1
|
Rentería-Gómez MA, Calderón-Rangel D, Corona-Díaz A, Gámez-Montaño R. A Sonochemical and Mechanochemical One-Pot Multicomponent/Click Coupling Strategy for the Sustainable Synthesis of Bis-Heterocyclic Drug Scaffolds. Chempluschem 2024:e202400455. [PMID: 39326014 DOI: 10.1002/cplu.202400455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Bis-heterocycles were synthesized via a consecutive one-pot process by a Groebke-Blackburn-Bienaymé reaction (GBB-3CR) followed by Copper-catalyzed Alkyne-Azide Cycloaddition (CuAAC) assisted by alternative sustainable energies (ASE) such as ultrasonic and mechanical. These efficient and convergent strategies allowed the in situ generation of complex azides functionalized with imidazo[1,2-a]pyridines (IMPs), which was used as a synthetic platform. The target molecules contain two privileged scaffolds in medicinal chemistry: IMPs and the heterocyclic bioisostere of trans-amide bond, the 1,4-disubstituted 1H-1,2,3-triazoles (1,4-DS-1,2,3-Ts).
Collapse
Affiliation(s)
- Manuel A Rentería-Gómez
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato, C.P. 36050, Gto., México
| | - David Calderón-Rangel
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato, C.P. 36050, Gto., México
| | - Alejandro Corona-Díaz
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato, C.P. 36050, Gto., México
| | - Rocío Gámez-Montaño
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato, C.P. 36050, Gto., México
| |
Collapse
|
2
|
Govor EV, Naumchyk V, Nestorak I, Radchenko DS, Dudenko D, Moroz YS, Kachkovsky OD, Grygorenko OO. Generation of multimillion chemical space based on the parallel Groebke-Blackburn-Bienaymé reaction. Beilstein J Org Chem 2024; 20:1604-1613. [PMID: 39076290 PMCID: PMC11285076 DOI: 10.3762/bjoc.20.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Parallel Groebke-Blackburn-Bienaymé reaction was evaluated as a source of multimillion chemically accessible chemical space. Two most popular classical protocols involving the use of Sc(OTf)3 and TsOH as the catalysts were tested on a broad substrate scope, and prevalence of the first method was clearly demonstrated. Furthermore, the scope and limitations of the procedure were established. A model 790-member library was obtained with 85% synthesis success rate. These results were used to generate a 271-Mln. readily accessible (REAL) heterocyclic chemical space mostly containing unique chemotypes, which was confirmed by comparative analysis with commercially available compound collections. Meanwhile, this chemical space contained 432 compounds that already showed biological activity according to the ChEMBL database.
Collapse
Affiliation(s)
- Evgen V Govor
- Enamine Ltd., Winston Churchill Street 78, Kyїv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv 01601, Ukraine
| | - Vasyl Naumchyk
- Enamine Ltd., Winston Churchill Street 78, Kyїv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv 01601, Ukraine
| | - Ihor Nestorak
- Enamine Ltd., Winston Churchill Street 78, Kyїv 02094, Ukraine
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, Akademik Kukhar Street 1, Kyїv 02094, Ukraine
| | | | - Dmytro Dudenko
- Enamine Ltd., Winston Churchill Street 78, Kyїv 02094, Ukraine
| | - Yurii S Moroz
- Enamine Ltd., Winston Churchill Street 78, Kyїv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv 01601, Ukraine
| | - Olexiy D Kachkovsky
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, Akademik Kukhar Street 1, Kyїv 02094, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Winston Churchill Street 78, Kyїv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv 01601, Ukraine
| |
Collapse
|
3
|
Tian H, Lee W, Li Y, Dweck MJ, Mendoza A, Harran PG, Houk KN. Origin of Octafluorocyclopentene Polyelectrophilicity. J Am Chem Soc 2024; 146:5375-5382. [PMID: 38354320 DOI: 10.1021/jacs.3c12690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Octafluorocyclopentene (OFCP) has found utility as a polyelectrophile in substitution cascades that form complex macrocyclic compounds. The Harran group synthesis of macrocyclic polypeptides depends on OFCP as a linker, combining with four different nucleophilic units of a polypeptide. We report a computational investigation of the origins of OFCP reactivity and a rationale for controlled mono-, di-, tri-, and tetrasubstitution of fluoride ions by heteroatomic nucleophiles. The roles of inductive, negative hyperconjugative, and resonance electron-donation by fluoride substituents are explored for the reaction of OFCP, less-fluorinated analogues, and common electrophilic alkenes with several different nucleophiles.
Collapse
Affiliation(s)
- Haowen Tian
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - William Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Yuli Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Morris J Dweck
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Angel Mendoza
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Patrick G Harran
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
4
|
Fragkiadakis M, Anastasiou PK, Volyrakis I, Pantousas A, Stoumpos CC, Neochoritis CG. C1 functionalization of imidazo heterocycles via carbon dioxide fixation. Chem Commun (Camb) 2023; 59:14411-14414. [PMID: 37975204 DOI: 10.1039/d3cc04597h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Utilizing CO2 as a one-carbon building block in the preparation of high-value chemical entities is a cornerstone of modern organic synthesis. Herein, we exemplify this strategy through a mild, one-pot methodology that gives rapid access to N-heteroaryl substituted 6-, 8- and 9-membered carbamates via CO2 fixation.
Collapse
Affiliation(s)
| | | | - Ioannis Volyrakis
- Department of Chemistry, University of Crete, Voutes, 70013, Heraklion, Greece.
| | - Apostolos Pantousas
- Department of Materials Science & Technology, University of Crete, Voutes, 70013, Heraklion, Greece
| | - Constantinos C Stoumpos
- Department of Materials Science & Technology, University of Crete, Voutes, 70013, Heraklion, Greece
| | | |
Collapse
|
5
|
Neto BAD, Sorto JEP, Lapis AAM, Machado F. Functional chromophores synthesized via multicomponent Reactions: A review on their use as cell-imaging probes. Methods 2023; 220:142-157. [PMID: 37939912 DOI: 10.1016/j.ymeth.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
This review aims to provide a comprehensive overview of recent advancements and applications of fluorescence imaging probes synthesized via MCRs (multicomponent reactions). These probes, also known as functional chromophores, belong to a currently investigated class of fluorophores that are presently being successfully applied in bioimaging experiments, especially in various living cell lineages. We describe some of the MCRs that have been employed in the synthesis of these probes and explore their applications in biological imaging, with an emphasis on cellular imaging. The review also discusses the challenges and future perspectives in the field, particularly considering the potential impact of MCR-based fluorescence imaging probes on advancing this field of research in the coming years. Considering that this area of research is relatively new and nearly a decade has passed since the first publication, this review also provides a historical perspective on this class of fluorophores, highlighting the pioneering works published between 2011 and 2016.
Collapse
Affiliation(s)
- Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil.
| | - Jenny E P Sorto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil; Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | | | - Fabricio Machado
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil
| |
Collapse
|