1
|
Doraghi F, Karimtabar MS, Ghasemi M, Larijani B, Mahdavi M. Transition Metal-Catalyzed Dual C-H Activation/Annulation Reactions Involving Internal Alkynes. CHEM REC 2024; 24:e202400069. [PMID: 38984737 DOI: 10.1002/tcr.202400069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Indexed: 07/11/2024]
Abstract
Recently, transition metal-catalyzed ortho-C-H bond activation/annulations involving two internal alkyne molecules have been extensively used to synthesize highly substituted polycyclic aromatic scaffolds. Such reactions have emerged as a powerful atom and step-economical strategy for the assembly of multifunctional bioactive molecules. In this context, we focused on the recent achievements of dual C-H bond activation/annulations, as well as functionalization reactions involving diaryl/alkyl alkynes.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Karimtabar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mehran Ghasemi
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa, Nizwa, 616, Sulanate of, Oman
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Sateesh R, Prudhviraj J, Priyanka C, Punna N. Access to CF 3-benzofulvenes via palladium-catalyzed cascade arylation/Trost-Oppolzer cyclization/double-bond isomerization. Chem Commun (Camb) 2024; 60:3551-3554. [PMID: 38456328 DOI: 10.1039/d3cc06082a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Herein, we demonstrated a Pd-catalyzed cascade reaction that involves arylation, Trost-Oppolzer type Alder ene reaction, and double bond isomerization using the 4-(2-alkynylphenyl)-allylcarbonates and aryl boronic acids. This cascade process delivers a wide array of distinctive functionalized CF3-benzofulvenes in good yields with high stereoselectivity (E). A single palladium catalyst orchestrates the two individual reactions in a single operation. Trost-Oppolzer type Alder ene reaction is the key in this transformation, also called a rare acid-free iso-Nazarov type cyclization.
Collapse
Affiliation(s)
- Rami Sateesh
- Fluoro-Agro Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Jaggaraju Prudhviraj
- Fluoro-Agro Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Chiliveru Priyanka
- Fluoro-Agro Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Nagender Punna
- Fluoro-Agro Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
3
|
Jiang B, Gui WT, Wang HT, Xie K, Chen ZC, Zhu L, Ouyang Q, Du W, Chen YC. Asymmetric Friedel-Crafts reaction of unsaturated carbonyl-tethered heteroarenes via vinylogous activation of Pd 0-π-Lewis base catalysis. Chem Sci 2023; 14:10867-10874. [PMID: 37829026 PMCID: PMC10566502 DOI: 10.1039/d3sc03996j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/16/2023] [Indexed: 10/14/2023] Open
Abstract
The alkyne group can undergo facile transformations under palladium catalysis, such as hydropalladation, Wacker reaction, etc. Here we demonstrate that a chiral Pd0 complex can chemoselectively dihapto-coordinate to the alkyne moiety of 2-indolyl propiolates, and raise the Highest Occupied Molecular Orbital (HOMO)-energy ofthe deactivated heteroarenes via π-Lewis base catalysis. As a result, asymmetric C3-selective Friedel-Crafts addition to activated alkenes occurs, finally affording [3 + 2] or [3 + 4] annulation products with high enantioselectivity and exclusive E-selectivity. Moreover, this π-Lewis base vinylogous HOMO-activation strategy can be extended to remote Friedel-Crafts reaction of diverse five-membered heteroarenes tethered to a 2-enone or 2-acrylate motif with imines or 1-azadienes, and excellent enantiocontrol is generally achieved for the multifunctional adducts, which can be effectively converted to diverse frameworks with higher molecular complexity. In addition, NMR and density functional theory calculation studies are conducted to elucidate the catalytic mechanism.
Collapse
Affiliation(s)
- Bo Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Wu-Tao Gui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Hao-Tian Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Ke Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Lei Zhu
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| |
Collapse
|
4
|
Mondal S, Ballav T, Tofayel TSM, Ganesh V. Bis-benzofulvenes: Synthesis and Studies on Their Optoelectronic Properties. Org Lett 2023. [PMID: 37205608 DOI: 10.1021/acs.orglett.3c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We report the synthesis of bis-benzofulvenes and the studies on their optical and redox properties. Bis-benzofulvenes were achieved through the Pd-catalyzed intramolecular Heck coupling followed by Ni0-mediated C(sp2)-Br dimerization. Low optical and electrochemical energy gaps of 2.05 and 1.68 eV were achieved by tuning the substituent on the exomethylene unit and the aromatic ring. The observed trends in the energy gaps were compared, and the frontier molecular orbitals were visualized using the density functional theory.
Collapse
Affiliation(s)
- Sourav Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Tamal Ballav
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | | | - Venkataraman Ganesh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
5
|
Seth K. Recent progress in rare-earth metal-catalyzed sp 2 and sp 3 C–H functionalization to construct C–C and C–heteroelement bonds. Org Chem Front 2022. [DOI: 10.1039/d1qo01859k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The review presents rare-earth metal-catalyzed C(sp2/sp3)–H functionalization accessing C–C/C–heteroatom bonds and olefin (co)polymerization, highlighting substrate scope, mechanistic realization, and origin of site-, enantio-/diastereo-selectivity.
Collapse
Affiliation(s)
- Kapileswar Seth
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) – Guwahati, Sila Katamur, Changsari, Kamrup 781101, Assam, India
| |
Collapse
|
6
|
Huang R, Yu B, Li R, Huang H. Palladium-Catalyzed Aminomethylative Oppolzer-Type Cyclization of Enynes: Access to Aminomethylated Benzofulvenes. Org Lett 2021; 23:9510-9515. [PMID: 34846898 DOI: 10.1021/acs.orglett.1c03720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel palladium-catalyzed Oppolzer-type cyclization reaction aided by the aminomethyl cyclopalladated complex has been developed, which provides rapid access to functionalized benzofulvenes with excellent stereoselectivity. The corresponding products can undergo Diels-Alder reaction with maleimides, providing a series of complex polycyclic compounds with excellent regio- and stereoselectivities.
Collapse
Affiliation(s)
- Renbin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Bangkui Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Renren Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
7
|
Zhou Y, Hua R. Synthesis of 1-Benzyl-, 1-Alkoxyl-, and 1-Aminoisoquinolines via Rhodium(III)-Catalyzed Aryl C-H Activation and Alkyne Annulation. J Org Chem 2021; 86:8862-8872. [PMID: 34164989 DOI: 10.1021/acs.joc.1c00786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One-pot syntheses of 1-benzyl-, 1-alkoxyl-, and 1-alkylamino- isoquinolines through automatic directing group (DGauto)-assisted, rhodium(III)-catalyzed aryl C-H activation and annulation with internal alkynes were developed. The reactions affording 1-benzylisoquinolines involve a cascade oximation of diarylacetylenes with hydroxylamine, forming aryl benzyl ketone oxime, and oxime-assisted rhodium(III)-catalyzed aryl C-H activation and followed annulation with another molecule of diarylacetylene in a one-pot manner. The formation of 1-alkoxyl/amino isoquinolines includes the addition of nucleophilic alcohols or amines to aryl nitriles, imine-assisted rhodium-catalyzed aryl C-H activation, and subsequent alkyne annulation.
Collapse
Affiliation(s)
- Yiming Zhou
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ruimao Hua
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Yoshida T, Ohta M, Innocent J, Kato T, Tobisu M. Catalytic Dimerization of Alkynes via C–H Bond Cleavage by a Platinum–Silylene Complex. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomoki Yoshida
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaya Ohta
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jean Innocent
- Université de Toulouse, UPS, and CNRS, LHFA, 31062 Toulouse, France
| | - Tsuyoshi Kato
- Université de Toulouse, UPS, and CNRS, LHFA, 31062 Toulouse, France
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Song X, Do Doan BN, Zhang X, Lee R, Fan X. Complementary C–H Functionalization Mode of Benzoylacetonitriles: Computer-Augmented Study of a Regio- and Stereoselective Synthesis of Functionalized Benzofulvenes. Org Lett 2019; 22:46-51. [DOI: 10.1021/acs.orglett.9b03858] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xia Song
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bao Nguyen Do Doan
- Science and Mathematics Cluster, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Richmond Lee
- Science and Mathematics Cluster, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
10
|
Yu Y, Wu Q, Liu D, Hu L, Yu L, Tan Z, Zhu G. Synthesis of Benzofulvenes via Cp*Co(III)-Catalyzed C-H Activation and Carbocyclization of Aromatic Ketones with Internal Alkynes. J Org Chem 2019; 84:7449-7458. [PMID: 31083904 DOI: 10.1021/acs.joc.9b00595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly efficient and practical synthesis of benzofulvenes was developed via ketone-directed Cp*Co(III)-catalyzed sequential C-H activation, addition, cyclization, and dehydration cascade processes between simple aromatic ketones and alkynes. The reaction tolerates a variety of functional groups, and various benzofulvenes were efficiently synthesized in 42-92% yields.
Collapse
Affiliation(s)
- Yongqi Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Qianlong Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Da Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Liang Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Lin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Ze Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Gangguo Zhu
- Department of Chemistry , Zhejiang Normal University , 688 Yingbin Road , Jinhua 321004 , China
| |
Collapse
|
11
|
Raju S, Hsiao HC, Thirupathi S, Chen PL, Chuang SC. Palladium-Catalyzed Benzofulvenation of o
-Arylanilines through C−H Bond Activation by Using Two Diarylacetylenes as an Implicit Benzofulvene. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Selvam Raju
- Department of Applied Chemistry; National Chiao Tung University; 1001 Ta-Hsueh Road Hsinchu Taiwan 30010
| | - Huan-Chang Hsiao
- Department of Applied Chemistry; National Chiao Tung University; 1001 Ta-Hsueh Road Hsinchu Taiwan 30010
| | - Selvakumar Thirupathi
- Department of Applied Chemistry; National Chiao Tung University; 1001 Ta-Hsueh Road Hsinchu Taiwan 30010
| | - Pei-Ling Chen
- Department of Chemistry; National Tsing Hua University; Hsinchu Taiwan 30013
| | - Shih-Ching Chuang
- Department of Applied Chemistry; National Chiao Tung University; 1001 Ta-Hsueh Road Hsinchu Taiwan 30010
| |
Collapse
|
12
|
Zheng L, Hua R. C-H Activation and Alkyne Annulation via Automatic or Intrinsic Directing Groups: Towards High Step Economy. CHEM REC 2017; 18:556-569. [PMID: 28681990 DOI: 10.1002/tcr.201700024] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 06/30/2017] [Indexed: 12/31/2022]
Abstract
Direct transformation of carbon-hydrogen bond (C-H) has emerged to be a trend for construction of molecules from building blocks with no or less prefunctionalization, leading high atom and step economy. Directing group (DG) strategy is widely used to achieve higher reactivity and selectivity, but additional steps are usually needed for installation and/or cleavage of DGs, limiting step economy of the overall transformation. To meet this challenge, we proposed a concept of automatic DG (DGauto ), which is auto-installed and/or auto-cleavable. Multifunctional oxime and hydrazone DGauto were designed for C-H activation and alkyne annulation to furnish diverse nitrogen-containing heterocycles. Imidazole was employed as an intrinsic DG (DGin ) to synthesize ring-fused and π-extended functional molecules. The alkyne group in the substrates can also be served as DGin for ortho-C-H activation to afford carbocycles. In this account, we intend to give a review of our progress in this area and brief introduction of other related advances on C-H functionalization using DGauto or DGin strategies.
Collapse
Affiliation(s)
- Liyao Zheng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P.R. China
| | - Ruimao Hua
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
13
|
Zheng L, Bin Y, Wang Y, Hua R. Synthesis of Natural Product-like Polyheterocycles via One-Pot Cascade Oximation, C-H Activation, and Alkyne Annulation. J Org Chem 2016; 81:8911-8919. [PMID: 27626812 DOI: 10.1021/acs.joc.6b01460] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient protocol for the direct transformation of chroman-4-ones to tricyclic fused pyridines with the skeleton of cassiarins, a family of alkaloids with antimalarial activity, was developed. Also, a general strategy for modular construction of polyheterocycles with diverse natural product-like skeletons was developed by using ketone-alkyne bifunctional substrates. These reactions involved a one-pot cascade oximation of ketones, rhodium-catalyzed C-H activation, and intermolecular/intramolecular alkyne annulations under mild conditions with high atom, step, and redox economy.
Collapse
Affiliation(s)
- Liyao Zheng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Yunhui Bin
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Yunpeng Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Ruimao Hua
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University , Beijing 100084, China
| |
Collapse
|
14
|
|
15
|
Li PF, Yi CB, Ren SJ, Qu J. Ring-Opening/Expansion Rearrangement of Cycloprop[2,3]inden-1-ols Catalyzed byp-Toluenesulfonic Acid. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|