Jiao S, Liu C, Chen P, Li J, Sun J, Gao X, Chai X. 9,9'-epoxylignans from Syringa pinnatifolia: A typical case of stereochemical assignment by a quantum chemical calculation with MAE
ΔΔδ parameter.
PHYTOCHEMISTRY 2024;
219:113978. [PMID:
38237843 DOI:
10.1016/j.phytochem.2024.113978]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
In the current study, twenty-two stereochemical 9,9'-epoxylignans including 19 undescribed ones were isolated from the ethanol extract of Syringa pinnatifolia in our continuing effort to understand the overall chemical spectrum of this species. These isolates were structurally elucidated by extensive spectroscopic data analysis, X-ray diffraction, modified Mosher's method, and quantum chemical calculations. Meanwhile, the utilization of 13C NMR calculation and the MAEΔΔδ parameter facilitated the stereochemical assignment of groups of lignan stereoisomers. The 13C NMR data were corrected by the averaged errors at each corresponding carbon position in groups of lignan stereoisomers, which improved the theoretic 13C NMR calculation. The finding of the stereochemical structures of 9,9'-epoxylignans is significant. It is helpful to determine the absolute configurations of molecules with the similar core. In addition, these lignans exhibited potential cardioprotective activities on H9c2 cardiomyocytes in vitro and presented significant antioxidant effect.
Collapse