1
|
Burchiellaro K, Mieczkowski A. Synthesis and applications of cyclonucleosides: an update (2010-2023). Mol Divers 2023:10.1007/s11030-023-10740-5. [PMID: 37889351 DOI: 10.1007/s11030-023-10740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/01/2023] [Indexed: 10/28/2023]
Abstract
Cyclonucleosides are a group of nucleoside derivatives which, in addition to the classical N-glycosidic bond, have an additional covalent bond (linker, bridge) in their structure, which connects the heterocyclic base and sugar ring. The majority of them have been discovered in the laboratory; however, few such compounds have also been found in natural sources, including metabolites of sponges or radical damage occurring in nucleic acids. Due to their structural properties-rigid, fixed conformation-they have found wide applications in medicinal chemistry and biochemistry as biocides as well as enzyme inhibitors and molecular probes. They have also found use as convenient synthetic tools for the preparation of new nucleoside analogues, enabling structural modifications of both the sugar ring and heterocyclic base. This review summarizes the recent progress in the synthesis of various purine and pyrimidine cyclonucleosides using diverse chemical approaches based on radical, "click", metal-mediated, and other types of reactions. It also presents recent reports concerning possible applications in medicinal chemistry, as well as their applications as valuable key intermediates in the synthesis of sugar- and base-modified nucleoside analogues and heterocyclic compounds.
Collapse
Affiliation(s)
- Katherine Burchiellaro
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Adam Mieczkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
2
|
Luo Z, Lu C, Histand G, Lin D. One-Step Visible Light Photoredox-Catalyzed Purine C8 Alkoxylation with Alcohol. J Org Chem 2022; 87:11558-11564. [PMID: 35984935 DOI: 10.1021/acs.joc.2c01146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cross-dehydrogenation coupling reaction between purines and alcohols, induced by visible light, using an acridinium photocatalyst and air as the sole oxidant, to synthesize a series of C8-alkoxy purine derivatives was developed. This protocol is a green and novel method to construct the C8-O bond on a purine ring with high step and atom economy.
Collapse
Affiliation(s)
- Zhe Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Changtong Lu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Gary Histand
- The International School of Advanced Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongen Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
3
|
Kawamura S, Palte RL, Kim HY, Saurí J, Sondey C, Mansueto MS, Altman MD, Machacek MR. Design and synthesis of unprecedented 9- and 10-membered cyclonucleosides with PRMT5 inhibitory activity. Bioorg Med Chem 2022; 66:116820. [PMID: 35594650 DOI: 10.1016/j.bmc.2022.116820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022]
Abstract
Synthesis of medium-sized rings is known to be challenging due to high transannular strain especially for 9- and 10-membered rings. Herein we report design and synthesis of unprecedented 9- and 10-membered purine 8,5'-cyclonucleosides as the first cyclonucleoside PRMT5 inhibitors. The cocrystal structure of PRMT5:MEP50 in complex with the synthesized 9-membered cyclonucleoside 1 revealed its binding mode in the SAM binding pocket of PRMT5.
Collapse
Affiliation(s)
- Shuhei Kawamura
- Discovery Chemistry, Merck & Co., Inc., Boston, MA 02115, United States.
| | - Rachel L Palte
- Computational and Structural Chemistry, Merck & Co., Inc., Boston, MA 02115, United States
| | - Hai-Young Kim
- NMR Structure Elucidation, Process and Analytical Chemistry, Merck & Co., Inc., Boston, MA 02115, United States
| | - Josep Saurí
- NMR Structure Elucidation, Process and Analytical Chemistry, Merck & Co., Inc., Boston, MA 02115, United States
| | - Christopher Sondey
- Quantitative Biosciences, Merck & Co., Inc., Boston, MA 02115, United States
| | - My S Mansueto
- Quantitative Biosciences, Merck & Co., Inc., Boston, MA 02115, United States
| | - Michael D Altman
- Computational and Structural Chemistry, Merck & Co., Inc., Boston, MA 02115, United States
| | | |
Collapse
|
4
|
Hu J, Wang C, Yu M, Zhang S, Chen N, Du H. Palladium‐Catalyzed N3‐Directed C‐H Halogenation of N9‐Arylpurines and Azapurines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junbin Hu
- Beijing University of Chemical Technology College of chemistry CHINA
| | - Chenxing Wang
- Beijing University of Chemical Technology College of Chemistry CHINA
| | - Mingwu Yu
- Ludong University School of Chemical and Material Science CHINA
| | - Shaojuan Zhang
- Beijing University of Chemical Technology College of Chemistry CHINA
| | - Ning Chen
- Beijing University of Chemical Technolgy chemistry 15 North 3-rd east road, Beijing 100029 Beijing CHINA
| | - Hongguang Du
- Beijing university of chemical technology college of chemistry CHINA
| |
Collapse
|
5
|
Puleo TR, Klaus DR, Bandar JS. Nucleophilic C-H Etherification of Heteroarenes Enabled by Base-Catalyzed Halogen Transfer. J Am Chem Soc 2021; 143:12480-12486. [PMID: 34347457 DOI: 10.1021/jacs.1c06481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report a general protocol for the direct C-H etherification of N-heteroarenes. Potassium tert-butoxide catalyzes halogen transfer from 2-halothiophenes to N-heteroarenes to form N-heteroaryl halide intermediates that undergo tandem base-promoted alcohol substitution. Thus, the simple inclusion of inexpensive 2-halothiophenes enables regioselective oxidative coupling of alcohols with 1,3-azoles, pyridines, diazines, and polyazines under basic reaction conditions.
Collapse
Affiliation(s)
- Thomas R Puleo
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Danielle R Klaus
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
6
|
Singh P, Kumar Chouhan K, Mukherjee A. Ruthenium Catalyzed Intramolecular C-X (X=C, N, O, S) Bond Formation via C-H Functionalization: An Overview. Chem Asian J 2021; 16:2392-2412. [PMID: 34251077 DOI: 10.1002/asia.202100513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/09/2021] [Indexed: 01/12/2023]
Abstract
Ruthenium catalyzed C-H activation is well known for its high tolerance towards the functional group and broad applicability in organic synthesis and molecular sciences, with significant applications in pharmaceutical industries, material sciences, and polymer industry. In the last few decades, enormous progress has been observed with ruthenium-catalyzed C-H activation chemistry. Notably, the vast majority of the C-H functionalization known in the literature are intermolecular, although the intramolecular variant provides fascinating new structural facet starting from the simple molecular scaffolds. Intramolecular C-H functionalization is atom economical and step efficient, results in less formation of undesired products which is easy to purify. This has created a lot of interest in organic chemistry in developing new synthetic strategies for such functionalization. The focus of this review is to present the relatively unexplored intramolecular functionalization of C-H bonds into C-X (X=C, N, O, S) bonds utilizing versatile ruthenium catalysts, their scope, and brief mechanistic discussion.
Collapse
Affiliation(s)
- Pallavi Singh
- Department of Chemistry, Indian Institute of Technology Bhilai GEC Campus, Sejbahar, Raipur, Chhattisgarh, 492015, India
| | - Kishor Kumar Chouhan
- Department of Chemistry, Indian Institute of Technology Bhilai GEC Campus, Sejbahar, Raipur, Chhattisgarh, 492015, India
| | - Arup Mukherjee
- Department of Chemistry, Indian Institute of Technology Bhilai GEC Campus, Sejbahar, Raipur, Chhattisgarh, 492015, India
| |
Collapse
|
7
|
Qi P, Sun F, Chen N, Du H. Cross-Dehydrogenative Coupling of Azoarenes with Dialkyl Disulfides. J Org Chem 2020; 85:8588-8596. [DOI: 10.1021/acs.joc.0c00953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Peng Qi
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Fang Sun
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Ning Chen
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Hongguang Du
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|
8
|
Mao Z, Liu M, Zhu G, Zhou J, Zhang X. Transition-metal-free highly regioselective C–H acetoxylation of pyrrolo[2,3-d]pyrimidine derivatives. Org Chem Front 2020. [DOI: 10.1039/d0qo00702a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transition-metal-free catalyzed direct C(sp2)–H acetoxylation of pyrrolo[2,3-d]pyrimidine derivatives is reported. This protocol provides a variety of acetoxylated pyrrolo[2,3-d]pyrimidines in good to excellent yields.
Collapse
Affiliation(s)
- Zhengtong Mao
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Min Liu
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Gaoyang Zhu
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Jing Zhou
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Xingxian Zhang
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| |
Collapse
|
9
|
Abstract
The first example of silver-mediated phosphine-promoted methoxylation of aryl C(sp2)–H bonds with the commercially available reagent for the preparation of alkyl aryl ethers has been developed. This protocol is characterized by mild reaction conditions, broad substrate scope, and high regioselectivity.
Collapse
|
10
|
Borpatra PJ, Deka B, Deb ML, Baruah PK. Recent advances in intramolecular C–O/C–N/C–S bond formationviaC–H functionalization. Org Chem Front 2019. [DOI: 10.1039/c9qo00863b] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presents the construction of C–X bonds (X = O/N/S) by using intramolecular C–H functionalization for the synthesis of heterocyclic compounds.
Collapse
Affiliation(s)
- Paran J. Borpatra
- Department of Applied Sciences
- GUIST
- Gauhati University
- Guwahati-781014
- India
| | - Bhaskar Deka
- Department of Applied Sciences
- GUIST
- Gauhati University
- Guwahati-781014
- India
| | - Mohit L. Deb
- Department of Applied Sciences
- GUIST
- Gauhati University
- Guwahati-781014
- India
| | - Pranjal K. Baruah
- Department of Applied Sciences
- GUIST
- Gauhati University
- Guwahati-781014
- India
| |
Collapse
|
11
|
Yu H, Xuan P, Lin J, Jiao M. Copper(I)-catalyzed synthesis of 3,3-disubstituted isoindolin-1-ones from enamides via cascade radical addition and cyclization. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Zhang G, Zhu J, Ding C. Pharmaceutical-Oriented Iron-Catalyzed Ethoxylation of Aryl C(sp
2
)-H Bonds with Cobalt Co-Catalyst. ChemistrySelect 2018. [DOI: 10.1002/slct.201801881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Guofu Zhang
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou 310014, People's Republic of China
| | - Jianfei Zhu
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou 310014, People's Republic of China
| | - Chengrong Ding
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou 310014, People's Republic of China
| |
Collapse
|
13
|
Yu H, Xuan P, Jiao M, Lin J. Synthesis of 1,1-Disubstituted N
-Acyl Tetrahydroisoquinolines from Enamides by Cascade Radical Addition and Cyclization. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hui Yu
- School of Chemical Science and Engineering; Shanghai Key Lab of Chemical Assessment and Substainability; Tongji University; 1239 Siping Road 200092 Shanghai P. R. China
| | - Pengfei Xuan
- School of Chemical Science and Engineering; Shanghai Key Lab of Chemical Assessment and Substainability; Tongji University; 1239 Siping Road 200092 Shanghai P. R. China
| | - Mingdong Jiao
- School of Chemical Science and Engineering; Shanghai Key Lab of Chemical Assessment and Substainability; Tongji University; 1239 Siping Road 200092 Shanghai P. R. China
| | - Jingbo Lin
- School of Chemical Science and Engineering; Shanghai Key Lab of Chemical Assessment and Substainability; Tongji University; 1239 Siping Road 200092 Shanghai P. R. China
| |
Collapse
|
14
|
Mondal M, Begum T, Bharali P. Regioselective C–H and N–H functionalization of purine derivatives and analogues: a synthetic and mechanistic perspective. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01860j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This perspective provides a systematic and concise overview of the recent development in C–H/N–H bond functionalization in purine derivatives and analogues.
Collapse
Affiliation(s)
- Manoj Mondal
- Department of Chemical Sciences
- Tezpur University
- Tezpur-784028
- India
| | - Tahshina Begum
- Chemical Sciences & Technology Division
- CSIR-NEIST
- AcSIR
- Jorhat-785006
- India
| | - Pankaj Bharali
- Department of Chemical Sciences
- Tezpur University
- Tezpur-784028
- India
| |
Collapse
|
15
|
Kamei T, Uryu M, Shimada T. Cu-Catalyzed Aerobic Oxidative C-H/C-O Cyclization of 2,2'-Binaphthols: Practical Synthesis of PXX Derivatives. Org Lett 2017; 19:2714-2717. [PMID: 28481101 DOI: 10.1021/acs.orglett.7b01060] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cu-catalyzed C-H/C-O cyclization of 2,2'-binaphthol, using air as an oxidant, was developed. C-H functionalization of binaphthols occurred at the 8,8'-position to form peri-xanthenoxanthenes that exhibit high charge-carrier mobility. The reaction can tolerate a wide variety of functional groups and afforded the corresponding peri-xanthenoxanthene derivatives via an efficient procedure.
Collapse
Affiliation(s)
- Toshiyuki Kamei
- Department of Chemical Engineering, Nara National College of Technology , 22 Yata-cho, Yamatokoriyama, Nara 639-1080, Japan
| | - Mizuho Uryu
- Department of Chemical Engineering, Nara National College of Technology , 22 Yata-cho, Yamatokoriyama, Nara 639-1080, Japan
| | - Toyoshi Shimada
- Department of Chemical Engineering, Nara National College of Technology , 22 Yata-cho, Yamatokoriyama, Nara 639-1080, Japan
| |
Collapse
|
16
|
Meyer AG, Smith JA, Hyland C, Williams CC, Bissember AC, Nicholls TP. Seven-Membered Rings. PROGRESS IN HETEROCYCLIC CHEMISTRY 2016. [DOI: 10.1016/b978-0-08-100755-6.00016-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|