1
|
Zheng W, Peng W, Qian F, Zhang M, Duan B, Fan Z, Xie Y, Fu X. Vitamin D suppresses CD133+/CD44 + cancer stem cell stemness by inhibiting NF-κB signaling and reducing NLRP3 expression in triple-negative breast cancer. Cancer Chemother Pharmacol 2024; 94:67-78. [PMID: 38456956 DOI: 10.1007/s00280-024-04660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND AND OBJECTIVE This study aims to investigate the role of Vitamin D (VD) in regulating the stemness and survival of CD133+/CD44 + breast cancer stem cells, and to explore the role of NLRP3 in this process. METHODS Breast cancer tissues were collected for RXRα and VDR expression analysis. A triple-negative breast cancer cell line was cultured and stem-like cells (CD133 + CD44+) isolated using flow cytometry. These cells were treated with VD, analyzing their stem-like properties, apoptosis and proliferation, as well as P65 nuclear expression and NLRP3 expression. After NLRP3 inflammasome activator treatment, the parameters were reassessed. RXRα and VDR interaction was confirmed using co-immunoprecipitation (CoIP). Finally, a subcutaneous xenograft model of triple-negative breast cancer was treated with VD and subsequently analyzed for stem-like properties, proliferation, apoptosis, and NLRP3 expression levels. RESULTS CD133+/CD44 + stem cells expressed high levels of SOX2 and OCT4. VD treatment resulted in a significant decrease in SOX2 and OCT4 expression, fewer sphere-forming colonies, lower proliferation ability, and more apoptosis. Additionally, VD treatment inhibited NF-κB signaling and reduced NLRP3 expression. The NLRP3 activator BMS-986,299 counteracted the effects of VD in vitro. In vivo, VD inhibited the growth of breast cancer stem cells, reducing both tumor volume and weight, and decreased NLRP3, SOX2, and OCT4 expression within tumor tissues. CONCLUSION Findings elucidate that VD mediates the modulation of stemness in CD133+/CD44 + breast cancer stem cells through the regulation of NLRP3 expression. The research represents novel insights on the implications for the application of VD in cancer therapies.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen (The Second Affiliated Hospital of Southern University of Science and Technology), 29 Bulan Road, Longgang District, Shenzhen, Guangdong, 518112, PR China.
| | - Wei Peng
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen (The Second Affiliated Hospital of Southern University of Science and Technology), 29 Bulan Road, Longgang District, Shenzhen, Guangdong, 518112, PR China
| | - Fuyong Qian
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen (The Second Affiliated Hospital of Southern University of Science and Technology), 29 Bulan Road, Longgang District, Shenzhen, Guangdong, 518112, PR China
| | - Mingshuai Zhang
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen (The Second Affiliated Hospital of Southern University of Science and Technology), 29 Bulan Road, Longgang District, Shenzhen, Guangdong, 518112, PR China
| | - Bofeng Duan
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen (The Second Affiliated Hospital of Southern University of Science and Technology), 29 Bulan Road, Longgang District, Shenzhen, Guangdong, 518112, PR China
| | - Zhifeng Fan
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen (The Second Affiliated Hospital of Southern University of Science and Technology), 29 Bulan Road, Longgang District, Shenzhen, Guangdong, 518112, PR China
| | - Yi Xie
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen (The Second Affiliated Hospital of Southern University of Science and Technology), 29 Bulan Road, Longgang District, Shenzhen, Guangdong, 518112, PR China
| | - Xiaoying Fu
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen (The Second Affiliated Hospital of Southern University of Science and Technology), 29 Bulan Road, Longgang District, Shenzhen, Guangdong, 518112, PR China
| |
Collapse
|
2
|
Ma J, Ye Q, Green RA, Gurak J, Ayers S, Huang Y, Miller SA. Overcoming NMR line broadening of nitrogen containing compounds: A simple solution. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:198-207. [PMID: 38258438 DOI: 10.1002/mrc.5432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
This study presents a straightforward solution to the challenge of elucidating the structures of nitrogen containing compounds undergoing isomerization. When spectral line broadening occurs related to isomerization, be it prototropic tautomerism or bond rotations, this poses a significant obstacle to structural elucidation. By adding acids, we demonstrate a simple approach to overcome this issue and effectively sharpen NMR signals for acid stable prototropic tautomers as well as the conformational isomers containing a morpholine or piperazine ring.
Collapse
Affiliation(s)
- Junhe Ma
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey, USA
| | - Qingmei Ye
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey, USA
| | - Rebecca A Green
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey, USA
| | - John Gurak
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey, USA
| | - Sloan Ayers
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey, USA
| | - Yande Huang
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey, USA
| | - Scott A Miller
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey, USA
| |
Collapse
|