and light-emitting devices. Herein, a series of symmetrical and unsymmetrical donor-acceptor chromophores 1-6, are designed and synthesized by the Corey-Fuchs reaction via Evano's condition followed by [2+2] cycloaddition retroelectrocyclic ring-opening reaction with strong electron acceptors TCNE and TCNQ in good yields (~60-85 %). The photophysical, electrochemical, and computational studies are investigated to explore the effect of incorporation of strong electron acceptors 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) and dicyanoquinodimethane (DCNQ) with phenothiazine (PTZ) donor. An additional low-lying broad absorption band extended towards the near-infrared (NIR) region suggests charge polarization after the introduction of the electron acceptors in both symmetrical and asymmetrical systems, leading to such strong ICT bands. The electrochemical properties reveal that reduction potentials of 3 and 6 are lower than those of 2 and 5, suggesting DCNQ imparts more on the electronic properties and hence largely contributes to the stabilization of LUMO energy levels than TCBD, in line with theoretical observations. Relative positions of the frontier orbitals on geometry-optimized structures further support accessing donor-acceptor sites responsible for the ICT transitions. Eventually, ultrafast carrier dynamics of the photoinduced species are investigated by femtosecond transient absorption studies to identify their spectral characteristics and target analysis further provides information about different excited states photophysical events including ICT and their associated time profiles. The key findings obtained here related to excited state dynamical processes of these newly synthesized systems are believed to be significant in advancing their prospect of utilization in solar energy conversion and related photonic applications.
Collapse
Affiliation(s)
- Pankaj Kumar Gupta
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Somnath Das
- Department of Chemistry, University of North Texas, Denton, Texas, 76203-5017, United States
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, Denton, Texas, 76203-5017, United States
| |
Collapse
|
7
|
Yamada M. Perspectives on push-pull chromophores derived from click-type [2 + 2] cycloaddition-retroelectrocyclization reactions of electron-rich alkynes and electron-deficient alkenes. Beilstein J Org Chem 2024; 20:125-154. [PMID: 38292046 PMCID: PMC10825803 DOI: 10.3762/bjoc.20.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Various push-pull chromophores can be synthesized in a single and atom-economical step through [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) reactions involving diverse electron-rich alkynes and electron-deficient alkenes. In this review, a comprehensive investigation of the recent and noteworthy advancements in the research on push-pull chromophores prepared via the [2 + 2] CA-RE reaction is conducted. In particular, an overview of the physicochemical properties of the family of these compounds that have been investigated is provided to clarify their potential for future applications.
Collapse
Affiliation(s)
- Michio Yamada
- Department of Chemistry, Tokyo Gakugei University, Nukuikitamachi 4-1-1, Koganei, Tokyo 184-8501, Japan
| |
Collapse
|
8
|
Gupta PK, Khan F, Misra R. NIR-Absorbing 1,1,4,4-Tetracyanobuta-1,3-diene- and Dicyanoquinodimethane-Functionalized Donor-Acceptor Phenothiazine Derivatives: Synthesis and Characterization. J Org Chem 2023; 88:14308-14322. [PMID: 37820059 DOI: 10.1021/acs.joc.3c01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A series of symmetrical and unsymmetrical donor-acceptor type phenothiazine derivatives 1-18 were designed and synthesized via Pd-catalyzed Sonogashira cross-coupling and [2 + 2] cycloaddition-retroelectrocyclization reactions. The incorporation of cyano-based acceptors 1,1,4,4-tetracyanobutadiene (TCBD) and dicyanoquinodimethane (DCNQ) in the phenothiazine derivatives resulted in systematic variation in the photophysical, thermal, and electrochemical properties. The electronic absorption spectra of the phenothiazine derivatives with strong acceptors 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, and 18 show red-shifted absorption as compared to phenothiazine derivatives 1, 4, 7, 10, 13, and 16 in the near-IR region due to a strong intramolecular charge transfer (ICT) transition. The electrochemical analysis of the phenothiazine derivatives 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, and 18 reveals two reduction waves at low potential due to the TCBD and DCNQ acceptors. The mono-TCBD-functionalized phenothiazine 2 shows higher thermal stability compared to other phenothiazine derivatives. The computational studies on phenothiazines 1-18 reveal the LUMO is substantially stabilized as acceptor strength increases, which lowers the HOMO-LUMO gap.
Collapse
Affiliation(s)
- Pankaj Kumar Gupta
- Department of Chemistry, Indian Institute of Technology Indore Indore, Madhya Pradesh 453552, India
| | - Faizal Khan
- Department of Chemistry, Indian Institute of Technology Indore Indore, Madhya Pradesh 453552, India
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore Indore, Madhya Pradesh 453552, India
| |
Collapse
|
9
|
Shekar Roy H, K M N, Rajput S, Sadhukhan S, Gowri V, Hassan Dar A, Monga M, Salaria N, Guha R, Chattopadhyay N, Jayamurugan G, Ghosh D. Efficient Nitric Oxide Scavenging by Urea-Functionalized Push-Pull Chromophore Modulates NO-Mediated Diseases. Chemistry 2023; 29:e202301748. [PMID: 37431238 DOI: 10.1002/chem.202301748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
The excess nitric oxide (NO) produced in the body in response to bacterial/proinflammatory stimuli is responsible for several pathological conditions. The current approaches that target the production of excess NO, either through the inhibition of nitric oxide synthase enzyme or its downstream mediators have been clinically unsuccessful. With an aim to regulate the excess NO, urea-functionalized push-pull chromophores containing 1,1,4,4-tetracyanobuta-1,3-dienes (TCBD) or expanded TCBD (eTCBD) were developed as NO scavengers. The NMR mechanistic studies revealed that upon NO binding, these molecules are converted to uncommon stable NONOates. The unique emissive property of Urea-eTCBD enables its application in vitro, as a NO-sensor. Furthermore, the cytocompatible Urea-eTCBD, rapidly inactivated the NO released from LPS-activated cells. The therapeutic efficacy of the molecule in modulating NO-mediated pathological condition was confirmed using a carrageenan-induced inflammatory paw model and a corneal injury model. While the results confirm the advantages of scavenging the excess NO to address a multitude of NO-mediated diseases, the promising sensing and bioactivity of Urea-eTCBD can motivate further exploration of such molecules in allied areas of research.
Collapse
Affiliation(s)
- Himadri Shekar Roy
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Neethu K M
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Swati Rajput
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Sreyanko Sadhukhan
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Vijayendran Gowri
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Arif Hassan Dar
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Malika Monga
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Navita Salaria
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Rajdeep Guha
- Division of Laboratory Animal Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Govindasamy Jayamurugan
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| |
Collapse
|
10
|
Lin Z, Zhong YH, Zhong L, Ye X, Chung LH, Hu X, Xu Z, Yu L, He J. Minimalist Design for Solar Energy Conversion: Revamping the π-Grid of an Organic Framework into Open-Shell Superabsorbers. JACS AU 2023; 3:1711-1722. [PMID: 37388679 PMCID: PMC10302748 DOI: 10.1021/jacsau.3c00132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023]
Abstract
We apply a versatile reaction to a versatile solid: the former involves the electron-deficient alkene tetracyanoethylene (TCNE) as the guest reactant; the latter consists of stacked 2D honeycomb covalent networks based on the electron-rich β-ketoenamine hinges that also activate the conjugated, connecting alkyne units. The TCNE/alkyne reaction is a [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) that forms strong push-pull units directly into the backbone of the framework-i.e., using only the minimalist "bare-bones" scaffold, without the need for additional side groups of alkynes or other functions. The ability of the stacked alkyne units (i.e., as part of the honeycomb mass) to undergo such extensive rearrangement highlights the structural flexibility of these covalent organic framework (COF) hosts. The COF solids remain porous, crystalline, and air-/water-stable after the CA-RE modification, while the resulting push-pull units feature distinct open-shell/free-radical character, are strongly light-absorbing, and shift the absorption ends from 590 nm to around 1900 nm (band gaps from 2.17-2.23 to 0.87-0.95 eV), so as to better capture sunlight (especially the infrared region which takes up 52% of the solar energy). As a result, the modified COF materials achieve the highest photothermal conversion performances, holding promise in thermoelectric power generation and solar steam generation (e.g., with solar-vapor conversion efficiencies >96%).
Collapse
Affiliation(s)
- Zhiqing Lin
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan-Hui Zhong
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Leheng Zhong
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinhe Ye
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Lai-Hon Chung
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuanhe Hu
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhengtao Xu
- Institute
of Materials Research and Engineering (IMRE), Agency for Science,
Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Lin Yu
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jun He
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
11
|
Patil Y, Butenschön H, Misra R. Tetracyanobutadiene Bridged Push-Pull Chromophores: Development of New Generation Optoelectronic Materials. CHEM REC 2023; 23:e202200208. [PMID: 36202630 DOI: 10.1002/tcr.202200208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Indexed: 01/21/2023]
Abstract
This review describes the design strategies used for the synthesis of various tetracyanobutadiene bridged donor-acceptor molecular architectures by a click type [2+2] cycloaddition-retroelectrocyclization (CA-RE) reaction sequence. The photophysical and electrochemical properties of the tetracyanobutadiene bridged molecular architectures based on various moieties including diketopyrrolopyrrole, isoindigo, benzothiadiazole, pyrene, pyrazabole, truxene, boron dipyrromethene (BODIPY), phenothiazine, triphenylamine, thiazole and bisthiazole are summarized. Further, we discuss some important applications of the tetracyanobutadiene bridged derivatives in dye sensitized solar cells, bulk heterojunction solar cells and photothermal cancer therapy.
Collapse
Affiliation(s)
- Yuvraj Patil
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India.,Present Address: Institut des Sciences Chimiques de Rennes (ISCR) -, Université de Rennes 1, Rennes, 35700, France
| | - Holger Butenschön
- Institut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| |
Collapse
|
12
|
Misra R, Yadav IS. Phenothiazine and phenothiazine-5,5-dioxide based push-pull Derivatives: Synthesis, photophysical, electrochemical and computational Studies. NEW J CHEM 2022. [DOI: 10.1039/d2nj03089f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A set of phenothiazine (PTZ) and phenothiazine-5,5-dioxide based π-conjugated push–pull chromophores PTZ 1–6 were designed and synthesized by the Pd-catalyzed Sonogashira cross-coupling and [2+2] cycloaddition retroelectrocyclic ring opening reaction in...
Collapse
|