1
|
Chauhan RS, Bairagi Y, Desai O, Kowalczyk R, Maiti D. Palladium catalyzed regioselective distal C (sp 2)-H functionalization. Chem Commun (Camb) 2025. [PMID: 39982443 DOI: 10.1039/d4cc06546h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The selective functionalization of C-H bonds in arenes remains a challenging task in organic synthesis. While directing group (DG)-assisted strategies for proximal C-H activation are well-established, distal meta and para-C-H functionalization has proven more elusive and has attracted significant interest. Palladium-catalyzed C-H activation, in particular, has emerged as a promising approach for achieving site-selectivity in these transformations. This review provides a comprehensive overview of recent advances in palladium-catalyzed distal C-H functionalization, delving into mechanistic details and the scope of these strategies. By summarizing the successes and challenges in this field, we aim to illuminate potential avenues for future research and development in synthetic methodology.
Collapse
Affiliation(s)
| | - Yogesh Bairagi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| | - Om Desai
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| | | | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
2
|
Bouzbouz S. Fluoride-Catalyzed Cross-Coupling of Silylamides to CF 3-Acrylates: Access to Highly Functionalized Trifluoromethylated and Quaternary Fluorinated Molecular Architectures. Org Lett 2024; 26:6130-6135. [PMID: 39018383 DOI: 10.1021/acs.orglett.4c01895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
A direct and simple catalytic coupling of nonfluorinated and fluorinated silylbutenamides with β-CF3 α,β-unsaturated esters mediated by fluoride ion was carried out. The transformation proceeded with excellent yields to afford new, highly functionalized trifluoromethylated and quaternary fluorinated products.
Collapse
Affiliation(s)
- Samir Bouzbouz
- CNRS, University of Rouen, INSA of Rouen, COBRA UMR 6014, 1 rue Lucien Tesnière, 76131 Mont Saint Aignan, France
| |
Collapse
|
3
|
Suzuki H, Moro R, Matsuda T. Palladium-Catalyzed anti-Michael-Type (Hetero)arylation of Acrylamides. J Am Chem Soc 2024; 146:13697-13702. [PMID: 38742920 DOI: 10.1021/jacs.4c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This paper reports a direct α-(hetero)arylation of acrylamides through an inverse electron-demand nucleophilic addition, specifically an anti-Michael-type addition. The introduction of a quinolyl directing group facilitates the nucleophilic addition of (hetero)arenes to the α-position of acrylamides. The quinolyl directing group effectively suppresses undesired β-hydrogen elimination and is removable for subsequent derivatization. The presented method provides an atom economical synthesis of α-(hetero)arylamide with a high degree of functional group tolerance.
Collapse
Affiliation(s)
- Hirotsugu Suzuki
- Tenure-Track Program for Innovative Research, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan
| | - Ryota Moro
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takanori Matsuda
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
4
|
Suwasia S, Venkataramani S, Babu SA. Pd(II)-catalyzed coupling of C-H bonds of carboxamides with iodoazobenzenes toward modified azobenzenes. Org Biomol Chem 2023; 21:1793-1813. [PMID: 36744837 DOI: 10.1039/d2ob02322a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this paper, we report a synthetic protocol for the construction of biaryl motif-based or π-extended azobenzene and alkylated azobenzene derivatives via the Pd(II)-catalyzed bidentate directing group (DG)-aided C-H activation and functionalization strategy. In the past, the synthesis of biaryl motif-based azobenzenes was accomplished through the traditional cross-coupling reaction involving organometallic reagents and aryl halides or equivalent coupling partners. We have shown the direct coupling of C-H bonds of aromatic/aliphatic carboxamides (possessing a DG) with iodoazobenzenes as the coupling partners through the Pd(II)-catalyzed bidentate DG-aided, site-selective C-H functionalization method. Azobenzene-containing compounds are a versatile class of photo-responsive molecules that have found applications across branches of chemical, biological and materials sciences and are prevalent in medicinally relevant molecules. Accordingly, the synthesis of new and functionalized azobenzene-based scaffolds has been an attractive topic of research. Although the classical methods are efficient, they need pre-functionalized starting materials. This protocol involving the Pd(II)-catalyzed, directing group-aided site-selective C-H arylation of aromatic and aliphatic carboxamides using iodoazobenzene as the coupling partner affording azobenzene-based carboxamides is an additional route and also a contribution towards enriching the library of modified azobenzenes. We have also shown the photoswitching properties of representative compounds synthesized via the Pd(II)-catalyzed directing group-aided site-selective C-H functionalization method.
Collapse
Affiliation(s)
- Sonam Suwasia
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
5
|
Padmavathi R, Babu SA. Pd(II)-catalyzed selective β-C-H functionalization of azobenzene carboxamides. Org Biomol Chem 2023; 21:2689-2694. [PMID: 36691730 DOI: 10.1039/d2ob02261c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report a Pd(II)-catalyzed bidentate directing group 8-aminoquinoline-aided, site-selective β-C-H functionalization protocol for assembling modified azobenzene carboxamides. Considering the importance of azobenzenes in chemical sciences, this paper reports a new route for enriching the library of modified azobenzene motifs.
Collapse
Affiliation(s)
- Rayavarapu Padmavathi
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
6
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
7
|
Wu JX, Wang HW, Duan WZ, Ji HH, Dou JM, Huang XQ, Lu Y, Li DC. One-Pot Construction of Heteroarylation/Esterification Products of Acrylic Acids via Iridium(III)-Catalyzed C–H Activation. Org Lett 2022; 24:8747-8752. [DOI: 10.1021/acs.orglett.2c03245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Jia-Xue Wu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Huai-Wei Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Wen-Zeng Duan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Hong-Han Ji
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Jian-Min Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Xian-Qiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yi Lu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Da-Cheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
8
|
Aggarwal Y, Padmavathi R, Singh P, Arulananda Babu S. Pd(II)‐Catalyzed, γ‐C(sp2)‐H Alkoxylation in α‐Methylbenzylamine, Phenylglycinol, 3‐Amino‐3‐Phenylpropanol Toward Enantiopure Aryl Alkyl Ethers. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yashika Aggarwal
- Indian Institute of Science Education and Research Mohali Chemical Sciences INDIA
| | | | - Prabhakar Singh
- Indian Institute of Science Education and Research Mohali Chemical Sciences INDIA
| | - Srinivasarao Arulananda Babu
- Indian Institute of Science Education and Research Mohali Department of Chemical Sciences Knowledge City, Sector 81, SAS Nagar,Mohali, Manauli P.O., 140306 Mohali INDIA
| |
Collapse
|
9
|
Belitz F, Seitz AK, Goebel JF, Hu Z, Gooßen LJ. Ru-Catalyzed C-H Arylation of Acrylic Acids with Aryl Bromides. Org Lett 2022; 24:3466-3470. [PMID: 35506600 DOI: 10.1021/acs.orglett.2c01043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the presence of a [Ru(p-cymene)Cl2]2/triethylphosphine/lithium carbonate catalyst system, aryl bromides undergo (Z)-selective couplings with unprotected 2-arylacrylic acids to form (Z)-diarylacrylic acids. This vinylic C-H functionalization proceeds in high yields of up to 94% and (Z/E)-ratios of up to 99:1, tolerating a wide range of functional groups. Mechanistic studies indicate that the vinylic C-H activation proceeds via base-assisted cyclometalation rather than via a Heck-type mechanism, which explains its orthogonal stereoselectivity.
Collapse
Affiliation(s)
- Florian Belitz
- Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, NC 2/170, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Ann-Katrin Seitz
- Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, NC 2/170, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Jonas F Goebel
- Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, NC 2/170, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Zhiyong Hu
- Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, NC 2/170, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Lukas J Gooßen
- Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, NC 2/170, Universitätsstrasse 150, 44801 Bochum, Germany
| |
Collapse
|
10
|
Babu SA, Aggarwal Y, Patel P, Tomar R. Diastereoselective palladium-catalyzed functionalization of prochiral C(sp 3)-H bonds of aliphatic and alicyclic compounds. Chem Commun (Camb) 2022; 58:2612-2633. [PMID: 35113087 DOI: 10.1039/d1cc05649b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We highlight the reported developments of the palladium-catalyzed C-H activation and functionalization of the inactive/unreactive prochiral C(sp3)-H bonds of aliphatic and alicyclic compounds. There exist numerous classical methods for generating contiguous stereogenic centers in a compound with a high degree of stereocontrol. Along similar lines, the Pd(II)-catalyzed, directing group-aided functionalization of inactive prochiral/diastereotopic C(sp3)-H bonds have been exploited to accomplish the stereoselective construction of stereo-arrays in organic compounds. We present a concise discussion on how specific strategies consisting of Pd(II)-catalyzed, directing group-aided C(sp3)-H functionalization have been utilized to generate two or more stereogenic centers in aliphatic and alicyclic compounds.
Collapse
Affiliation(s)
- Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Yashika Aggarwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Pooja Patel
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Radha Tomar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
11
|
Shen C, Zhu Y, Jin S, Xu K, Luo S, Xu L, Zhong G, Zhong L, Zhang J. Regio- and stereo-selective olefinic C–H functionalization of aryl alkenes in ethanol. Org Chem Front 2022. [DOI: 10.1039/d1qo01676h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report on α- and β-olefinic C–H alkenylation of 2-alkenyl benzylamine/benzoic acid derivatives in ethanol to afford aryl dienes/trienes with excellent selectivities, proceeding through 6-/7-membered exo-/endo-cyclometallation.
Collapse
Affiliation(s)
- Cong Shen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yuhang Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Shuqi Jin
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Kejie Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Shuxin Luo
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 310015, China
| | - Lixia Xu
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 310015, China
| | - Guofu Zhong
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Liangjun Zhong
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 310015, China
| | - Jian Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 310015, China
| |
Collapse
|
12
|
Pourghasemi Lati M, Ståhle J, Meyer M, Verho O. A Study of an 8-Aminoquinoline-Directed C(sp 2)-H Arylation Reaction on the Route to Chiral Cyclobutane Keto Acids from Myrtenal. J Org Chem 2021; 86:8527-8537. [PMID: 34042431 PMCID: PMC8279478 DOI: 10.1021/acs.joc.1c00774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 02/03/2023]
Abstract
This work outlines a synthetic route that can be used to access chiral cyclobutane keto acids with two stereocenters in five steps from the inexpensive terpene myrtenal. Furthermore, the developed route includes an 8-aminoquinoline-directed C(sp2)-H arylation as one of its key steps, which allows a wide range of aryl and heteroaryl groups to be incorporated into the bicyclic myrtenal scaffold prior to the ozonolysis-based ring-opening step that furnishes the target cyclobutane keto acids. This synthetic route is expected to find many applications connected to the synthesis of natural product-like compounds and small molecule libraries.
Collapse
Affiliation(s)
- Monireh Pourghasemi Lati
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jonas Ståhle
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael Meyer
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Oscar Verho
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- Department
of Medicinal Chemistry, Uppsala Biomedical Centre, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
13
|
Andreev MV, Demina MM, Medvedeva AS, Safronova LP, Albanov AI, Afonin AV. Synthesis of 3-Chloro-3-(trimethylsilyl)prop-2-enoic Acid Amides
and Hydrazides from 3-(Trimethylsilyl)propynoic Acid. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021040102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Fitzgerald LS, O'Duill ML. A Guide to Directing Group Removal: 8-Aminoquinoline. Chemistry 2021; 27:8411-8436. [PMID: 33559933 DOI: 10.1002/chem.202100093] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/08/2021] [Indexed: 12/23/2022]
Abstract
The use of directing groups allows high levels of selectivity to be achieved in transition metal-catalyzed transformations. Efficient removal of these auxiliaries after successful functionalization, however, can be very challenging. This review provides a critical overview of strategies used for removal of Daugulis' 8-aminoquinoline (2005-2020), one of the most widely used N,N-bidentate directing groups. The limitations of these strategies are discussed and alternative approaches are suggested for challenging substrates. Our aim is to provide a comprehensive end-users' guide for chemists in academia and industry who want to harness the synthetic power of directing groups-and be able to remove them from their final products.
Collapse
Affiliation(s)
- Liam S Fitzgerald
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Miriam L O'Duill
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
15
|
Sankar R, Bhattacharya D, Arulananda Babu S. Synthesis of 1‐Naphthol‐based Unsymmetrical Triarylmethanes: Heck‐type Desulfitative Reaction of Arylsulfonyl Chlorides with Tetralone‐derived Chalcones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rathinam Sankar
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar 140306 Mohali, Manauli P.O. Punjab India
| | - Debabrata Bhattacharya
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar 140306 Mohali, Manauli P.O. Punjab India
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar 140306 Mohali, Manauli P.O. Punjab India
| |
Collapse
|
16
|
Wang HW, Qiao YH, Wu JX, Wang QP, Tian MX, Li YF, Yao QX, Li DC, Dou JM, Lu Y. Rh III-Catalyzed C-H (Het)arylation/Vinylation of N-2,6-Difluoroaryl Acrylamides. Org Lett 2021; 23:656-662. [PMID: 33443430 DOI: 10.1021/acs.orglett.0c03688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RhIII-catalyzed sp2 C-H cross-coupling of acrylamides with organoboron reactants has been accomplished using a commercially available N-2,6-difluoroaryl acrylamide auxiliary. A broad range of aryl and vinyl boronates as well as a variety of heterocyclic boronates with strong coordinating ability can serve as the coupling partners. This transformation proceeds under moderate reaction conditions with excellent functional group tolerance and high regioselectivity.
Collapse
Affiliation(s)
- Huai-Wei Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yu-Han Qiao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Jia-Xue Wu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Qiu-Ping Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Meng-Xin Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yong-Fei Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Qing-Xia Yao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Da-Cheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Jian-Min Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yi Lu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Zhang J, Lu X, Shen C, Xu L, Ding L, Zhong G. Recent advances in chelation-assisted site- and stereoselective alkenyl C–H functionalization. Chem Soc Rev 2021; 50:3263-3314. [DOI: 10.1039/d0cs00447b] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review highlights recent advances in vicinal- and geminal-group-directed alkenyl C–H functionalizations which proceeded by endo- and exo-cyclometallation.
Collapse
Affiliation(s)
- Jian Zhang
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Xiunan Lu
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Cong Shen
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Liangyao Xu
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Liyuan Ding
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Guofu Zhong
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| |
Collapse
|
18
|
Zhu Y, Chen F, Cheng D, Chen Y, Zhao X, Wei W, Lu Y, Zhao J. Rhodium(III)-Catalyzed Alkenyl C-H Functionalization to Dienes and Allenes. Org Lett 2020; 22:8786-8790. [PMID: 33147030 DOI: 10.1021/acs.orglett.0c03126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An oxyacetamide-directed Rh(III)-catalyzed Z-type alkenyl C-H functionalization through a rare exo-rhodacyle intermediate is described, forming multisubstituted dienes and allenes. A variety of alkenes and propargylic carbonate coupling partners are suitable for this transformation with high regio- and stereoselectivity. The synthetic utility is demonstrated by the selective late-stage modification of the Z-type natural products as well as the synthesis of the unnatural β-amino acid.
Collapse
Affiliation(s)
- Yuelu Zhu
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Feng Chen
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Donghui Cheng
- School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ying Chen
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xinyang Zhao
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Wei Wei
- School of Life Sciences, Nanjing University, Nanjing 210093, China.,Shenzhen Research Institute, Nanjing University, Shenzhen 518000, China
| | - Yi Lu
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.,Shenzhen Research Institute, Nanjing University, Shenzhen 518000, China
| |
Collapse
|
19
|
Bisht N, Babu SA, Tomar R. Pd(II)‐Catalyzed, Bidentate Directing Group‐aided Alkylation of sp
3
γ‐C−H Bonds: Access to 3‐Alkylated Thiophene/Furan and Benzothiophene/Benzofuran Motifs. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Narendra Bisht
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Srinivasarao Arulananda Babu
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Radha Tomar
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| |
Collapse
|
20
|
Valero M, Derdau V. Highlights of aliphatic C(sp 3 )-H hydrogen isotope exchange reactions. J Labelled Comp Radiopharm 2020; 63:266-280. [PMID: 31278771 DOI: 10.1002/jlcr.3783] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/14/2022]
Abstract
This review summarizes the highlights of aliphatic C (sp3 )-H carbon hydrogen isotope exchange (HIE) methods developed in the last 10 years. In particular, new highly selective and reactive protocols in the areas of nanoparticle and metal-catalyzed homogeneous catalysis are reported.
Collapse
Affiliation(s)
- Mégane Valero
- R&D, Integrated Drug Discovery, Isotope Chemistry, Sanofi Germany, Frankfurt, Germany
| | - Volker Derdau
- R&D, Integrated Drug Discovery, Isotope Chemistry, Sanofi Germany, Frankfurt, Germany
| |
Collapse
|
21
|
Rej S, Ano Y, Chatani N. Bidentate Directing Groups: An Efficient Tool in C-H Bond Functionalization Chemistry for the Expedient Construction of C-C Bonds. Chem Rev 2020; 120:1788-1887. [PMID: 31904219 DOI: 10.1021/acs.chemrev.9b00495] [Citation(s) in RCA: 615] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the past decades, synthetic organic chemistry discovered that directing group assisted C-H activation is a key tool for the expedient and siteselective construction of C-C bonds. Among the various directing group strategies, bidentate directing groups are now recognized as one of the most efficient devices for the selective functionalization of certain positions due to fact that its metal center permits fine, tunable, and reversible coordination. The family of bidentate directing groups permit various types of assistance to be achieved, such as N,N-dentate, N,O-dentate, and N,S-dentate auxiliaries, which are categorized based on the coordination site. In this review, we broadly discuss various C-H bond functionalization reactions for the formation of C-C bonds with the aid of bidentate directing groups.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| |
Collapse
|
22
|
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 2018; 47:6603-6743. [PMID: 30033454 PMCID: PMC6113863 DOI: 10.1039/c8cs00201k] [Citation(s) in RCA: 1133] [Impact Index Per Article: 161.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 12/20/2022]
Abstract
The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation. In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate. Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it. Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure. The schemes feature typical substrates used, the products obtained as well as the required reaction conditions. Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness. The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them. Accordingly, this review should be of particular interest also for scientists from industrial R&D sector. Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - David Schönbauer
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Remi Blieck
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Toan Dao-Huy
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Gerit Pototschnig
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Patricia Schaaf
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Thomas Wiesinger
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Muhammad Farooq Zia
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Joanna Wencel-Delord
- Laboratoire de Chimie Moléculaire (UMR CNRS 7509)
, Université de Strasbourg
,
ECPM 25 Rue Becquerel
, 67087 Strasbourg
, France
| | - Tatiana Besset
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Bert U. W. Maes
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| |
Collapse
|
23
|
Singh BK, Bairy G, Jana R. A General Copper/Manganese Cocatalyzed C-H Selenation of Arenes, Heteroarenes, and Alkenes under Air. ChemistrySelect 2017. [DOI: 10.1002/slct.201701758] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bijaya Kumar Singh
- Organic and Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; 4 Raja S. C. Mullick Road, Jadavpur Kolkata- 700032, West Bengal India
- Academy of Scientific and Innovative Research (AcSIR); Kolkata- 700032, West Bengal India
| | - Gurupada Bairy
- Organic and Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; 4 Raja S. C. Mullick Road, Jadavpur Kolkata- 700032, West Bengal India
- Academy of Scientific and Innovative Research (AcSIR); Kolkata- 700032, West Bengal India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; 4 Raja S. C. Mullick Road, Jadavpur Kolkata- 700032, West Bengal India
- Academy of Scientific and Innovative Research (AcSIR); Kolkata- 700032, West Bengal India
| |
Collapse
|
24
|
Parella R, Babu SA. Pd(II)-Catalyzed, Picolinamide-Assisted, Z-Selective γ-Arylation of Allylamines To Construct Z-Cinnamylamines. J Org Chem 2017; 82:6550-6567. [DOI: 10.1021/acs.joc.7b00535] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ramarao Parella
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli P.O., Sector 81, SAS Nagar, Knowledge City, Mohali, Punjab 140306, India
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli P.O., Sector 81, SAS Nagar, Knowledge City, Mohali, Punjab 140306, India
| |
Collapse
|
25
|
Reddy MD, Blanton AN, Watkins EB. Palladium-Catalyzed, N-(2-Aminophenyl)acetamide-Assisted Ortho-Arylation of Substituted Benzamides: Application to the Synthesis of Urolithins B, M6, and M7. J Org Chem 2017; 82:5080-5095. [DOI: 10.1021/acs.joc.7b00256] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- M. Damoder Reddy
- Department of Pharmaceutical
Sciences, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| | - Alexandra N. Blanton
- Department of Pharmaceutical
Sciences, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| | - E. Blake Watkins
- Department of Pharmaceutical
Sciences, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| |
Collapse
|
26
|
Liang QJ, Yang C, Meng FF, Jiang B, Xu YH, Loh TP. Chelation versus Non-Chelation Control in the Stereoselective Alkenyl sp 2 C-H Bond Functionalization Reaction. Angew Chem Int Ed Engl 2017; 56:5091-5095. [PMID: 28370972 DOI: 10.1002/anie.201700559] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 11/10/2022]
Abstract
A hydroxy group chelation-assisted stereospecific oxidative cross-coupling reaction between alkenes was developed under mild reaction conditions. In the presence of palladium catalyst, the alkenes tethered with hydroxy functionality can couple efficiently with electron-deficient alkenes to form the corresponding multi-substituted olefin products. The hydroxy group on the substrate could play dual roles in reaction, acting as the directing group for alkenyl C-H bond activation and controlling the stereoselectivity of the products.
Collapse
Affiliation(s)
- Qiu-Ju Liang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Chao Yang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Fei-Fan Meng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Bing Jiang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Teck-Peng Loh
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China.,Institute of Advanced Synthesis, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu, 210009, China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637616, Singapore
| |
Collapse
|
27
|
Liang QJ, Yang C, Meng FF, Jiang B, Xu YH, Loh TP. Chelation versus Non-Chelation Control in the Stereoselective Alkenyl sp2
C−H Bond Functionalization Reaction. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qiu-Ju Liang
- Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road Hefei, Anhui 230026 China
| | - Chao Yang
- Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road Hefei, Anhui 230026 China
| | - Fei-Fan Meng
- Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road Hefei, Anhui 230026 China
| | - Bing Jiang
- Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road Hefei, Anhui 230026 China
| | - Yun-He Xu
- Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road Hefei, Anhui 230026 China
| | - Teck-Peng Loh
- Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road Hefei, Anhui 230026 China
- Institute of Advanced Synthesis; Jiangsu National Synergetic Innovation Center for Advanced Materials; Nanjing Tech University; 30 South Puzhu Road Nanjing, Jiangsu 210009 China
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637616 Singapore
| |
Collapse
|
28
|
Sankar R, Babu SA. Construction of Tertiary Amides: NiII
-Catalyzed N
-Arylation of Secondary Acyclic Amides (2-Picolinamides) with Aryl Halides. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201600596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rathinam Sankar
- Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER) Mohali; Manauli P.O., Sector 81, SAS Nagar, Mohali, Knowledge City Punjab 140306 India
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER) Mohali; Manauli P.O., Sector 81, SAS Nagar, Mohali, Knowledge City Punjab 140306 India
| |
Collapse
|
29
|
Naveen, Rajkumar V, Babu SA, Gopalakrishnan B. Pd(II)-Catalyzed Bidentate Directing Group-Aided Chemoselective Acetoxylation of Remote ε-C(sp 2)-H Bonds in Heteroaryl-Aryl-Based Biaryl Systems. J Org Chem 2016; 81:12197-12211. [PMID: 27978751 DOI: 10.1021/acs.joc.6b01933] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this Article, we report our successful attempt on the Pd(II)-catalyzed, bidentate directing group-aided, chemoselective acetoxylation/substitution of remote ε-C(sp2)-H bonds using heteroaryl-aryl-based biaryl systems. While the bidentate directing group (BDG)-aided, C-H activation, and functionalization/acetoxylation of the β-, γ-, and δ-C-H bonds of the appropriate carboxamide systems were well documented, there exist only rare reports dealing with the C-H activation and functionalization of remote ε-C-H bonds of appropriate substrates. Especially, the BDG-aided chemoselective acetoxylation of the remote ε-C(sp2)-H bond over cyclization has not been explored well. Accordingly, in this work, the treatment of various picolinamides/oxalylamides/pyrazine-2-carboxamides 4/7/9/11, which were derived from the corresponding C-3 arylated furfurylamines or thiophen-2-ylmethanamines with PhI(OAc)2 in the presence of the Pd(OAc)2 catalyst, successfully afforded the corresponding ε-C-H acetoxylated products. The chemoselective acetoxylation of the ε-C-H bond was possible and facilitated by the biaryl substrate 4/7/9/11 and not by the biaryl substrate 2a.
Collapse
Affiliation(s)
- Naveen
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali , Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli, Punjab 140306, India
| | - Vadla Rajkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali , Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli, Punjab 140306, India
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali , Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli, Punjab 140306, India
| | - Bojan Gopalakrishnan
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali , Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli, Punjab 140306, India
| |
Collapse
|
30
|
Reddy C, Bisht N, Parella R, Babu SA. 4-Amino-2,1,3-benzothiadiazole as a Removable Bidentate Directing Group for the Pd(II)-Catalyzed Arylation/Oxygenation of sp 2/sp 3 β-C-H Bonds of Carboxamides. J Org Chem 2016; 81:12143-12168. [PMID: 27978723 DOI: 10.1021/acs.joc.6b01831] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this paper, we report 4-amino-2,1,3-benzothiadiazole (ABTD) as a new bidentate directing group for the Pd(II)-catalyzed sp2/sp3 C-H activation/functionalization of various aliphatic/alicyclic/aromatic carboxamide systems. The Pd(II)-catalyzed, ABTD-directed sp3 C-H arylation/acetoxylation of aliphatic- and alicyclic carboxamides afforded the corresponding β-C-H arylated/acetoxylated carboxamides. The Pd(II)-catalyzed, ABTD-directed sp3 C-H arylation of cyclobutanecarboxamide with different aryl iodides afforded the corresponding bis β-C-H arylated cyclobutanecarboxamides having all-cis stereochemistry with a high degree of stereocontrol. The Pd(II)-catalyzed, ABTD-directed arylation/benzylation/acetoxylation/alkoxylation of ortho C(sp2)-H bonds of various benzamides afforded the corresponding ortho C-H arylated/benzylated/oxygenated benzamides. The observed regio- and stereoselectivity in the Pd(II)-catalyzed, ABTD-directed arylation/benzylation of aliphatic/alicyclic carboxamides and benzamides were ascertained from the X-ray structures of representative compounds 5g (bis-β-C(sp3)-H arylated cyclobutanecarboxamide) and 7f (ortho C(sp2)-H arylated benzamide). A brief description on the efficiency, scope, and limitations of bidentate directing group ABTD is reported.
Collapse
Affiliation(s)
- Chennakesava Reddy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali , Manauli P.O., Sector 81, SAS Nagar, Knowledge City, Mohali, Punjab 140306, India
| | - Narendra Bisht
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali , Manauli P.O., Sector 81, SAS Nagar, Knowledge City, Mohali, Punjab 140306, India
| | - Ramarao Parella
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali , Manauli P.O., Sector 81, SAS Nagar, Knowledge City, Mohali, Punjab 140306, India
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali , Manauli P.O., Sector 81, SAS Nagar, Knowledge City, Mohali, Punjab 140306, India
| |
Collapse
|
31
|
Gopalakrishnan B, Mohan S, Parella R, Babu SA. Diastereoselective Pd(II)-Catalyzed sp3 C–H Arylation Followed by Ring Opening of Cyclopropanecarboxamides: Construction of anti β-Acyloxy Carboxamide Derivatives. J Org Chem 2016; 81:8988-9005. [DOI: 10.1021/acs.joc.6b01635] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Bojan Gopalakrishnan
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli
P.O., Sector 81, SAS Nagar, Mohali, Knowledge
City, Punjab 140306, India
| | - Sruthi Mohan
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli
P.O., Sector 81, SAS Nagar, Mohali, Knowledge
City, Punjab 140306, India
| | - Ramarao Parella
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli
P.O., Sector 81, SAS Nagar, Mohali, Knowledge
City, Punjab 140306, India
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli
P.O., Sector 81, SAS Nagar, Mohali, Knowledge
City, Punjab 140306, India
| |
Collapse
|
32
|
Bisht N, Babu SA. Synthesis of ortho-arylated/benzylated arylacetamide derivatives: Pd(OAc)2-catalyzed bidentate ligand-aided arylation and benzylation of the γ-CH bond of arylacetamides. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.08.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Mohan S, Gopalakrishnan B, Babu SA. Multicomponent reaction comprising one-pot installation of bidentate directing group and Pd(II)-catalyzed direct β-arylation of C(sp3) H bond of aliphatic and alicyclic carboxamides. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Rajkumar V, Naveen, Babu SA. Palladium(II)-Promoted Directing Group-Enabled Regioselective C-H Arylation of The C-3 Position of 2- or 3-(Aminoalkyl)-Thiophene and Furfurylamine Derivatives. ChemistrySelect 2016. [DOI: 10.1002/slct.201600296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vadla Rajkumar
- Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali; Manauli P.O. Punjab 140306 India
| | - Naveen
- Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali; Manauli P.O. Punjab 140306 India
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali; Manauli P.O. Punjab 140306 India
| |
Collapse
|
35
|
Cheng X, Chen Z, Gao Y, Xue F, Jiang C. Aminoquinoline-assisted vinylic C–H arylation of unsubstituted acrylamide for the selective synthesis of Z olefins. Org Biomol Chem 2016; 14:3298-306. [DOI: 10.1039/c6ob00164e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A method for Pd-catalyzed, aminoquinoline-directed arylation of vinylic C–H bonds with aryl iodides has been developed. This reaction represents a rare example of Pd-catalyzed vinylic C–H functionalization of unsubstituted acrylamide, allowing for preparation of Z-olefins.
Collapse
Affiliation(s)
- Xiuzhi Cheng
- Department of Pharmaceutical Engineering
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Zhen Chen
- Department of Pharmaceutical Engineering
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Yadong Gao
- Department of Pharmaceutical Engineering
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Fengtian Xue
- Department of Pharmaceutical Sciences
- University of Maryland School of Pharmacy
- Baltimore
- USA
| | - Chao Jiang
- Department of Pharmaceutical Engineering
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| |
Collapse
|