1
|
Robert G, Wagner JR. Scavenging of Alkylperoxyl Radicals by Addition to Ascorbate: An Alternative Mechanism to Electron Transfer. Antioxidants (Basel) 2024; 13:1194. [PMID: 39456448 PMCID: PMC11504153 DOI: 10.3390/antiox13101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Vitamin C (ascorbate; Asc) is a biologically important antioxidant that scavenges reactive oxygen species such as deleterious alkylperoxyl radicals (ROO•), which are generated by radical-mediated oxidation of biomolecules in the presence of oxygen. The radical trapping proprieties of Asc are conventionally attributed to its ability to undergo single-electron transfers with reactive species. According to this mechanism, the reaction between Asc and ROO• results in the formation of dehydroascorbate (DHA) and the corresponding hydroperoxides (ROOH). When studying the reactivity of DNA 5-(2'-deoxyuridinyl)methylperoxyl radicals, we discovered a novel pathway of ROO• scavenging by Asc. The purpose of this study is to elucidate the underlying mechanism of this reaction with emphasis on the characterization of intermediate and final decomposition products. We show that the trapping of ROO• by Asc leads to the formation of an alcohol (ROH) together with an unstable cyclic oxalyl-l-threonate intermediate (cOxa-Thr), which readily undergoes hydrolysis into a series of open-chain oxalyl-l-threonic acid regioisomers. The structure of products was determined by detailed MS and NMR analyses. The above transformation can be explained by initial peroxyl radical addition (PRA) onto the C2=C3 enediol portion of Asc. Following oxidation of the resulting adduct radical, the product subsequently undergoes Baeyer-Villiger rearrangement, which releases ROH and generates the ring expansion product cOxa-Thr. The present investigation provides robust clarifications of the peroxide-mediated oxidation chemistry of Asc and DHA that has largely been obscured in the past by interference with autooxidation reactions and difficulties in analyzing and characterizing oxidation products. Scavenging of ROO• by PRA onto Asc may have beneficial consequences since it directly converts ROO• into ROH, which prevents the formation of potentially deleterious ROOH, although it induces the breakdown of Asc into fragments of oxalyl-l-threonic acid.
Collapse
Affiliation(s)
- Gabriel Robert
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
| | - J. Richard Wagner
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
2
|
Mori R, Abe M, Saimoto Y, Shinto S, Jodai S, Tomomatsu M, Tazoe K, Ishida M, Enoki M, Kato N, Yamashita T, Itabashi Y, Nakanishi I, Ohkubo K, Kaidzu S, Tanito M, Matsuoka Y, Morimoto K, Yamada KI. Construction of a screening system for lipid-derived radical inhibitors and validation of hit compounds to target retinal and cerebrovascular diseases. Redox Biol 2024; 73:103186. [PMID: 38744193 PMCID: PMC11109892 DOI: 10.1016/j.redox.2024.103186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Recent studies have highlighted the indispensable role of oxidized lipids in inflammatory responses, cell death, and disease pathogenesis. Consequently, inhibitors targeting oxidized lipids, particularly lipid-derived radicals critical in lipid peroxidation, which are known as radical-trapping antioxidants (RTAs), have been actively pursued. We focused our investigation on nitroxide compounds that have rapid second-order reaction rate constants for reaction with lipid-derived radicals. A novel screening system was developed by employing competitive reactions between library compounds and a newly developed profluorescence nitroxide probe with lipid-derived radicals to identify RTA compounds. A PubMed search of the top hit compounds revealed their wide application as repositioned drugs. Notably, the inhibitory efficacy of methyldopa, selected from these compounds, against retinal damage and bilateral common carotid artery stenosis was confirmed in animal models. These findings underscore the efficacy of our screening system and suggest that it is an effective approach for the discovery of RTA compounds.
Collapse
Affiliation(s)
- Ryota Mori
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masami Abe
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuma Saimoto
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Saki Shinto
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Sara Jodai
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Manami Tomomatsu
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kaho Tazoe
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Minato Ishida
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masataka Enoki
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Nao Kato
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomohiro Yamashita
- Department of Drug Discovery Structural Biology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuki Itabashi
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Kei Ohkubo
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan; Institute for Advanced Co-Creation Studies, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Sachiko Kaidzu
- Department of Ophthalmology, Shimane University Faculty of Medicine, 89-1 Enya Izumo, Shimane, 693-8501, Japan
| | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, 89-1 Enya Izumo, Shimane, 693-8501, Japan
| | - Yuta Matsuoka
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazushi Morimoto
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ken-Ichi Yamada
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
3
|
Jeon Y, Ahn CS, Char K, Lim J. Size Control and Antioxidant Properties of Sulfur-Rich Polymer Colloids from Interfacial Polymerization. Macromol Rapid Commun 2024; 45:e2300747. [PMID: 38652855 DOI: 10.1002/marc.202300747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/15/2024] [Indexed: 04/25/2024]
Abstract
High sulfur content polymeric materials, known for their intriguing properties such as high refractive indices and high electrochemical capacities, have garnered significant interest in recent years for their applications in optics, antifouling surfaces, triboelectrics, and electrochemistry. Despite the high interest, most high sulfur-content polymers reported to date are either bulk materials or thin films, and there is a general lack of research into sulfur-rich polymer colloids. Water-dispersed, sulfur-rich particles are anticipated to broaden the range of applications for sulfur-containing materials. In this study, the preparation and size control parameters are presented of an aqueous dispersion of sulfur-rich polymers with the sulfur content of dispersed particles exceeding 75 wt%. Employing polymeric stabilizers with varying hydrophilic-lipophilic balance (HLB), along with changing the rank of inorganic polysulfides, allow for the control of particle size in the range of 360 nm - 1.8 µm. The sulfur-rich colloid demonstrates antioxidant properties in water, demonstrating the potential for the use of sulfur-rich polymeric materials readily removable, heterogeneous radical scavengers.
Collapse
Affiliation(s)
- Yujin Jeon
- Department of Chemistry, Kyung Hee University, Seoul, 02447, Republic of Korea
- Current address: Korea Testing Laboratory (KTL), 87 Digital-ro 26-gil, Guro-gu, Seoul, 08389, Republic of Korea
| | - Chi Sup Ahn
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 00826, Republic of Korea
| | - Kookheon Char
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 00826, Republic of Korea
| | - Jeewoo Lim
- Department of Chemistry, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
4
|
Farmer LA, Pratt DA. Non-Tertiary Alkyl Substituents Enhance High-Temperature Radical Trapping by Phenothiazine and Phenoxazine Antioxidants. J Org Chem 2024; 89:6126-6137. [PMID: 38619817 DOI: 10.1021/acs.joc.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Radical-trapping antioxidants (RTAs) are an indispensable class of additive used to preserve hydrocarbon materials from oxidative degradation. Materials that are regularly subjected to elevated temperatures where autoxidation is self-initiated (i.e., >120 °C) require high concentrations of RTA for protection. Not only is this costly, but it can negatively impact material performance. Herein we show that inhibition of the autoxidation of a model hydrocarbon (n-hexadecane) by phenothiazine (PTZ) at ≥160 °C can be greatly enhanced by the incorporation of either 1° or 2° alkyl substituents in the 3- and/or 7-positions of the scaffold. Structure-reactivity studies, product analyses and computations suggest that this results from hydrogen atom transfer (HAT) from the benzylic carbon of these alkyl substituents in the PTZ-derived aminyl radical intermediate. The resultant iminoquinone methide can then undergo further radical-trapping reactions, depending on the nature of the alkyl substituent. Similar structure-reactivity relationships are observed for the phenoxazine (PNX) scaffold. These results not only have significant implications for the design and development of new high-temperature RTA technology, but also for understanding aminic RTA activity at elevated temperatures. Specifically, they suggest that a stoichiometric model better accounts for the RTA activity of aromatic amines in saturated hydrocarbons than the widely accepted catalytic model.
Collapse
Affiliation(s)
- Luke A Farmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
5
|
Asma U, Bertotti ML, Zamai S, Arnold M, Amorati R, Scampicchio M. A Kinetic Approach to Oxygen Radical Absorbance Capacity (ORAC): Restoring Order to the Antioxidant Activity of Hydroxycinnamic Acids and Fruit Juices. Antioxidants (Basel) 2024; 13:222. [PMID: 38397820 PMCID: PMC10886186 DOI: 10.3390/antiox13020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
This study introduces a kinetic model that significantly improves the interpretation of the oxygen radical absorbance capacity (ORAC) assay. Our model accurately simulates and fits the bleaching kinetics of fluorescein in the presence of various antioxidants, achieving high correlation values (R2 > 0.99) with the experimental data. The fit to the experimental data is achieved by optimizing two rate constants, k5 and k6. The k5 value reflects the reactivity of antioxidants toward scavenging peroxyl radicals, whereas k6 measures the ability of antioxidants to regenerate oxidized fluorescein. These parameters (1) allow the detailed classification of cinnamic acids based on their structure-activity relationships, (2) provide insights into the interaction of alkoxyl radicals with fluorescein, and (3) account for the regeneration of fluorescein radicals by antioxidants. The application of the model to different antioxidants and fruit extracts reveals significant deviations from the results of traditional ORAC tests based on the area under the curve (AUC) approach. For example, lemon juice, rich in 'fast' antioxidants such as ascorbic acid, shows a high k5 value, in contrast to its low AUC values. This finding underscores the limitations of the AUC approach and highlights the advantages of our kinetic model in understanding antioxidative dynamics in food systems. This study presents a comprehensive, quantitative, mechanism-oriented approach to assessing antioxidant reactivity, demonstrating a significant improvement in ORAC assay applications.
Collapse
Affiliation(s)
- Umme Asma
- Faculty of Agricultural, Environment and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (U.A.); (S.Z.)
| | - Maria Letizia Bertotti
- Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy;
| | - Simone Zamai
- Faculty of Agricultural, Environment and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (U.A.); (S.Z.)
| | - Marcellus Arnold
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60624 Poznań, Poland;
| | - Riccardo Amorati
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, 40129 Bologna, Italy;
| | - Matteo Scampicchio
- Faculty of Agricultural, Environment and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (U.A.); (S.Z.)
| |
Collapse
|
6
|
Wu Z, Vlaming R, Donohoe M, Pratt DA. Interrupted Homolytic Substitution Enables Organoboron Compounds to Inhibit Radical Chain Reactions Rather than Initiate Them. J Am Chem Soc 2024; 146:1153-1166. [PMID: 38156607 DOI: 10.1021/jacs.3c12438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The reactions of organoboranes with peroxyl radicals are key to their use as radical initiators for a vast array of radical chain reactions, particularly at low temperatures where high stereoselectivity or regioselectivity is desired. Whereas these reactions generally proceed via concerted homolytic substitution (SH2) mechanisms, organoboranes that bear groups that can stabilize tetracoordinate boron radical "ate" complexes (e.g., catecholboranes) undergo this reaction via a stepwise addition/fragmentation sequence and serve as useful stoichiometric alkyl radical precursors. Here we show that arylboronic esters and amides derived from catecholborane and diaminonaphthaleneborane, respectively, are potent radical-trapping antioxidants (RTAs). Mechanistic studies reveal that this is because the radical "ate" complexes derived from peroxyl radical addition to boron are sufficiently persistent to trap another radical in an interrupted SH2 reaction. Remarkably, the reactivity of these organoboranes as inhibitors of autoxidation was shown to translate from simple hydrocarbons to the phospholipids of biological membranes such that they can inhibit ferroptosis, the cell death modality driven by lipid autoxidation and relevant in neurodegeneration and other major pathologies. The unique mechanism of these organoboranes is one of only a handful of RTA mechanisms that are not based on H-atom transfer processes and provide a new dimension to boron chemistry and its applications.
Collapse
Affiliation(s)
- Zijun Wu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Robynne Vlaming
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Michael Donohoe
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
7
|
Hanson CS, Donohoe M, Pratt DA. Enhancement of Diarylamine Antioxidant Activity by Molybdenum Dithiocarbamates. J Org Chem 2023. [PMID: 38051117 DOI: 10.1021/acs.joc.3c02246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Molybdenum dithiocarbamates (MDTCs) are indispensable lubricant additives. Although their role as antiwear agents is well established, they have also been attributed antioxidant properties that are not understood. MDTCs do not inhibit autoxidation, but they markedly enhance the capacity of diphenylamines (DPAs)─ubiquitous radical-trapping antioxidants (RTAs)─to do so. We find this synergy to be evident not only at elevated temperatures (160 °C in n-hexadecane) but also at moderate temperatures, where autoxidations can be continuously monitored and kinetics more easily interpreted (100 °C in squalane). Interestingly, the synergy disappeared in an unsaturated hydrocarbon (n-hexadec-1-ene), where the RTA activity of the DPA is known to result from the diarylnitroxide derived therefrom. Autoxidations of squalane carried out in the presence of the diarylnitroxide─wherein it is a poor inhibitor─were much better inhibited in the presence of MDTC, suggesting that it converts the nitroxide to (a) more competent RTA(s). Indeed, preparative experiments revealed two species: DPA and a DPA dimer into which a single oxygen atom had been incorporated. This conversion is accelerated by the oxidation of MDTC to a dioxo molybdenum species. A mechanism is proposed to account for these observations, and the implications of our findings and their interpretation are discussed.
Collapse
Affiliation(s)
- Carly S Hanson
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa K1N 6N5, Ontario, Canada
| | - Michael Donohoe
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa K1N 6N5, Ontario, Canada
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa K1N 6N5, Ontario, Canada
| |
Collapse
|
8
|
Wu Z, Khodade VS, Chauvin JPR, Rodriguez D, Toscano JP, Pratt DA. Hydropersulfides Inhibit Lipid Peroxidation and Protect Cells from Ferroptosis. J Am Chem Soc 2022; 144:15825-15837. [PMID: 35977425 DOI: 10.1021/jacs.2c06804] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydropersulfides (RSSH) are believed to serve important roles in vivo, including as scavengers of damaging oxidants and electrophiles. The α-effect makes RSSH not only much better nucleophiles than thiols (RSH), but also much more potent H-atom transfer agents. Since HAT is the mechanism of action of the most potent small-molecule inhibitors of phospholipid peroxidation and associated ferroptotic cell death, we have investigated their reactivity in this context. Using the fluorescence-enabled inhibited autoxidation (FENIX) approach, we have found RSSH to be highly reactive toward phospholipid-derived peroxyl radicals (kinh = 2 × 105 M-1 s-1), equaling the most potent ferroptosis inhibitors identified to date. Related (poly)sulfide products resulting from the rapid self-reaction of RSSH under physiological conditions (e.g., disulfide, trisulfide, H2S) are essentially unreactive, but combinations from which RSSH can be produced in situ (i.e., polysulfides with H2S or thiols with H2S2) are effective. In situ generation of RSSH from designed precursors which release RSSH via intramolecular substitution or hydrolysis improve the radical-trapping efficiency of RSSH by minimizing deleterious self-reactions. A brief survey of structure-reactivity relationships enabled the design of new precursors that are more efficient. The reactivity of RSSH and their precursors translates from (phospho)lipid bilayers to cell culture (mouse embryonic fibroblasts), where they were found to inhibit ferroptosis induced by inactivation of glutathione peroxidase-4 (GPX4) or deletion of the gene encoding it. These results suggest that RSSH and the pathways responsible for their biosynthesis may act as a ferroptosis suppression system alongside the recently discovered FSP1/ubiquinone and GCH1/BH4/DHFR systems.
Collapse
Affiliation(s)
- Zijun Wu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ONK1N 6N5, Canada
| | - Vinayak S Khodade
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland21218, United States
| | - Jean-Philippe R Chauvin
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ONK1N 6N5, Canada
| | - Deborah Rodriguez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland21218, United States
| | - John P Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland21218, United States
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ONK1N 6N5, Canada
| |
Collapse
|
9
|
Farmer LA, Wu Z, Poon JF, Zilka O, Lorenz SM, Huehn S, Proneth B, Conrad M, Pratt DA. Intrinsic and Extrinsic Limitations to the Design and Optimization of Inhibitors of Lipid Peroxidation and Associated Cell Death. J Am Chem Soc 2022; 144:14706-14721. [PMID: 35921655 DOI: 10.1021/jacs.2c05252] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The archetype inhibitors of ferroptosis, ferrostatin-1 and liproxstatin-1, were identified via high-throughput screening of compound libraries for cytoprotective activity. These compounds have been shown to inhibit ferroptosis by suppressing propagation of lipid peroxidation, the radical chain reaction that drives cell death. Herein, we present the first rational design and optimization of ferroptosis inhibitors targeting this mechanism of action. Engaging the most potent radical-trapping antioxidant (RTA) scaffold known (phenoxazine, PNX), and its less reactive chalcogen cousin (phenothiazine, PTZ), we explored structure-reactivity-potency relationships to elucidate the intrinsic and extrinsic limitations of this approach. The results delineate the roles of inherent RTA activity, H-bonding interactions with phospholipid headgroups, and lipid solubility in determining activity/potency. We show that modifications which increase inherent RTA activity beyond that of the parent compounds do not substantially improve RTA kinetics in phospholipids or potency in cells, while modifications that decrease intrinsic RTA activity lead to corresponding erosions to both. The apparent "plateau" of RTA activity in phospholipid bilayers (kinh ∼ 2 × 105 M-1 s-1) and cell potency (EC50 ∼ 4 nM) may be the result of diffusion-controlled reactivity between the RTA and lipid-peroxyl radicals and/or the potential limitations on RTA turnover/regeneration by endogenous reductants. The metabolic stability of selected derivatives was assessed to identify a candidate for in vivo experimentation as a proof-of-concept. This PNX-derivative demonstrated stability in mouse liver microsomes comparable to liproxstatin-1 and was successfully used to suppress acute renal failure in mice brought on by tissue-specific inactivation of the ferroptosis regulator GPX4.
Collapse
Affiliation(s)
- Luke A Farmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Zijun Wu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Jia-Fei Poon
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Omkar Zilka
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Svenja M Lorenz
- Institute of Metabolism and Cell Death, Helmholtz Munich, Neuherberg 85764, Germany
| | - Stephanie Huehn
- Institute of Metabolism and Cell Death, Helmholtz Munich, Neuherberg 85764, Germany
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Helmholtz Munich, Neuherberg 85764, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Munich, Neuherberg 85764, Germany
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
10
|
|
11
|
Zilka O, Poon JF, Pratt DA. Radical-Trapping Antioxidant Activity of Copper and Nickel Bis(Thiosemicarbazone) Complexes Underlies Their Potency as Inhibitors of Ferroptotic Cell Death. J Am Chem Soc 2021; 143:19043-19057. [PMID: 34730342 DOI: 10.1021/jacs.1c08254] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein we demonstrate that copper(II)-diacetyl-bis(N4-methylthiosemicarbazone)(CuATSM), clinical candidate for the treatment of ALS and Parkinson's disease, is a highly potent radical-trapping antioxidant (RTA) and inhibitor of (phospho)lipid peroxidation. In THF autoxidations, CuATSM reacts with THF-derived peroxyl radicals with kinh = 2.2 × 106 M-1 s-1─roughly 10-fold greater than α-tocopherol (α-TOH), Nature's best RTA. Mechanistic studies reveal no H/D kinetic isotope effects and a lack of rate-suppressing effects from H-bonding interactions, implying a different mechanism from α-TOH and other canonical RTAs, which react by H-atom transfer (HAT). Similar reactivity was observed for the corresponding Ni2+ complex and complexes of both Cu2+ and Ni2+ with other bis(thiosemicarbazone) ligands. Computations corroborate the experimental finding that rate-limiting HAT cannot account for the observed RTA activity and instead suggest that the reversible addition of a peroxyl radical to the bis(thiosemicarbazone) ligand is responsible. Subsequent HAT or combination with another peroxyl radical drives the reaction forward, such that a maximum of four radicals are trapped per molecule of CuATSM. This sequence is supported by spectroscopic and mass spectrometric experiments on isolated intermediates. Importantly, the RTA activity of CuATSM (and its analogues) translates from organic solution to phospholipid bilayers, thereby accounting for its (their) ability to inhibit ferroptosis. Experiments in mouse embryonic fibroblasts and hippocampal cells reveal that lipophilicity as well as inherent RTA activity contribute to the potency of ferroptosis rescue, and that one compound (CuATSP) is almost 20-fold more potent than CuATSM and among the most potent ferroptosis inhibitors reported to date.
Collapse
Affiliation(s)
- Omkar Zilka
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jia-Fei Poon
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
12
|
Baschieri A, Amorati R. Methods to Determine Chain-Breaking Antioxidant Activity of Nanomaterials beyond DPPH •. A Review. Antioxidants (Basel) 2021; 10:1551. [PMID: 34679687 PMCID: PMC8533328 DOI: 10.3390/antiox10101551] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
This review highlights the progress made in recent years in understanding the mechanism of action of nanomaterials with antioxidant activity and in the chemical methods used to evaluate their activity. Nanomaterials represent one of the most recent frontiers in the research for improved antioxidants, but further development is hampered by a poor characterization of the ''antioxidant activity'' property and by using oversimplified chemical methods. Inhibited autoxidation experiments provide valuable information about the interaction with the most important radicals involved in the lipid oxidation, namely alkylperoxyl and hydroperoxyl radicals, and demonstrate unambiguously the ability to stop the oxidation of organic materials. It is proposed that autoxidation methods should always complement (and possibly replace) the use of assays based on the quenching of stable radicals (such as DPPH• and ABTS•+). The mechanisms leading to the inhibition of the autoxidation (sacrificial and catalytic radical trapping antioxidant activity) are described in the context of nanoantioxidants. Guidelines for the selection of the appropriate testing conditions and of meaningful kinetic analysis are also given.
Collapse
Affiliation(s)
- Andrea Baschieri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche (ISOF-CNR), Via P. Gobetti 101, 40129 Bologna, Italy;
| | - Riccardo Amorati
- Department of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| |
Collapse
|
13
|
Tonnus W, Meyer C, Steinebach C, Belavgeni A, von Mässenhausen A, Gonzalez NZ, Maremonti F, Gembardt F, Himmerkus N, Latk M, Locke S, Marschner J, Li W, Short S, Doll S, Ingold I, Proneth B, Daniel C, Kabgani N, Kramann R, Motika S, Hergenrother PJ, Bornstein SR, Hugo C, Becker JU, Amann K, Anders HJ, Kreisel D, Pratt D, Gütschow M, Conrad M, Linkermann A. Dysfunction of the key ferroptosis-surveilling systems hypersensitizes mice to tubular necrosis during acute kidney injury. Nat Commun 2021; 12:4402. [PMID: 34285231 PMCID: PMC8292346 DOI: 10.1038/s41467-021-24712-6] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Acute kidney injury (AKI) is morphologically characterized by a synchronized plasma membrane rupture of cells in a specific section of a nephron, referred to as acute tubular necrosis (ATN). Whereas the involvement of necroptosis is well characterized, genetic evidence supporting the contribution of ferroptosis is lacking. Here, we demonstrate that the loss of ferroptosis suppressor protein 1 (Fsp1) or the targeted manipulation of the active center of the selenoprotein glutathione peroxidase 4 (Gpx4cys/-) sensitize kidneys to tubular ferroptosis, resulting in a unique morphological pattern of tubular necrosis. Given the unmet medical need to clinically inhibit AKI, we generated a combined small molecule inhibitor (Nec-1f) that simultaneously targets receptor interacting protein kinase 1 (RIPK1) and ferroptosis in cell lines, in freshly isolated primary kidney tubules and in mouse models of cardiac transplantation and of AKI and improved survival in models of ischemia-reperfusion injury. Based on genetic and pharmacological evidence, we conclude that GPX4 dysfunction hypersensitizes mice to ATN during AKI. Additionally, we introduce Nec-1f, a solid inhibitor of RIPK1 and weak inhibitor of ferroptosis.
Collapse
Affiliation(s)
- Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Claudia Meyer
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Alexia Belavgeni
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Anne von Mässenhausen
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Nadia Zamora Gonzalez
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Francesca Maremonti
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Florian Gembardt
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrecht-University Kiel, Kiel, Germany
| | - Markus Latk
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Sophie Locke
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Julian Marschner
- Division of Nephrology, Department of Medicine IV, University Hospital LMU Munich, Munich, Germany
| | - Wenjun Li
- Department of Surgery, Washington University, Saint Louis, MO, USA
| | - Spencer Short
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Sebastian Doll
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Irina Ingold
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Nazanin Kabgani
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Rafael Kramann
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Stephen Motika
- Department of Pathobiology, University of Illinois, Urbana, IL, USA
| | | | - Stefan R Bornstein
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences, King's College London, London, UK
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden Faculty of Medicine, Dresden, Germany
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
| | - Christian Hugo
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Jan Ulrich Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, University Hospital LMU Munich, Munich, Germany
| | - Daniel Kreisel
- Department of Surgery, Washington University, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University, Saint Louis, MO, USA
| | - Derek Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
- National Research Medical University, Laboratory of Experimental Oncology, Moscow, Russia
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
14
|
A compendium of kinetic modulatory profiles identifies ferroptosis regulators. Nat Chem Biol 2021; 17:665-674. [PMID: 33686292 PMCID: PMC8159879 DOI: 10.1038/s41589-021-00751-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/27/2021] [Indexed: 01/31/2023]
Abstract
Cell death can be executed by regulated apoptotic and nonapoptotic pathways, including the iron-dependent process of ferroptosis. Small molecules are essential tools for studying the regulation of cell death. Using time-lapse imaging and a library of 1,833 bioactive compounds, we assembled a large compendium of kinetic cell death modulatory profiles for inducers of apoptosis and ferroptosis. From this dataset we identify dozens of ferroptosis suppressors, including numerous compounds that appear to act via cryptic off-target antioxidant or iron chelating activities. We show that the FDA-approved drug bazedoxifene acts as a potent radical trapping antioxidant inhibitor of ferroptosis both in vitro and in vivo. ATP-competitive mechanistic target of rapamycin (mTOR) inhibitors, by contrast, are on-target ferroptosis inhibitors. Further investigation revealed both mTOR-dependent and mTOR-independent mechanisms that link amino acid metabolism to ferroptosis sensitivity. These results highlight kinetic modulatory profiling as a useful tool to investigate cell death regulation.
Collapse
|
15
|
Shah R, Poon JF, Haidasz EA, Pratt DA. Temperature-Dependent Effects of Alkyl Substitution on Diarylamine Antioxidant Reactivity. J Org Chem 2021; 86:6538-6550. [PMID: 33900079 DOI: 10.1021/acs.joc.1c00365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alkylated diphenylamines are among the most efficacious radical-trapping antioxidants (RTAs) for applications at elevated temperatures since they are able to trap multiple radical equivalents due to catalytic cycles involving persistent diphenylnitroxide and diphenylaminyl radical intermediates. We have previously shown that some heterocyclic diarylamine RTAs possess markedly greater efficacy than typical alkylated diphenylamines, and herein, report on our efforts to identify optimal alkyl substitution of the scaffold, which we had found to be the ideal compromise between reactivity and stability. Interestingly, the structure-activity relationships differ dramatically with temperature: para-alkyl substitution slightly increased reactivity and stoichiometry at 37 and 100 °C due to more favorable (stereo)electronic effects and corresponding diarylaminyl/diarylnitroxide formation, while ortho-alkyl substitution slightly decreased both reactivity and stoichiometry. No such trends were evident at 160 °C; instead, the compounds were segregated into two groups based on the presence/absence of benzylic C-H bonds. Electron spin resonance spectroscopy indicates that increased efficacy was associated with lesser diarylnitroxide formation, and deuterium-labeling suggests that this is due to abstraction of the benzylic H atom, precluding nitroxide formation. Computations predict that this reaction path is competitive with established fates of the diarylaminyl radical, thereby minimizing the formation of off-cycle products and leading to significant gains in high-temperature RTA efficacy.
Collapse
Affiliation(s)
- Ron Shah
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Jia-Fei Poon
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Evan A Haidasz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
16
|
Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F, Molina H, Garcia-Bermudez J, Pratt DA, Birsoy K. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol 2020; 16:1351-1360. [PMID: 32778843 PMCID: PMC8299533 DOI: 10.1038/s41589-020-0613-y] [Citation(s) in RCA: 407] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/02/2020] [Indexed: 01/01/2023]
Abstract
Cancer cells rewire their metabolism and rely on endogenous antioxidants to mitigate lethal oxidative damage to lipids. However, the metabolic processes that modulate the response to lipid peroxidation are poorly defined. Using genetic screens, we compared metabolic genes essential for proliferation upon inhibition of cystine uptake or glutathione peroxidase-4 (GPX4). Interestingly, very few genes were commonly required under both conditions, suggesting that cystine limitation and GPX4 inhibition may impair proliferation via distinct mechanisms. Our screens also identify tetrahydrobiopterin (BH4) biosynthesis as an essential metabolic pathway upon GPX4 inhibition. Mechanistically, BH4 is a potent radical-trapping antioxidant that protects lipid membranes from autoxidation, alone and in synergy with vitamin E. Dihydrofolate reductase catalyzes the regeneration of BH4, and its inhibition by methotrexate synergizes with GPX4 inhibition. Altogether, our work identifies the mechanism by which BH4 acts as an endogenous antioxidant and provides a compendium of metabolic modifiers of lipid peroxidation.
Collapse
Affiliation(s)
- Mariluz Soula
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Ross A Weber
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Omkar Zilka
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Hanan Alwaseem
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Konnor La
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Frederick Yen
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Javier Garcia-Bermudez
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada.
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
17
|
Foret MK, Lincoln R, Do Carmo S, Cuello AC, Cosa G. Connecting the "Dots": From Free Radical Lipid Autoxidation to Cell Pathology and Disease. Chem Rev 2020; 120:12757-12787. [PMID: 33211489 DOI: 10.1021/acs.chemrev.0c00761] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our understanding of lipid peroxidation in biology and medicine is rapidly evolving, as it is increasingly implicated in various diseases but also recognized as a key part of normal cell function, signaling, and death (ferroptosis). Not surprisingly, the root and consequences of lipid peroxidation have garnered increasing attention from multiple disciplines in recent years. Here we "connect the dots" between the fundamental chemistry underpinning the cascade reactions of lipid peroxidation (enzymatic or free radical), the reactive nature of the products formed (lipid-derived electrophiles), and the biological targets and mechanisms associated with these products that culminate in cellular responses. We additionally bring light to the use of highly sensitive, fluorescence-based methodologies. Stemming from the foundational concepts in chemistry and biology, these methodologies enable visualizing and quantifying each reaction in the cascade in a cellular and ultimately tissue context, toward deciphering the connections between the chemistry and physiology of lipid peroxidation. The review offers a platform in which the chemistry and biomedical research communities can access a comprehensive summary of fundamental concepts regarding lipid peroxidation, experimental tools for the study of such processes, as well as the recent discoveries by leading investigators with an emphasis on significant open questions.
Collapse
Affiliation(s)
- Morgan K Foret
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Richard Lincoln
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Gonzalo Cosa
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| |
Collapse
|
18
|
Poon JF, Zilka O, Pratt DA. Potent Ferroptosis Inhibitors Can Catalyze the Cross-Dismutation of Phospholipid-Derived Peroxyl Radicals and Hydroperoxyl Radicals. J Am Chem Soc 2020; 142:14331-14342. [DOI: 10.1021/jacs.0c06379] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jia-Fei Poon
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Omkar Zilka
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Derek A. Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
19
|
Raycroft MAR, Chauvin JPR, Galliher MS, Romero KJ, Stephenson CRJ, Pratt DA. Quinone methide dimers lacking labile hydrogen atoms are surprisingly excellent radical-trapping antioxidants. Chem Sci 2020; 11:5676-5689. [PMID: 32832049 PMCID: PMC7422964 DOI: 10.1039/d0sc02020f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/06/2020] [Indexed: 11/21/2022] Open
Abstract
Quinone method dimers, (bio)synthetic intermediates en route to many naturally products derived from resveratrol, are potent radical-trapping antioxidants, besting the phenols from which they are derived and to which they can be converted.
Hydrogen atom transfer (HAT) is the mechanism by which the vast majority of radical-trapping antioxidants (RTAs), such as hindered phenols, inhibit autoxidation. As such, at least one weak O–H bond is the key structural feature which underlies the reactivity of phenolic RTAs. We recently observed that quinone methide dimers (QMDs) synthesized from hindered phenols are significantly more reactive RTAs than the phenols themselves despite lacking O–H bonds. Herein we describe our efforts to elucidate the mechanism by which they inhibit autoxidation. Four possible reaction paths were considered: (1) HAT from the C–H bonds on the carbon atoms which link the quinone methide moieties; (2) tautomerization or hydration of the quinone methide(s) in situ followed by HAT from the resultant phenolic O–H; (3) direct addition of peroxyl radicals to the quinone methide(s), and (4) homolysis of the weak central C–C bond in the QMD followed by combination of the resultant persistent phenoxyl radicals with peroxyl radicals. The insensitivity of the reactivity of the QMDs to substituent effects, solvent effects and a lack of kinetic isotope effects rule out the HAT reactions (mechanisms 1 and 2). Simple (monomeric) quinone methides, to which peroxyl radicals add, were found to be ca. 100-fold less reactive than the QMDs, ruling out mechanism 3. These facts, combined with the poor RTA activity we observe for a QMD with a stronger central C–C bond, support mechanism 4. The lack of solvent effects on the RTA activity of QMDs suggests that they may find application as additives to materials which contain H-bonding accepting moieties that can dramatically suppress the reactivity of conventional RTAs, such as phenols. This reactivity does not extend to biological membranes owing to the increased microviscosity of the phospholipid bilayer, which suppresses QMD dissociation in favour of recombination. Interestingly, the simple QMs were found to be very good RTAs in phospholipid bilayers – besting even the most potent form of vitamin E.
Collapse
Affiliation(s)
- Mark A R Raycroft
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , ON K1N 6N5 , Canada .
| | - Jean-Philippe R Chauvin
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , ON K1N 6N5 , Canada .
| | - Matthew S Galliher
- Department of Chemistry , University of Michigan , Ann Arbor , MI 48109 , USA .
| | - Kevin J Romero
- Department of Chemistry , University of Michigan , Ann Arbor , MI 48109 , USA .
| | | | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , ON K1N 6N5 , Canada .
| |
Collapse
|
20
|
Armenta DA, Dixon SJ. Investigating Nonapoptotic Cell Death Using Chemical Biology Approaches. Cell Chem Biol 2020; 27:376-386. [PMID: 32220334 PMCID: PMC7185180 DOI: 10.1016/j.chembiol.2020.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/11/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022]
Abstract
Nonapoptotic cell death is important for human health and disease. Here, we show how various tools and techniques drawn from the chemical biology field have played a central role in the discovery and characterization of nonapoptotic cell death pathways. Focusing on the example of ferroptosis, we describe how phenotypic screening, chemoproteomics, chemical genetic analysis, and other methods enabled the elucidation of this pathway. Synthetic small-molecule inducers and inhibitors of ferroptosis identified in early studies have now been leveraged to identify an even broader set of compounds that affect ferroptosis and to validate new chemical methods and probes for various ferroptosis-associated processes. A number of limitations associated with specific chemical biology tools or techniques have also emerged and must be carefully considered. Nevertheless, the study of ferroptosis provides a roadmap for how chemical biology methods may be used to discover and characterize nonapoptotic cell death mechanisms.
Collapse
Affiliation(s)
- David A. Armenta
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Scott J. Dixon
- Department of Biology, Stanford University, Stanford, CA 94305, USA,Lead contact:
| |
Collapse
|
21
|
Schaefer EL, Zopyrus N, Zielinski ZAM, Facey GA, Pratt DA. On the Products of Cholesterol Autoxidation in Phospholipid Bilayers and the Formation of Secosterols Derived Therefrom. Angew Chem Int Ed Engl 2020; 59:2089-2094. [DOI: 10.1002/anie.201914637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Emily L. Schaefer
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie Cure Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Nadia Zopyrus
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie Cure Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Zosia A. M. Zielinski
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie Cure Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Glenn A. Facey
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie Cure Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Derek A. Pratt
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie Cure Pvt. Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
22
|
Schaefer EL, Zopyrus N, Zielinski ZAM, Facey GA, Pratt DA. On the Products of Cholesterol Autoxidation in Phospholipid Bilayers and the Formation of Secosterols Derived Therefrom. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201914637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Emily L. Schaefer
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie Cure Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Nadia Zopyrus
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie Cure Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Zosia A. M. Zielinski
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie Cure Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Glenn A. Facey
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie Cure Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Derek A. Pratt
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie Cure Pvt. Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
23
|
Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, Mourão A, Buday K, Sato M, Wanninger J, Vignane T, Mohana V, Rehberg M, Flatley A, Schepers A, Kurz A, White D, Sauer M, Sattler M, Tate EW, Schmitz W, Schulze A, O'Donnell V, Proneth B, Popowicz GM, Pratt DA, Angeli JPF, Conrad M. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 2019; 575:693-698. [PMID: 31634899 DOI: 10.1038/s41586-019-1707-0] [Citation(s) in RCA: 1751] [Impact Index Per Article: 350.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023]
Abstract
Ferroptosis is an iron-dependent form of necrotic cell death marked by oxidative damage to phospholipids1,2. To date, ferroptosis has been thought to be controlled only by the phospholipid hydroperoxide-reducing enzyme glutathione peroxidase 4 (GPX4)3,4 and radical-trapping antioxidants5,6. However, elucidation of the factors that underlie the sensitivity of a given cell type to ferroptosis7 is crucial to understand the pathophysiological role of ferroptosis and how it may be exploited for the treatment of cancer. Although metabolic constraints8 and phospholipid composition9,10 contribute to ferroptosis sensitivity, no cell-autonomous mechanisms have been identified that account for the resistance of cells to ferroptosis. Here we used an expression cloning approach to identify genes in human cancer cells that are able to complement the loss of GPX4. We found that the flavoprotein apoptosis-inducing factor mitochondria-associated 2 (AIFM2) is a previously unrecognized anti-ferroptotic gene. AIFM2, which we renamed ferroptosis suppressor protein 1 (FSP1) and which was initially described as a pro-apoptotic gene11, confers protection against ferroptosis elicited by GPX4 deletion. We further demonstrate that the suppression of ferroptosis by FSP1 is mediated by ubiquinone (also known as coenzyme Q10, CoQ10): the reduced form, ubiquinol, traps lipid peroxyl radicals that mediate lipid peroxidation, whereas FSP1 catalyses the regeneration of CoQ10 using NAD(P)H. Pharmacological targeting of FSP1 strongly synergizes with GPX4 inhibitors to trigger ferroptosis in a number of cancer entities. In conclusion, the FSP1-CoQ10-NAD(P)H pathway exists as a stand-alone parallel system, which co-operates with GPX4 and glutathione to suppress phospholipid peroxidation and ferroptosis.
Collapse
Affiliation(s)
- Sebastian Doll
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Florencio Porto Freitas
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Ron Shah
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Maceler Aldrovandi
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Irina Ingold
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrea Goya Grocin
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London, UK
| | | | - Elena Panzilius
- Institute of Stem Cell Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christina H Scheel
- Institute of Stem Cell Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Clinic for Dermatology, St Josef Hospital Bochum, University of Bochum, Bochum, Germany
| | - André Mourão
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Katalin Buday
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Mami Sato
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jonas Wanninger
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thibaut Vignane
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Vaishnavi Mohana
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Markus Rehberg
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, Neuherberg, Germany
| | - Aloys Schepers
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andreas Kurz
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Daniel White
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Markus Sauer
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Edward William Tate
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London, UK
| | - Werner Schmitz
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Almut Schulze
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Valerie O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Bettina Proneth
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Derek A Pratt
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | | | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
24
|
Shah R, Farmer LA, Zilka O, Van Kessel ATM, Pratt DA. Beyond DPPH: Use of Fluorescence-Enabled Inhibited Autoxidation to Predict Oxidative Cell Death Rescue. Cell Chem Biol 2019; 26:1594-1607.e7. [PMID: 31564533 DOI: 10.1016/j.chembiol.2019.09.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/21/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
"Antioxidant activity" is an often invoked, but generally poorly characterized, molecular property. Several assays are available to determine antioxidant activity, the most popular of which is based upon the ability of a putative antioxidant to reduce 2,2-diphenyl-1-picrylhydrazyl. Here, we show that the results of this assay do not correlate with the potency of putative antioxidants as inhibitors of ferroptosis, the oxidative cell death modality associated with (phospho)lipid peroxidation. We subsequently describe our efforts to develop an approach that quantifies the reactivity of putative antioxidants with the (phospho)lipid peroxyl radicals that propagate (phospho)lipid peroxidation (dubbed FENIX [fluorescence-enabled inhibited autoxidation]). The results obtained with FENIX afford an excellent correlation with anti-ferroptotic potency, which facilitates mechanistic characterization of ferroptosis inhibitors, and reveals the importance of H-bonding interactions between antioxidant and phospholipid that underlie both the lackluster antioxidant activity of phenols under physiologically relevant conditions and the emergence of arylamines as inhibitors of choice.
Collapse
Affiliation(s)
- Ron Shah
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Luke A Farmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Omkar Zilka
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Antonius T M Van Kessel
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
25
|
|
26
|
Chauvin JPR, Griesser M, Pratt DA. The antioxidant activity of polysulfides: it's radical! Chem Sci 2019; 10:4999-5010. [PMID: 31183049 PMCID: PMC6524666 DOI: 10.1039/c9sc00276f] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/22/2019] [Indexed: 01/25/2023] Open
Abstract
Sulfurized olefins (polysulfides) containing four (or more) sulfur atoms react efficiently with peroxyl radicals by homolytic substitution, accounting for their primary antioxidant activity.
Olefin sulfurization, wherein alkenes and sulfur are heated together at high temperatures, produces branched polysulfides. Due to their anti-wear properties, they are indispensible additives to lubricants, but are also added to other petroleum-derived products as oxidation inhibitors. Polysulfides also figure prominently in the chemistry and biology of garlic and other plants of the Allium species. We previously reported that trisulfides, upon oxidation to their corresponding 1-oxides, are surprisingly effective radical-trapping antioxidants (RTAs) at ambient temperatures. Herein, we show that the homolytic substitution mechanism responsible also operates for tetrasulfides, but not trisulfides, disulfides or sulfides. Moreover, we show that this reactivity persists at elevated temperature (160 °C), enabling tetrasulfides to not only eclipse their 1-oxides as RTAs, but also hindered phenols and alkylated diphenylamines – the most common industrial antioxidant additives. The reactivity is unique to higher polysulfides (n ≥ 4), since homolytic substitution upon them at S2 yields stabilized perthiyl radicals. The persistence of perthiyl radicals also underlies the greater reactivity of polysulfides at elevated temperatures relative to their 1-oxides, since homolytic S–S bond cleavage is reversible in the former, but not in the latter. These results suggest that olefin sulfurization processes optimized for tetrasulfide production will afford materials that impart significantly better oxidation stability to hydrocarbon-based products to which polysulfides are added. Moreover, it suggests that RTA activity may contribute to the biological activity of plant-derived polysulfides.
Collapse
Affiliation(s)
- Jean-Philippe R Chauvin
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario , Canada K1N 6N5 .
| | - Markus Griesser
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario , Canada K1N 6N5 .
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario , Canada K1N 6N5 .
| |
Collapse
|
27
|
Baschieri A, Amorati R, Benelli T, Mazzocchetti L, D'Angelo E, Valgimigli L. Enhanced Antioxidant Activity under Biomimetic Settings of Ascorbic Acid Included in Halloysite Nanotubes. Antioxidants (Basel) 2019; 8:E30. [PMID: 30691231 PMCID: PMC6406349 DOI: 10.3390/antiox8020030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 12/31/2022] Open
Abstract
Antioxidant activity of native vitamin C (ascorbic acid, AH₂) is hampered by instability in solution. Selective loading of AH₂ into the inner lumen of natural halloysite nanotubes (HNT) yields a composite nanoantioxidant (HNT/AH₂), which was characterized and investigated for its reactivity with the persistent 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical and with transient peroxyl radicals in the inhibited autoxidation of organic substrates, both in organic solution (acetonitrile) and in buffered (pH 7.4) water in comparison with native AH₂. HNT/AH₂ showed excellent antioxidant performance being more effective than native ascorbic acid by 131% in acetonitrile and 290% (three-fold) in aqueous solution, under identical settings. Reaction with peroxyl radicals has a rate constant of 1.4 × 10⁶ M-1 s-1 and 5.1 × 10⁴ M-1 s-1, respectively, in buffered water (pH 7.4) and acetonitrile, at 30 °C. Results offer physical understanding of the factors governing HNT/AH₂ reactivity. Improved performance of HNT/AH₂ is unprecedented among forms of stabilized ascorbic acid and its relevance is discussed on kinetic grounds.
Collapse
Affiliation(s)
- Andrea Baschieri
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy.
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy.
| | - Tiziana Benelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.
| | - Laura Mazzocchetti
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.
| | - Emanuele D'Angelo
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.
| | - Luca Valgimigli
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy.
| |
Collapse
|
28
|
Zielinski ZAM, Pratt DA. H-Atom Abstraction vs Addition: Accounting for the Diverse Product Distribution in the Autoxidation of Cholesterol and Its Esters. J Am Chem Soc 2019; 141:3037-3051. [DOI: 10.1021/jacs.8b11524] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zosia A. M. Zielinski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Derek A. Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
29
|
Romero KJ, Galliher MS, Raycroft MAR, Chauvin JPR, Bosque I, Pratt DA, Stephenson CRJ. Electrochemical Dimerization of Phenylpropenoids and the Surprising Antioxidant Activity of the Resultant Quinone Methide Dimers. Angew Chem Int Ed Engl 2018; 57:17125-17129. [PMID: 30474921 DOI: 10.1002/anie.201810870] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Indexed: 12/12/2022]
Abstract
A simple method for the dimerization of phenylpropenoid derivatives is reported. It leverages electrochemical oxidation of p-unsaturated phenols to access the dimeric materials in a biomimetic fashion. The mild nature of the transformation provides excellent functional group tolerance, resulting in a unified approach for the synthesis of a range of natural products and related analogues with excellent regiocontrol. The operational simplicity of the method allows for greater efficiency in the synthesis of complex natural products. Interestingly, the quinone methide dimer intermediates are potent radical-trapping antioxidants; more so than the phenols from which they are derived-or transformed to-despite the fact that they do not possess a labile H-atom for transfer to the peroxyl radicals that propagate autoxidation.
Collapse
Affiliation(s)
- Kevin J Romero
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matthew S Galliher
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mark A R Raycroft
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Jean-Philippe R Chauvin
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Irene Bosque
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | | |
Collapse
|
30
|
Romero KJ, Galliher MS, Raycroft MAR, Chauvin JR, Bosque I, Pratt DA, Stephenson CRJ. Electrochemical Dimerization of Phenylpropenoids and the Surprising Antioxidant Activity of the Resultant Quinone Methide Dimers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kevin J. Romero
- Department of Chemistry University of Michigan Ann Arbor MI 48109 USA
| | | | - Mark A. R. Raycroft
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Jean‐Philippe R. Chauvin
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Irene Bosque
- Department of Chemistry University of Michigan Ann Arbor MI 48109 USA
| | - Derek A. Pratt
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | | |
Collapse
|
31
|
Griesser M, Chauvin JPR, Pratt DA. The hydrogen atom transfer reactivity of sulfinic acids. Chem Sci 2018; 9:7218-7229. [PMID: 30288241 PMCID: PMC6148200 DOI: 10.1039/c8sc02400f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/30/2018] [Indexed: 12/23/2022] Open
Abstract
Sulfinic acids (RSO2H) have a reputation for being difficult reagents due to their facile autoxidation. Nevertheless, they have recently been employed as key reagents in a variety of useful radical chain reactions. To account for this paradox and enable further development of radical reactions employing sulfinic acids, we have characterized the thermodynamics and kinetics of their H-atom transfer reactions for the first time. The O-H bond dissociation enthalpy (BDE) of sulfinic acids was determined by radical equilibration to be ∼78 kcal mol-1; roughly halfway between the RS-H BDE in thiols (∼87 kcal mol-1) and RSO-H BDE in sulfenic acids (∼70 kcal mol-1). Regardless, RSH, RSOH and RSO2H have relatively similar inherent H-atom transfer reactivity to alkyl radicals (∼106 M-1 s-1). Counter-intuitively, the trend in rate constants with more reactive alkoxyl radicals follows the reaction energetics: ∼108 M-1 s-1 for RSO2H, midway between thiols (∼107 M-1 s-1) and sulfenic acids (∼109 M-1 s-1). Importantly, since sulfinic and sulfenic acids are very strong H-bond donors (αH2 ∼ 0.63 and 0.55, respectively), their reactivity is greatly attenuated in H-bond accepting solvents, whereas the reactivity of thiols is largely solvent-independent. Efforts to measure rate constants for the reactions of sulfinic acids with alkylperoxyl radicals were unsuccessful. Computations predict these reactions to be surprisingly slow; ∼1000-times slower than for thiols and ∼10 000 000-times slower than for sulfenic acids. On the other hand, the reaction of sulfinic acids with sulfonylperoxyl radicals - which propagate sulfinic acid autoxidation - is predicted to be almost diffusion-controlled. In fact, the rate-determining step in sulfinic acid autoxidation, and the reason they can be used for productive chemistry, is the relatively slow reaction of propagating sulfonyl radicals with O2 (∼106 M-1 s-1).
Collapse
Affiliation(s)
- Markus Griesser
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario , Canada K1N 6N5 .
| | - Jean-Philippe R Chauvin
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario , Canada K1N 6N5 .
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario , Canada K1N 6N5 .
| |
Collapse
|
32
|
Harrison KA, Haidasz EA, Griesser M, Pratt DA. Inhibition of hydrocarbon autoxidation by nitroxide-catalyzed cross-dismutation of hydroperoxyl and alkylperoxyl radicals. Chem Sci 2018; 9:6068-6079. [PMID: 30079220 PMCID: PMC6053651 DOI: 10.1039/c8sc01575a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/11/2018] [Indexed: 11/21/2022] Open
Abstract
Nitroxides are putative intermediates in the accepted reaction mechanisms of the diarylamine and hindered amine antioxidants that are universally added to preserve synthetic and natural hydrocarbon-based materials. New methodology which enables monitoring of hydrocarbon autoxidations at low rates of radical generation has revealed that diarylnitroxides and hindered nitroxides are far better inhibitors of unsaturated hydrocarbon autoxidation than their precursor amines, implying intervention of a different mechanism. Experimental and computational investigations suggest that the nitroxides catalyze the cross-dismutation of hydroperoxyl and alkylperoxyl radicals to yield O2 and a hydroperoxide, thereby halting the autoxidation chain reaction. The hydroperoxyl radicals - key players in hydrocarbon combustion, but essentially unknown in autoxidation - are proposed to derive from a tunneling-enhanced intramolecular (1,4-) hydrogen-atom transfer/elimination sequence from oxygenated radical addition intermediates. These insights suggest that nitroxides are preferred additives for the protection of hydrocarbon-based materials from autoxidation since they exhibit catalytic activity under conditions where their precursor amines are less effective and/or inefficiently converted to nitroxides in situ.
Collapse
Affiliation(s)
- Kareem A Harrison
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario , Canada K1N 6N5 .
| | - Evan A Haidasz
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario , Canada K1N 6N5 .
| | - Markus Griesser
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario , Canada K1N 6N5 .
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario , Canada K1N 6N5 .
| |
Collapse
|
33
|
Peterson JA, Wijesooriya C, Gehrmann EJ, Mahoney KM, Goswami PP, Albright TR, Syed A, Dutton AS, Smith EA, Winter AH. Family of BODIPY Photocages Cleaved by Single Photons of Visible/Near-Infrared Light. J Am Chem Soc 2018; 140:7343-7346. [PMID: 29775298 DOI: 10.1021/jacs.8b04040] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photocages are light-sensitive chemical protecting groups that provide external control over when, where, and how much of a biological substrate is activated in cells using targeted light irradiation. Regrettably, most popular photocages (e.g., o-nitrobenzyl groups) absorb cell-damaging ultraviolet wavelengths. A challenge with achieving longer wavelength bond-breaking photochemistry is that long-wavelength-absorbing chromophores have shorter excited-state lifetimes and diminished excited-state energies. However, here we report the synthesis of a family of BODIPY-derived photocages with tunable absorptions across the visible/near-infrared that release chemical cargo under irradiation. Derivatives with appended styryl groups feature absorptions above 700 nm, yielding photocages cleaved with the highest known wavelengths of light via a direct single-photon-release mechanism. Photorelease with red light is demonstrated in living HeLa cells, Drosophila S2 cells, and bovine GM07373 cells upon ∼5 min irradiation. No cytotoxicity is observed at 20 μM photocage concentration using the trypan blue exclusion assay. Improved B-alkylated derivatives feature improved quantum efficiencies of photorelease ∼20-fold larger, on par with the popular o-nitrobenzyl photocages (εΦ = 50-100 M-1 cm-1), but absorbing red/near-IR light in the biological window instead of UV light.
Collapse
Affiliation(s)
- Julie A Peterson
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Chamari Wijesooriya
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Elizabeth J Gehrmann
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Kaitlyn M Mahoney
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Pratik P Goswami
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Toshia R Albright
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Aleem Syed
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Andrew S Dutton
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Emily A Smith
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Arthur H Winter
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| |
Collapse
|
34
|
Amorati R, Valgimigli L. Methods To Measure the Antioxidant Activity of Phytochemicals and Plant Extracts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3324-3329. [PMID: 29557653 DOI: 10.1021/acs.jafc.8b01079] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Measurement of antioxidant properties in plant-derived compounds requires appropriate methods that address the mechanism of antioxidant activity and focus on the kinetics of the reactions involving the antioxidants. Methods based on inhibited autoxidations are the most suited for chain-breaking antioxidants and for termination-enhancing antioxidants, while different specific studies are needed for preventive antioxidants. A selection of chemical testing methods is critically reviewed, highlighting their advantages and limitations and discussing their usefulness to investigate both pure molecules and raw extracts. The influence of the reaction medium on antioxidants' performance is also addressed.
Collapse
Affiliation(s)
- Riccardo Amorati
- University of Bologna , Department of Chemistry "G. Ciamician" , Via S. Giacomo 11 , 40126 Bologna , Italy
| | - Luca Valgimigli
- University of Bologna , Department of Chemistry "G. Ciamician" , Via S. Giacomo 11 , 40126 Bologna , Italy
| |
Collapse
|
35
|
Shah R, Shchepinov MS, Pratt DA. Resolving the Role of Lipoxygenases in the Initiation and Execution of Ferroptosis. ACS CENTRAL SCIENCE 2018; 4:387-396. [PMID: 29632885 PMCID: PMC5879472 DOI: 10.1021/acscentsci.7b00589] [Citation(s) in RCA: 443] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 05/19/2023]
Abstract
Lipoxygenases (LOXs) have been implicated as central players in ferroptosis, a recently characterized cell death modality associated with the accumulation of lipid hydroperoxides: the products of LOX catalysis. To provide insight on their role, human embryonic kidney cells were transfected to overexpress each of the human isoforms associated with disease, 5-LOX, p12-LOX, and 15-LOX-1, which yielded stable cell lines that were demonstrably sensitized to ferroptosis. Interestingly, the cells could be rescued by less than half of a diverse collection of known LOX inhibitors. Furthermore, the cytoprotective compounds were similarly potent in each of the cell lines even though some were clearly isoform-selective LOX inhibitors. The cytoprotective compounds were subsequently demonstrated to be effective radical-trapping antioxidants, which protect lipids from autoxidation, the autocatalytic radical chain reaction that produces lipid hydroperoxides. From these data (and others reported herein), a picture emerges wherein LOX activity may contribute to the cellular pool of lipid hydroperoxides that initiate ferroptosis, but lipid autoxidation drives the cell death process.
Collapse
Affiliation(s)
- Ron Shah
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | | | - Derek A. Pratt
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
- E-mail:
| |
Collapse
|
36
|
Griesser M, Shah R, Van Kessel AT, Zilka O, Haidasz EA, Pratt DA. The Catalytic Reaction of Nitroxides with Peroxyl Radicals and Its Relevance to Their Cytoprotective Properties. J Am Chem Soc 2018; 140:3798-3808. [PMID: 29451786 DOI: 10.1021/jacs.8b00998] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sterically-hindered nitroxides such as 2,2,6,6-tetramethylpiperidin- N-oxyl (TEMPO) have long been ascribed antioxidant activity that is thought to underlie their chemopreventive and anti-aging properties. However, the most commonly invoked reactions in this context-combination with an alkyl radical to give a redox inactive alkoxyamine or catalysis of superoxide dismutation-are unlikely to be relevant under (most) physiological conditions. Herein, we characterize the kinetics and mechanisms of the reactions of TEMPO, as well as an N-arylnitroxide and an N, N-diarylnitroxide, with alkylperoxyl radicals, the propagating species in lipid peroxidation. In each of aqueous solution and lipid bilayers, they are found to be significantly more reactive than Vitamin E, Nature's premier radical-trapping antioxidant (RTA). Inhibited autoxidations of THF in aqueous buffers reveal that nitroxides reduce peroxyl radicals by electron transfer with rate constants ( k ≈ 106 to >107 M-1 s-1) that correlate with the standard potentials of the nitroxides ( E° ≈ 0.75-0.95 V vs NHE) and that this activity is catalytic in nitroxide. Regeneration of the nitroxide occurs by a two-step process involving hydride transfer from the substrate to the nitroxide-derived oxoammonium ion followed by H-atom transfer from the resultant hydroxylamine to a peroxyl radical. This reactivity extends from aqueous solution to phosphatidylcholine liposomes, where added NADPH can be used as a hydride donor to promote nitroxide recycling, as well as to cell culture, where the nitroxides are shown to be potent inhibitors of lipid peroxidation-associated cell death (ferroptosis). These insights have enabled the identification of the most potent nitroxide RTA and anti-ferroptotic agent yet described: phenoxazine- N-oxyl.
Collapse
Affiliation(s)
- Markus Griesser
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Ron Shah
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Antonius T Van Kessel
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Omkar Zilka
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Evan A Haidasz
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| |
Collapse
|
37
|
Shah R, Margison K, Pratt DA. The Potency of Diarylamine Radical-Trapping Antioxidants as Inhibitors of Ferroptosis Underscores the Role of Autoxidation in the Mechanism of Cell Death. ACS Chem Biol 2017; 12:2538-2545. [PMID: 28837769 DOI: 10.1021/acschembio.7b00730] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two aromatic amines (ferrostatin-1 and liproxstatin-1) were recently identified from high-throughput screening efforts to uncover potent inhibitors of ferroptosis, the necrotic-like cell death induced by inhibition of glutathione peroxidase 4 (GPX4), deletion of the corresponding gpx4 gene, or starvation of GPX4 of its reducing cosubstrate, glutathione (GSH). We have since demonstrated that these two aromatic amines are highly effective radical-trapping antioxidants (RTAs) in lipid bilayers, suggesting that they subvert ferroptosis by inhibiting lipid peroxidation (autoxidation) and, thus, that this process drives the execution of ferroptosis. Herein, we show that diarylamine RTAs used to protect petroleum-derived products from autoxidation can be potent inhibitors of ferroptosis. The diarylamines investigated include representative examples of additives to engine oils, greases and rubber (4,4'-dialkyldiphenylamines), core structures of dyes and pharmaceuticals (phenoxazines and phenothiazines), and aza-analogues of these three classes of compounds that we have recently shown can be modified to achieve much greater reactivity. We find that regardless of how ferroptosis is induced (GPX4 inhibition, gpx4 deletion or GSH depletion), compounds which possess good RTA activity in organic solution (kinh > 105 M-1 s-1) and lipid bilayers (kinh > 104 M-1 s-1) are generally potent inhibitors of ferroptosis (in mouse embryonic fibroblasts). Likewise, structural analogs that do not possess RTA activity are devoid of antiferroptotic activity. These results further support the argument that lipid peroxidation (autoxidation) plays a major role in the mechanism of cell death induced by either GPX4 inhibition, gpx4 deletion, or GSH depletion. Moreover, it offers clear direction that ongoing medicinal chemistry efforts on liproxstatin and ferrostatin derivatives, which have been proposed as lead compounds for the treatment and/or prevention of ischemia/reperfusion injury, renal failure, and neurodegeneration, can be widened to include other aminic RTAs. To aid in these efforts, some relevant structure-reactivity relationships are discussed.
Collapse
Affiliation(s)
- Ron Shah
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, Canada K1N 6N5
| | - Kaitlyn Margison
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, Canada K1N 6N5
| | - Derek A. Pratt
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
38
|
Farmer LA, Haidasz EA, Griesser M, Pratt DA. Phenoxazine: A Privileged Scaffold for Radical-Trapping Antioxidants. J Org Chem 2017; 82:10523-10536. [PMID: 28885854 DOI: 10.1021/acs.joc.7b02025] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diphenylamines are widely used to protect petroleum-derived products from autoxidation. Their efficacy as radical-trapping antioxidants (RTAs) relies on a balance of fast H-atom transfer kinetics and stability to one-electron oxidation by peroxidic species. Both H-atom transfer and one-electron oxidation are enhanced by substitution with electron-donating substituents, such as the S-atom in phenothiazines, another important class of RTA. Herein we report the results of our investigations of the RTA activity of the structurally related, but essentially ignored, phenoxazines. We find that the H-atom transfer reactivity of substituted phenoxazines follows an excellent Evans-Polanyi correlation spanning kinh = 4.5 × 106 M-1 s-1 and N-H BDE = 77.4 kcal mol-1 for 3-CN,7-NO2-phenoxazine to kinh = 6.6 × 108 M-1 s-1 and N-H BDE = 71.8 kcal mol-1 for 3,7-(OMe)2-phenoxazine (37 °C). The reactivity of the latter compound is the greatest of any RTA ever reported and is likely to represent a reaction without an enthalpic barrier since log A for this reaction is likely ∼8.5. The very high reactivity of most of the phenoxazines studied required the determination of their kinetic parameters by inhibited autoxidations in the presence of a very strong H-bonding cosolvent (DMSO), which slowed the observed rates by up to 2 orders of magnitude by dynamically reducing the equilibrium concentration of (free) phenoxazine as an H-atom donor. Despite their remarkably high reactivity toward peroxyl radicals, the phenoxazines were found to be comparatively stable to one-electron oxidation relative to diphenylamines and phenothiazines (E° ranging from 0.59 to 1.38 V vs NHE). Thus, phenoxazines with comparable oxidative stability to commonly used diphenylamine and phenothiazine RTAs had significantly greater reactivity (by up to 2 orders of magnitude). Computations suggest that this remarkable balance in H-atom transfer kinetics and stability to one-electron oxidation results from the ability of the bridging oxygen atom in phenoxazine to serve as both a π-electron donor to stabilize the aminyl radical and σ-electron acceptor to destabilize the aminyl radical cation. Perhaps most excitingly, phenoxazines have "non-classical" RTA activity, where they trap >2 peroxyl radicals each, at ambient temperatures.
Collapse
Affiliation(s)
- Luke A Farmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa , 10 Marie Curie Pvt., Ottawa, Canada
| | - Evan A Haidasz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa , 10 Marie Curie Pvt., Ottawa, Canada
| | - Markus Griesser
- Department of Chemistry and Biomolecular Sciences, University of Ottawa , 10 Marie Curie Pvt., Ottawa, Canada
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa , 10 Marie Curie Pvt., Ottawa, Canada
| |
Collapse
|
39
|
Keylor MH, Matsuura BS, Griesser M, Chauvin JPR, Harding RA, Kirillova MS, Zhu X, Fischer OJ, Pratt DA, Stephenson CRJ. Synthesis of resveratrol tetramers via a stereoconvergent radical equilibrium. Science 2017; 354:1260-1265. [PMID: 27940867 DOI: 10.1126/science.aaj1597] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022]
Abstract
Persistent free radicals have become indispensable in the synthesis of organic materials through living radical polymerization. However, examples of their use in the synthesis of small molecules are rare. Here, we report the application of persistent radical and quinone methide intermediates to the synthesis of the resveratrol tetramers nepalensinol B and vateriaphenol C. The spontaneous cleavage and reconstitution of exceptionally weak carbon-carbon bonds has enabled a stereoconvergent oxidative dimerization of racemic materials in a transformation that likely coincides with the biogenesis of these natural products. The efficient synthesis of higher-order oligomers of resveratrol will facilitate the biological studies necessary to elucidate their mechanism(s) of action.
Collapse
Affiliation(s)
- Mitchell H Keylor
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | - Bryan S Matsuura
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | - Markus Griesser
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private,Ottawa, Ontario K1N 6N5, Canada
| | - Jean-Philippe R Chauvin
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private,Ottawa, Ontario K1N 6N5, Canada
| | - Ryan A Harding
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | - Mariia S Kirillova
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | - Xu Zhu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | - Oliver J Fischer
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private,Ottawa, Ontario K1N 6N5, Canada.
| | - Corey R J Stephenson
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
40
|
Abstract
γ-Butenolides, γ-butyrolactones, and derivatives, especially in enantiomerically pure form, constitute the structural core of numerous natural products which display an impressive range of biological activities which are important for the development of novel physiological and therapeutic agents. Furthermore, optically active γ-butenolides and γ-butyrolactones serve also as a prominent class of chiral building blocks for the synthesis of diverse biological active compounds and complex molecules. Taking into account the varying biological activity profiles and wide-ranging structural diversity of the optically active γ-butenolide or γ-butyrolactone structure, the development of asymmetric synthetic strategies for assembling such challenging scaffolds has attracted major attention from synthetic chemists in the past decade. This review offers an overview of the different enantioselective synthesis of γ-butenolides and γ-butyrolactones which employ catalytic amounts of metal complexes or organocatalysts, with emphasis focused on the mechanistic issues that account for the observed stereocontrol of the representative reactions, as well as practical applications and synthetic potentials.
Collapse
Affiliation(s)
- Bin Mao
- Stratingh Institute for Chemistry, University of Groningen , Nijenborg 4, 9747 AG Groningen, The Netherlands.,National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology , Hangzhou 310014, P. R. China
| | - Martín Fañanás-Mastral
- Stratingh Institute for Chemistry, University of Groningen , Nijenborg 4, 9747 AG Groningen, The Netherlands.,Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela , Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen , Nijenborg 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
41
|
Chauvin JPR, Griesser M, Pratt DA. Hydropersulfides: H-Atom Transfer Agents Par Excellence. J Am Chem Soc 2017; 139:6484-6493. [DOI: 10.1021/jacs.7b02571] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jean-Philippe R. Chauvin
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Markus Griesser
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Derek A. Pratt
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
42
|
Haidasz EA, Pratt DA. Diazaphenoxazines and Diazaphenothiazines: Synthesis of the “Correct” Isomers Reveals They Are Highly Reactive Radical-Trapping Antioxidants. Org Lett 2017; 19:1854-1857. [DOI: 10.1021/acs.orglett.7b00615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Evan A. Haidasz
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Derek A. Pratt
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
43
|
Zilka O, Shah R, Li B, Friedmann Angeli JP, Griesser M, Conrad M, Pratt DA. On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in Ferroptotic Cell Death. ACS CENTRAL SCIENCE 2017; 3:232-243. [PMID: 28386601 PMCID: PMC5364454 DOI: 10.1021/acscentsci.7b00028] [Citation(s) in RCA: 589] [Impact Index Per Article: 84.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 05/19/2023]
Abstract
Ferroptosis is a form of regulated necrosis associated with the iron-dependent accumulation of lipid hydroperoxides that may play a key role in the pathogenesis of degenerative diseases in which lipid peroxidation has been implicated. High-throughput screening efforts have identified ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1) as potent inhibitors of ferroptosis - an activity that has been ascribed to their ability to slow the accumulation of lipid hydroperoxides. Herein we demonstrate that this activity likely derives from their reactivity as radical-trapping antioxidants (RTAs) rather than their potency as inhibitors of lipoxygenases. Although inhibited autoxidations of styrene revealed that Fer-1 and Lip-1 react roughly 10-fold more slowly with peroxyl radicals than reactions of α-tocopherol (α-TOH), they were significantly more reactive than α-TOH in phosphatidylcholine lipid bilayers - consistent with the greater potency of Fer-1 and Lip-1 relative to α-TOH as inhibitors of ferroptosis. None of Fer-1, Lip-1, and α-TOH inhibited human 15-lipoxygenase-1 (15-LOX-1) overexpressed in HEK-293 cells when assayed at concentrations where they inhibited ferroptosis. These results stand in stark contrast to those obtained with a known 15-LOX-1 inhibitor (PD146176), which was able to inhibit the enzyme at concentrations where it was effective in inhibiting ferroptosis. Given the likelihood that Fer-1 and Lip-1 subvert ferroptosis by inhibiting lipid peroxidation as RTAs, we evaluated the antiferroptotic potential of 1,8-tetrahydronaphthyridinols (hereafter THNs): rationally designed radical-trapping antioxidants of unparalleled reactivity. We show for the first time that the inherent reactivity of the THNs translates to cell culture, where lipophilic THNs were similarly effective to Fer-1 and Lip-1 at subverting ferroptosis induced by either pharmacological or genetic inhibition of the hydroperoxide-detoxifying enzyme Gpx4 in mouse fibroblasts, and glutamate-induced death of mouse hippocampal cells. These results demonstrate that potent RTAs subvert ferroptosis and suggest that lipid peroxidation (autoxidation) may play a central role in the process.
Collapse
Affiliation(s)
- Omkar Zilka
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ron Shah
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Bo Li
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - José Pedro Friedmann Angeli
- Institute
of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit
und Umwelt (GmbH), 85764 Neuherberg, München, Germany
| | - Markus Griesser
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Marcus Conrad
- Institute
of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit
und Umwelt (GmbH), 85764 Neuherberg, München, Germany
| | - Derek A. Pratt
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- E-mail:
| |
Collapse
|
44
|
Measuring Antioxidant Activity in Bioorganic Samples by the Differential Oxygen Uptake Apparatus: Recent Advances. J CHEM-NY 2017. [DOI: 10.1155/2017/6369358] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The measure of O2 consumption during the inhibited autoxidation of an easily oxidizable substrate is one of the most reliable and predictive methods to assess antioxidant activity, especially for structure-activity relationship studies, for food and industrial applications. The differential oxygen uptake apparatus described herein represents a powerful and cost-effective way to obtain antioxidant activity from inhibited autoxidation studies. These experiments provide the rate constant and the stoichiometry of the reaction between antioxidants and peroxyl radicals (ROO∙), which are involved in the propagation of radical damage. We show the operation principles and the utility of this instrumentation in the bioorganic laboratory, with regard to the recent advances in this field, ranging from the study of natural antioxidants in biomimetic system, to the use of substrates generating hydroperoxyl radicals, and to the evaluation of novel nanoantioxidants.
Collapse
|
45
|
Chauvin JPR, Haidasz EA, Griesser M, Pratt DA. Polysulfide-1-oxides react with peroxyl radicals as quickly as hindered phenolic antioxidants and do so by a surprising concerted homolytic substitution. Chem Sci 2016; 7:6347-6356. [PMID: 28567247 PMCID: PMC5450444 DOI: 10.1039/c6sc01434h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/22/2016] [Indexed: 11/21/2022] Open
Abstract
Polysulfides are important additives to a wide variety of industrial and consumer products and figure prominently in the chemistry and biology of garlic and related medicinal plants. Although their antioxidant activity in biological contexts has received only recent attention, they have long been ascribed 'secondary antioxidant' activity in the chemical industry, where they are believed to react with the hydroperoxide products of autoxidation to slow the auto-initiation of new autoxidative chain reactions. Herein we demonstrate that the initial products of trisulfide oxidation, trisulfide-1-oxides, are surprisingly reactive 'primary antioxidants', which slow autoxidation by trapping chain-carrying peroxyl radicals. In fact, they do so with rate constants (k = 1-2 × 104 M-1 s-1 at 37 °C) that are indistinguishable from those of the most common primary antioxidants, i.e. hindered phenols, such as BHT. Experimental and computational studies demonstrate that the reaction occurs by a concerted bimolecular homolytic substitution (SH2), liberating a perthiyl radical - which is ca. 16 kcal mol-1 more stable than a peroxyl radical. Interestingly, the (electrophilic) peroxyl radical nominally reacts as a nucleophile - attacking the of the trisulfide-1-oxide - a role hitherto suspected only for its reactions at metal atoms. The analogous reactions of trisulfides are readily reversible and not kinetically competent to inhibit hydrocarbon autoxidation, consistent with the longstanding view that organosulfur compounds must be oxidized to afford significant antioxidant activity. The reactivity of trisulfides and their oxides are contrasted with what is known of their shorter cousins and predictions are made and tested with regards to the reactivity of higher polysulfides and their 1-oxides - the insights from which may be exploited in the design of future antioxidants.
Collapse
Affiliation(s)
- Jean-Philippe R Chauvin
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , 10 Marie Curie Pvt. , Ottawa , Ontario , Canada . ; ; Tel: +1-613-562-5800 ext. 2119
| | - Evan A Haidasz
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , 10 Marie Curie Pvt. , Ottawa , Ontario , Canada . ; ; Tel: +1-613-562-5800 ext. 2119
| | - Markus Griesser
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , 10 Marie Curie Pvt. , Ottawa , Ontario , Canada . ; ; Tel: +1-613-562-5800 ext. 2119
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , 10 Marie Curie Pvt. , Ottawa , Ontario , Canada . ; ; Tel: +1-613-562-5800 ext. 2119
| |
Collapse
|
46
|
Zielinski ZAM, Pratt DA. Cholesterol Autoxidation Revisited: Debunking the Dogma Associated with the Most Vilified of Lipids. J Am Chem Soc 2016; 138:6932-5. [DOI: 10.1021/jacs.6b03344] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zosia A. M. Zielinski
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Derek A. Pratt
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|