1
|
Luo Y, Zhang Y, Liu M, Wang X, Wan Y, Cao S. Photoredox/Copper-Cocatalyzed Domino Annulation of Oxime Esters and NH 4SCN: Access to Fully Substituted 2-Aminothiazoles. J Org Chem 2024; 89:15187-15196. [PMID: 39370928 DOI: 10.1021/acs.joc.4c01951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Domino cyclization of oxime esters and NH4SCN facilitated by photoredox and copper cocatalysis has been established. Various structurally diverse fully substituted 2-aminothiazoles have been obtained in good yields at room temperature. It is featured by mild conditions, favorable functional group tolerance, and wide substrate scope. The present reaction is amenable to gram-scale synthesis, which is expected to find potential applications in organic synthesis and drug discovery. A plausible reaction mechanism is proposed.
Collapse
Affiliation(s)
- Yongyan Luo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yanyan Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mengting Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xiaozhen Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shujun Cao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
2
|
Chen X, Li G, Huang Z, Luo Q, Chen T, Yang W. Synthesis of nicotinimidamides via a tandem CuAAC/ring-cleavage /cyclization/oxidation four-component reaction and their cytotoxicity. RSC Adv 2024; 14:25844-25851. [PMID: 39156748 PMCID: PMC11328002 DOI: 10.1039/d4ra04918g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
Nicotinamide and its derivatives, recognized as crucial drug intermediates, have been a focal point of extensive chemical modifications and rigorous pharmacological studies. Herein, a series of novel nicotinamide derivatives, nicotinimidamides, were synthesized via a tandem CuAAC/ring-cleavage/cyclization/oxidation four-component reaction procedure from O-acetyl oximes, terminal ynones, sulfonyl azides, and NH4OAc. This strategy is significantly more efficient than previously reported, and the cytotoxicity of the nicotinimidamides is also tested. This project not only exhibits a sustainable and eco-friendly domino methodology for the creation of nicotinimidamides but also presents a promising candidate for liver cancer treatment.
Collapse
Affiliation(s)
- Xi Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University Guangzhou 510120 China
| | - Guanrong Li
- School of Ocean and Tropical Medicine, Guangdong Medical University Zhanjiang Guangdong 524023 China
| | - Zixin Huang
- School of Ocean and Tropical Medicine, Guangdong Medical University Zhanjiang Guangdong 524023 China
| | - Qiaoli Luo
- School of Chemistry and Chemical Engineering, Lingnan Normal University Zhanjiang 524048 P. R. China
| | - Tao Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University Guangzhou 510120 China
| | - Weiguang Yang
- School of Ocean and Tropical Medicine, Guangdong Medical University Zhanjiang Guangdong 524023 China
| |
Collapse
|
3
|
Shuai S, Mao J, Zhou F, Yan Q, Chen L, Li J, Walsh PJ, Liang G. Base-Promoted Synthesis of Isoquinolines through a Tandem Reaction of 2-Methyl-arylaldehydes and Nitriles. J Org Chem 2024; 89:6793-6797. [PMID: 38691096 DOI: 10.1021/acs.joc.4c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A convenient method for preparing 3-aryl isoquinolines via a base-promoted tandem reaction is presented. Simply combining commercially available 2-methyl-arylaldehydes, benzonitriles, NaN(SiMe3)2, and Cs2CO3 enabled the synthesis of a variety of isoquinolines (23 examples, ≤90% yield). Among the syntheses of isoquinolines, the transition metal-free method described here is straightforward, practical, and operationally simple.
Collapse
Affiliation(s)
- Sujuan Shuai
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jianyou Mao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fan Zhou
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qifeng Yan
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
| | - Lingfeng Chen
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Jie Li
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| |
Collapse
|
4
|
Yousefnejad F, Gholami F, Larijani B, Mahdavi M. Oxime Esters: Flexible Building Blocks for Heterocycle Formation. Top Curr Chem (Cham) 2023; 381:17. [PMID: 37202650 DOI: 10.1007/s41061-023-00431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/28/2023] [Indexed: 05/20/2023]
Abstract
Oxime esters as the applicable building blocks, internal oxidizing agents, and directing groups in the synthesis of -, S-, and O-containing heterocycle scaffolds have gained great attention in the last decade. This review provides an overview of recent advances in the cyclization of oxime esters with various functional group reagents under transition metal and transition metal-free catalyzed conditions. Moreover, the mechanistic aspects of these protocols are explained in detail.
Collapse
Affiliation(s)
- Faeze Yousefnejad
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Gholami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Zhang L, Xiong W, Yao B, Liu H, Li M, Qin Y, Yu Y, Li X, Chen M, Wu W, Li J, Wang J, Jiang H. Facile synthesis of isoquinolines and isoquinoline N-oxides via a copper-catalyzed intramolecular cyclization in water. RSC Adv 2022; 12:30248-30252. [PMID: 36349148 PMCID: PMC9607880 DOI: 10.1039/d2ra06097c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023] Open
Abstract
A highly efficient method for the facile access of isoquinolines and isoquinoline N-oxides via a Cu(i)-catalyzed intramolecular cyclization of (E)-2-alkynylaryl oxime derivatives in water has been developed. This protocol was performed under simple and mild conditions without organic solvent, additives or ligands. By switching on/off a hydroxyl protecting group of oximes, the selective N-O/O-H cleavage could be triggered, delivering a series of isoquinolines and isoquinoline N-oxides, respectively, in moderate to high yields with good functional group tolerance and high atom economy. Moreover, the practicality of this method was further demonstrated by the total synthesis of moxaverine in five steps.
Collapse
Affiliation(s)
- Lujun Zhang
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences Zhengzhou 450000 China
| | - Wenfang Xiong
- School of Pharmacy, Guangdong Medical University Dongguan 523808 China
| | - Biao Yao
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Haitao Liu
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences Zhengzhou 450000 China
| | - Meng Li
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Yu Qin
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences Zhengzhou 450000 China
| | - Yujian Yu
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences Zhengzhou 450000 China
| | - Xu Li
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences Zhengzhou 450000 China
| | - Meng Chen
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences Zhengzhou 450000 China
| | - Wanqing Wu
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Jianxiao Li
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Jinliang Wang
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences Zhengzhou 450000 China
| | - Huanfeng Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
6
|
Cao S, Li H, Teng X, Si H, Chen R, Zhu Y. Access to Fully Substituted Dihydropyrimidines via Dual Copper/Photoredox‐Catalyzed Domino Annulation of Oxime Esters and Imines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Su L, Xie S, Dong J, Liu F, Yin SF, Zhou Y. Copper-Catalyzed Nitrogen Atom Transfer to Isoquinolines via C-N Triple Bond Cleavage and Three-Component Cyclization. Org Lett 2022; 24:5994-5999. [PMID: 35926096 DOI: 10.1021/acs.orglett.2c02257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A copper(I)-catalyzed tandem reaction of 2-bromoaryl ketones, terminal alkynes, and CH3CN is developed, which combines N atom transfer and three-component [3 + 2 + 1] cyclization, and efficiently produces densely functionalized isoquinolines in a facile, highly selective, and general manner. In the reaction, the formation of aromatic C-N bonds along with the complete C-N triple bond cleavage is first realized; Cu(III)-acetylide species might serve as the intermediates, which allow highly selective 6-endo-dig cyclization.
Collapse
Affiliation(s)
- Lebin Su
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China.,Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shimin Xie
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China.,Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianyu Dong
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China
| | - Feng Liu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yongbo Zhou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
8
|
Ma P, Wang Y, Wang J. Copper-Catalyzed Domino Three-Component Benzannulation: Access to Isoquinolines. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peng Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yuhang Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jianhui Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
9
|
Cao S, Yuan W, Li Y, Teng X, Si H, Chen R, Zhu Y. Photoredox/copper cocatalyzed domino cyclization of oxime esters with TMSCN: access to antifungal active tetrasubstituted pyrazines. Chem Commun (Camb) 2022; 58:7200-7203. [PMID: 35671164 DOI: 10.1039/d2cc02480b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A photoredox/copper cocatalyzed domino cyclization of oxime esters with TMSCN has been developed. A range of structurally novel tetrasubstituted pyrazines have been obtained. This method features high bond-forming efficiency, high step economy, broad substrate scope, and gram-scale synthesis. Moreover, preliminary bioactivity evaluation of pyrazine products shows their promising antifungal activities.
Collapse
Affiliation(s)
- Shujun Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Weidong Yuan
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yun Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Xinjie Teng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Huaxing Si
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Rongshun Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
10
|
Yang W, Zhang H, Liu Y, Tang C, Xu X, Liu J. Rh(iii)-catalyzed synthesis of dibenzo[ b, d]pyran-6-ones from aryl ketone O-acetyl oximes and quinones via C-H activation and C-C bond cleavage. RSC Adv 2022; 12:14435-14438. [PMID: 35702227 PMCID: PMC9096810 DOI: 10.1039/d2ra02074b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/05/2022] [Indexed: 12/17/2022] Open
Abstract
A redox-neutral synthesis of dibenzo[b,d]pyran-6-ones from aryl ketone O-acetyl oximes and quinones has been realized via Rh(iii)-catalyzed cascade C-H activation annulation. A possible Rh(iii)-Rh(v)-Rh(iii) mechanism involving an unprecedented β-C elimination step was proposed.
Collapse
Affiliation(s)
- Wei Yang
- School of Chemical Engineering, Northeast Electric Power University Jilin 132012 China
- Gongqing Institute of Science and Technology Gongqing 332020 China
| | - Haonan Zhang
- School of Chemical Engineering, Northeast Electric Power University Jilin 132012 China
| | - Yu Liu
- School of Chemical Engineering, Northeast Electric Power University Jilin 132012 China
- Gongqing Institute of Science and Technology Gongqing 332020 China
| | - Cuiman Tang
- School of Chemical Engineering, Northeast Electric Power University Jilin 132012 China
| | - Xiaohui Xu
- School of Chemical Engineering, Northeast Electric Power University Jilin 132012 China
| | - Jiaqi Liu
- School of Chemical Engineering, Northeast Electric Power University Jilin 132012 China
| |
Collapse
|
11
|
Zi Q, Li M, Cong J, Deng G, Duan S, Yin M, Chen W, Jing H, Yang X, Walsh PJ. Super-Electron-Donor 2-Azaallyl Anions Enable Construction of Isoquinolines. Org Lett 2022; 24:1786-1790. [PMID: 35212552 DOI: 10.1021/acs.orglett.2c00140] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein is introduced the application of "super-electron-donor"(SED) 2-azaallyl anions in a tandem reduction/radical cyclization/radical coupling/aromatization protocol that enables the rapid construction of isoquinolines. The value of this transition-metal-free method is highlighted by the wide range of isoquinoline ethyl amines prepared with good functional group tolerance and yields. An operationally simple gram scale synthesis is also conducted, confirming the scalability.
Collapse
Affiliation(s)
- Quanxing Zi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Minyan Li
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Jielun Cong
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Guogang Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Shengzu Duan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Meng Yin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Hong Jing
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
12
|
Cao S, Ma C, Teng X, Chen R, Li Y, Yuan W, Zhu Y. Facile synthesis of fully substituted 1 H-imidazoles from oxime esters via dual photoredox/copper catalyzed multicomponent reactions. Org Chem Front 2022. [DOI: 10.1039/d2qo01475k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A novel and efficient photoredox/copper cocatalyzed domino cyclization of oxime esters, aldehydes, and amines has been achieved, affording a broad range of fully substituted 1H-imidazoles in good yields.
Collapse
Affiliation(s)
- Shujun Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chongchong Ma
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinjie Teng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongshun Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weidong Yuan
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Almaraz-Ortiz WE, Ramos Orea A, Casadiego-Díaz O, Reyes-Salgado A, Mejía-Galindo A, Torres-Ochoa RO. Divergent copper-catalyzed syntheses of 3-carboxylpyrroles and 3-cyanofurans from O-acetyl oximes and β-ketoesters/nitriles. RSC Adv 2022; 12:26673-26679. [PMID: 36275146 PMCID: PMC9490516 DOI: 10.1039/d2ra04938d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
The reaction between O-acetyl oximes and β-ketoesters/nitriles catalyzed by copper generated polysubstituted pyrroles and furans, respectively, under redox–neutral reaction conditions. Using this protocol, pyrroles or furans could be obtained simply by choosing an appropriate active methylene compound. Although both transformations occur essentially under the same reaction conditions, control experiments indicated that they follow different mechanistic pathways. A copper-catalyzed heteroannulation of O-acetyl oximes and β-ketoesters/nitriles to afford polysubstituted pyrroles and furans was successfully achieved.![]()
Collapse
Affiliation(s)
- Wilfrido E. Almaraz-Ortiz
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Aldahir Ramos Orea
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Oscar Casadiego-Díaz
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Agustín Reyes-Salgado
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Arturo Mejía-Galindo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Rubén O. Torres-Ochoa
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| |
Collapse
|
14
|
|
15
|
Ramaraju A, Upare A, Blanch EW, Maniam S, Sridhar B, Bathula SR, Raji Reddy C. Chemoselective [3 + 2] annulation of oxime acetate with 2-aryl-3-ethoxycarbonyl-pyrroline-4,5-dione: an entry to pyrrolo[2,3- b]pyrrole derivatives. Org Biomol Chem 2021; 19:7875-7882. [PMID: 34549208 DOI: 10.1039/d1ob00990g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel chemoselective [3 + 2] annulation reaction of easily accessible ketoxime acetate with 2-aryl-3-ethoxycarbonyl pyrroline-4,5-dione has been developed for the synthesis of unknown pyrrolo[2,3-b]pyrrole frameworks. This method involves copper-mediated N-O bond cleavage followed by the formation of carbon-carbon and carbon-nitrogen bonds. This operationally simple protocol provides broader functional group compatibility and good yields.
Collapse
Affiliation(s)
- Andhavaram Ramaraju
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. .,School of Science, STEM college, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Atul Upare
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| | - Ewan W Blanch
- School of Science, STEM college, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Subashani Maniam
- School of Science, STEM college, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Balasubramanian Sridhar
- Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Surendar Reddy Bathula
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| | - Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| |
Collapse
|
16
|
Rao NK, Rao TN, Parvatamma B, Prashanthi Y, Cheedarala RK. Novel Synthesis of 4-Benzylidene-2-((1-phenyl-3,4-dihydroisoquinoline-2(1H)-yl)methyl) oxazol-5(4H)-one Derivatives Using 1,2,3,Tetrahydroisoquinoline and their Antimicrobial Activity. Curr Org Synth 2021; 17:396-403. [PMID: 32294044 DOI: 10.2174/1570179417666200415151228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/01/2020] [Accepted: 03/16/2020] [Indexed: 01/28/2023]
Abstract
AIMS A series of six 4-benzylidene-2-((1-phenyl-3,4-dihydro isoquinoline-2(1H)-yl)methyloxazol- 5(4H)-one derivatives were synthesized by condensation of substituted aryl aldehydes with 2-(2-(1-phenyl-3,4- dihydro isoquinoline-2(1H)-acetamido)acetic acid in the presence of sodium acetate, acetic anhydride and zinc oxide as catalysts. BACKGROUND Novel Synthesis of 4-Benzylidene-2-((1-phenyl-3,4-dihy droisoquinoline-2(1H)-yl)methyl)oxazol- 5(4H)-one derivatives using 1,2,3,Tetrahydroisoquinoline and their antimicrobial activity. OBJECTIVE The title compounds can be synthesized from 1,2,3,4-tetrahydroisoquinoline. METHODS The target molecules, i.e., 4-benzylidene-2-((1-phenyl-3, 4-dihydro isoquinoline-2(1H)-yl) methyl) oxazol-5(4H)-one derivatives (8a-8f) have been synthesized from 1,2,3,4-tetrahydroisoquinoline which was prepared from benzoic acid in few steps. RESULTS All the six compounds were evaluated based on advanced spectral data (1H NMR, 13C NMR & LCMS), and the chemical structures of all compounds were determined by elemental analysis. CONCLUSION Antibacterial activity of the derivatives was examined for the synthesized compounds and results indicate that compound with bromine substitution has a good activity profile.
Collapse
Affiliation(s)
- Nalla Krishna Rao
- Department of Chemistry, Krishna University, Machilipatnam, Andhra Pradesh, India
| | - Tentu Nageswara Rao
- School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam, 641-773, Korea
| | - Botsa Parvatamma
- Department of Organic Chemistry, Gayathri P.G Courses, Gotlam, Vizianagaram, AP, India
| | - Y Prashanthi
- Department of Chemistry, Mahatma Gandhi University, Nalgonda, Telangana, India
| | - Ravi Kumar Cheedarala
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), San 31 Hyojadong, Pohang, Kyeongbuk 790-784, Korea
| |
Collapse
|
17
|
Wang Q, Mgimpatsang KC, Li X, Dömling A. Isoquinolone-4-Carboxylic Acids by Ammonia-Ugi-4CR and Copper-Catalyzed Domino Reaction. J Org Chem 2021; 86:9771-9780. [PMID: 34184894 PMCID: PMC8291606 DOI: 10.1021/acs.joc.1c01170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Highly substituted isoquinolone-4-carboxylic
acid is an important
bioactive scaffold; however, it is challenging to access it in a general
and short way. A Cu-catalyzed cascade reaction was successfully designed
involving the Ugi postcyclization strategy by using ammonia and 2-halobenzoic
acids as crucial building blocks. Privileged polysubstituted isoquinolin-1(2H)-ones were constructed in a combinatorial format with
generally moderate to good yields. The protocol, with a ligand-free
catalytic system, shows a broad substrate scope and good functional
group tolerance toward excellent molecular diversity. Free 4-carboxy-isoquinolone
is now for the first time generally accessible by a convergent multicomponent
reaction protocol.
Collapse
Affiliation(s)
- Qian Wang
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Kumchok C Mgimpatsang
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Xin Li
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Alexander Dömling
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| |
Collapse
|
18
|
Zhao Y, Li L, Zhou Z, Chen M, Yang W, Luo H. Copper catalyzed five-component domino strategy for the synthesis of nicotinimidamides. Org Biomol Chem 2021; 19:3868-3872. [PMID: 33949559 DOI: 10.1039/d1ob00162k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A library of medicinally and synthetically important nicotinimidamides was synthesized by a copper-catalyzed multicomponent domino reaction of oxime esters, terminal ynones, sulfonyl azides, aryl aldehydes and acetic ammonium. Its synthetic pathway involves the formation of a highly reactive N-sulfonyl acetylketenimine, characterized by high selectivity, combinations of potential nucleophiles and electrophiles, mild reaction conditions and a wide substrate scope, and is a rare five-component example of a CuAAC/ring-opening reaction.
Collapse
Affiliation(s)
- Yu Zhao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Li Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Zitong Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Man Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Weiguang Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China. and The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China and Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524023, China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China. and The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China and Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524023, China
| |
Collapse
|
19
|
Gogoi K, Bora BR, Borah G, Sarma B, Gogoi S. Synthesis of quaternary carbon-centered indolo[1,2- a]quinazolinones and indazolo[1,2- a]indazolones via C-H functionalization. Chem Commun (Camb) 2021; 57:1388-1391. [PMID: 33438711 DOI: 10.1039/d0cc07419e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented Ru(ii)-catalyzed Csp2-H bond activation and annulation reaction of phenylindazolones with diaryl-substituted alkynes and dialkyl-substituted alkynes provided efficient routes for the construction of all-carbon quaternary-centered indolo[1,2-a]quinazolinones and quaternary carbon-centered indazolo[1,2-a]indazolones, respectively. The indolo[1,2-a]quinazolinones were fomed via Csp2-H activation, alkyne insertion and a 1,2-phenyl shift. Indazolo[1,2-a]indazolones were formed through a cascade reaction via the formation of exocyclic double bonds containing indolo[1,2-a]quinazolinones.
Collapse
Affiliation(s)
- Kongkona Gogoi
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, AcSIR, Ghaziabad-201002, India
| | - Bidisha R Bora
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, AcSIR, Ghaziabad-201002, India
| | - Geetika Borah
- Department of Chemistry, Dibrugarh University, Dibrugarh-786004, India
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Tezpur-784028, India.
| | - Sanjib Gogoi
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, AcSIR, Ghaziabad-201002, India
| |
Collapse
|
20
|
Liu YY, Wei Y, Huang ZH, Liu Y. Mild and efficient copper-catalyzed oxidative cyclization of oximes with 2-aminobenzyl alcohols at room temperature: synthesis of polysubstituted quinolines. Org Biomol Chem 2021; 19:659-666. [PMID: 33399162 DOI: 10.1039/d0ob02348e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A simple and efficient ligand-free Cu-catalyzed protocol for the synthesis of polysubstituted quinolines via oxidative cyclization of oxime acetates with 2-aminobenzyl alcohols at room temperature has been developed. The presented approach provides a new synthetic pathway leading to polysubstituted quinolines with good functional group tolerance under mild conditions. Moreover, this transformation can be applied for the preparation of quinolines on a gram scale. Oxime acetates serve as the internal oxidants in the reactions, thus making this method very attractive.
Collapse
Affiliation(s)
- Yan-Yun Liu
- Institute of Organic Synthesis, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China.
| | - Yang Wei
- Institute of Organic Synthesis, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China.
| | - Zhi-Hui Huang
- Institute of Organic Synthesis, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China.
| | - Yilin Liu
- Institute of Organic Synthesis, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China.
| |
Collapse
|
21
|
Karuppasamy M, Vachan B, Sridharan V. Copper catalysis for the synthesis of quinolines and isoquinolines. COPPER IN N-HETEROCYCLIC CHEMISTRY 2021:249-288. [DOI: 10.1016/b978-0-12-821263-9.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
22
|
Yu Y, Guan M, Zhao YH, Xie W, Zhou Z, Tang Z. Efficient Synthesis of Isoquinoline and Its Derivatives: From
Metal Сatalysts to Catalyst-free Processes in Water. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220100266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Gujjarappa R, Vodnala N, Malakar CC. Comprehensive Strategies for the Synthesis of Isoquinolines: Progress Since 2008. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000658] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Nagaraju Vodnala
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| |
Collapse
|
24
|
Pal T, Lahiri GK, Maiti D. Copper in Efficient Synthesis of Aromatic Heterocycles with Single Heteroatom. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tapas Pal
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai Maharashtra India
| | - Goutam Kumar Lahiri
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai Maharashtra India
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai Maharashtra India
- Tokyo Tech World Research Hub Initiative (WRHI) Laboratory for Chemistry and Life Science Tokyo Institute of Technology Japan
| |
Collapse
|
25
|
Wang Q, Tuinhof J, Mgimpatsang KC, Kurpiewska K, Kalinowska-Tluscik J, Dömling A. Copper-Catalyzed Modular Assembly of Polyheterocycles. J Org Chem 2020; 85:9915-9927. [PMID: 32615764 PMCID: PMC7418108 DOI: 10.1021/acs.joc.0c01238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
Easy operation, readily
accessible starting materials, and short
syntheses of the privileged scaffold indeno[1,2-c]isoquinolinone were achieved by an multicomponent reaction (MCR)-based
protocol via an ammonia–Ugi-four component reaction (4CR)/copper-catalyzed
annulation sequence. The optimization and scope and limitations of
this short and general sequence are described. The methodology allows
an efficient construction of a wide variety of indenoisoquinolinones
in just two steps.
Collapse
Affiliation(s)
- Qian Wang
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Jesse Tuinhof
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Kumchok C Mgimpatsang
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Katarzyna Kurpiewska
- Faculty of Chemistry, Jagiellonian University, 3 Ingardena Street, 30-060 Krakow, Poland
| | | | - Alexander Dömling
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
26
|
Hoshimoto Y, Nishimura C, Sasaoka Y, Kumar R, Ogoshi S. Catalytic Synthesis of Isoquinolines via Intramolecular Migration of N-Aryl Sulfonyl Groups on 1,5-Yne-Imines. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yoichi Hoshimoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Chika Nishimura
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yukari Sasaoka
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ravindra Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow 226031, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
27
|
Sunke R, Kalyani A, Swamy KCK. Cu(I)-Catalyzed Ligand-Free Tandem One-Pot or Sequential Annulation via Knoevenagel Intermediates: An Entry into Multifunctional Naphthalenes, Phenanthrenes, Quinolines, and Benzo[ b]carbazoles. J Org Chem 2020; 85:1073-1086. [PMID: 31823603 DOI: 10.1021/acs.joc.9b02991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A simple but efficient one-pot or sequential copper-catalyzed protocol using 2-bromoaldehydes and active methylene group containing substrates that affords multifunctional naphthalenes, phenanthrenes, quinolines, and benzo[b]carbazoles via Knoevenagel condensation, C-arylation, and decarboxylation, followed by aromatization, is developed. The reaction utilizes the potential of Knoevenagel intermediates and does not require any ancillary ligand. The phenanthrene products thus obtained show moderate fluorescence activity. Structural elaboration of the products to obtain dihydrobenzoquinazolines is also highlighted.
Collapse
Affiliation(s)
- Rajnikanth Sunke
- School of Chemistry , University of Hyderabad , Hyderabad 500046 , Telangana , India
| | - Adula Kalyani
- School of Chemistry , University of Hyderabad , Hyderabad 500046 , Telangana , India
| | - K C Kumara Swamy
- School of Chemistry , University of Hyderabad , Hyderabad 500046 , Telangana , India
| |
Collapse
|
28
|
Ni J, Mao X, Zhang A. Copper‐Catalyzed Synthesis of
gem
‐Bisarylthio Enamines under Redox‐Neutral Conditions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jiabin Ni
- CAS Key Laboratory of Receptor Research, and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM)Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- College of PharmacyUniversity of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Xiaokang Mao
- CAS Key Laboratory of Receptor Research, and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM)Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- Department of Chemistry, Innovative Drug Research CenterShanghai University Shanghai 200444 People's Republic of China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM)Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- College of PharmacyUniversity of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- School of Life Science and TechnologyShanghaiTech University Shanghai 201210 People's Republic of China
| |
Collapse
|
29
|
Zhou P, Huang Y, Wu W, Yu W, Li J, Zhu Z, Jiang H. Direct access to bis-S-heterocyclesviacopper-catalyzed three component tandem cyclization using S8as a sulfur source. Org Biomol Chem 2019; 17:3424-3432. [DOI: 10.1039/c9ob00377k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An elemental sulfur atom donor strategy for constructing a thiophene-fused thiazole bis-S-heterocyclic skeletonviaCu-catalyzed three-component tandem cyclization has been developed.
Collapse
Affiliation(s)
- Peiqi Zhou
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Yubing Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Wentao Yu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Zhongzhi Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| |
Collapse
|
30
|
|
31
|
Ramaraju A, Chouhan NK, Ravi O, Sridhar B, Bathula SR. Cu-Catalyzed Coupling of O
-Acyl Oximes with Isatins: Domino Rearrangement Strategy for Direct Access to Quinoline-4-Carboxamides by C-N Bond Cleavage. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800501] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Andhavaram Ramaraju
- Division of Natural Products Chemistry; CSIR-Indian Institute of Chemical Technology; 500007 Hyderabad India
- IICT-RMIT Joint Research Center; CSIR-IICT; Hyderabad India
| | - Neeraj Kumar Chouhan
- Division of Natural Products Chemistry; CSIR-Indian Institute of Chemical Technology; 500007 Hyderabad India
| | - Owk Ravi
- Division of Natural Products Chemistry; CSIR-Indian Institute of Chemical Technology; 500007 Hyderabad India
- Academy of Scientific and Innovative Research; 110001 New Delhi India
| | - Balasubramanian Sridhar
- X-ray Crystallography Division; CSIR-Indian Institute of Chemical Technology; 500007 Tarnaka, Hyderabad India
| | - Surendar Reddy Bathula
- Division of Natural Products Chemistry; CSIR-Indian Institute of Chemical Technology; 500007 Hyderabad India
- IICT-RMIT Joint Research Center; CSIR-IICT; Hyderabad India
- Academy of Scientific and Innovative Research; 110001 New Delhi India
| |
Collapse
|
32
|
Tang X, Wu W, Zeng W, Jiang H. Copper-Catalyzed Oxidative Carbon-Carbon and/or Carbon-Heteroatom Bond Formation with O 2 or Internal Oxidants. Acc Chem Res 2018; 51:1092-1105. [PMID: 29648789 DOI: 10.1021/acs.accounts.7b00611] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Selective oxidation, a fundamental organic transformation of critical importance, produces value-added products from simple organic molecules. This process is extensively used to incorporate heteroatoms into carbon-based molecules, where high-valent metal salts, hypervalent halogen reagents, and peroxides are widely used as oxidants. Oxidation reactions are extremely challenging because their selectivity is hard to control and/or they form significant quantities of unwanted waste derived from the stoichiometric oxidants. Undoubtedly, the utilization of green oxidants such as molecular oxygen (O2) or internal oxidants provides tunable oxidation abilities and produces no environmentally hazardous byproducts. Thus, synthetic chemists have devoted increasing attention to the utilization of green oxidants to obtain valuable products. Since the first industrial application of noble metal-catalyzed oxidation, i.e., Pd/Cu/O2-mediated Wacker oxidation, precious metal-catalyzed organic reactions have undergone significant development in both the laboratory and industry. However, the high cost and considerable toxicity of precious metals compel chemists to explore the catalytic activities of earth-abundant, first-row transition metals. Copper is abundant, easy to utilize, and relatively insensitive to water and air. Controllable access to Cu(0), Cu(I), Cu(II), and Cu(III) oxidation states ensures that copper can be applied as a tunable and multifunctional catalyst. Copper-catalyzed transformations involve single-electron transfer (SET), two-electron processes (TEPs) and even the cooperation of SET and TEPs. More importantly, in Cu/O2 catalytic systems, ligands, additives, and solvents can tune the oxidation state of copper from Cu(I) to Cu(III). As a result, the development of copper-catalyzed aerobic oxidative reactions is possible and desirable. Progress in these synthetic methods will enable breakthroughs in natural product synthesis, materials science, and bioorganic chemistry. This Account describes our efforts over the last several years to develop copper-catalyzed C-C or C-heteroatom bond formation reactions with oxygen or internal oxidants as the oxidant. We primarily focused on reaction with simple substrates, including cross-couplings, cycloadditions, cyclizations, and condensations. These transformations provide convenient and efficient strategies for constructing multiple bonds, such as C-C/C-O bonds, C-C/C-N bonds, and C-N/C-S bonds, in one pot. Various alkynes, furans, benzofurans, lactones, sulfones, thioethers, and nitrogen-containing heterocyclic compounds were synthesized with high selectivity and atom economy from abundant, commercially available and inexpensive starting materials. These methods were successfully applied to the construction of drug molecules and skeletons of natural products. Additionally, the designed control experiments and serendipitous observations have given us mechanistic insights into copper-catalyzed green oxidation. Uncovering the activity of copper-catalyzed green oxidation involving oxygen and oxime esters has allowed us to extend the scope of those green oxidation reactions. We believe that copper-catalyzed green oxidation transformations can be made even more eco-friendly and economical in the synthesis of valuable compounds.
Collapse
Affiliation(s)
- Xiaodong Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wei Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
33
|
Luo X, Liu Q, Zhu H, Chen H. Copper-catalysed regioselective sulfenylation of indoles with sodium sulfinates. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180170. [PMID: 29892452 PMCID: PMC5990840 DOI: 10.1098/rsos.180170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
A copper-catalysed sulfenylation of indoles with sodium sulfinates that affords 3-sulfenylindoles in good-to-excellent yields in N,N-dimethyl formamide (DMF) is described. In the process, DMF serves not only as a solvent but also as a reductant. This transformation is easy to carry out and has mild reaction conditions and good functional group tolerance.
Collapse
Affiliation(s)
- Xiaojun Luo
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Shiliugang Road 13th, Guangzhou 510315, People's Republic of China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Shiliugang Road 13th, Guangzhou 510315, People's Republic of China
| | - Huoji Chen
- School of Traditional Chinese Medicine, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| |
Collapse
|
34
|
Access to Amidines and Arylbenzimidazoles: Zinc-Promoted Rearrangement of Oxime Acetates. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Guo X, Yang X, Qin M, Liu Y, Yang Y, Chen B. Copper-Catalyzed Cyclization of Ketoxime Carboxylates and N
-Aryl Glycine Esters for the Synthesis of Pyridines. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201700703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xin Guo
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou 730000 China), E-mai
| | - Xueying Yang
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou 730000 China), E-mai
| | - Mingda Qin
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou 730000 China), E-mai
| | - Yafeng Liu
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou 730000 China), E-mai
| | - Yuting Yang
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou 730000 China), E-mai
| | - Baohua Chen
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou 730000 China), E-mai
- Zhongwei High-tech Institute of Lanzhou University; Zhongwei Ningxia 755500 China
| |
Collapse
|
36
|
Zhu Z, Tang X, Cen J, Li J, Wu W, Jiang H. Copper-catalyzed synthesis of thiazol-2-yl ethers from oxime acetates and xanthates under redox-neutral conditions. Chem Commun (Camb) 2018; 54:3767-3770. [DOI: 10.1039/c8cc00445e] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A copper-catalyzed [3+2] annulation of oxime acetates and xanthates to generate thiazol-2-yl ethers with good regioselectivity under redox-neutral conditions has been developed.
Collapse
Affiliation(s)
- Zhongzhi Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Xiaodong Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Jinghe Cen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
37
|
Mondal A, Kundu P, Jash M, Chowdhury C. Palladium-catalysed stereoselective synthesis of 4-(diarylmethylidene)-3,4-dihydroisoquinolin-1(2H)-ones: expedient access to 4-substituted isoquinolin-1(2H)-ones and isoquinolines. Org Biomol Chem 2018; 16:963-980. [DOI: 10.1039/c7ob02788e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Palladium-catalysed stereoselective synthesis of 4-(diarylmethylidene)-3,4-dihydroisoquinolin-1(2H)-ones and their straightforward transformations to 4-substituted isoquinolin-1(2H)-ones and isoquinolines are described.
Collapse
Affiliation(s)
- Amrita Mondal
- Organic and Medicinal Chemistry Division
- Indian Institute of Chemical Biology (CSIR)
- Kolkata-700032
- India
| | - Priyanka Kundu
- Organic and Medicinal Chemistry Division
- Indian Institute of Chemical Biology (CSIR)
- Kolkata-700032
- India
| | - Moumita Jash
- Organic and Medicinal Chemistry Division
- Indian Institute of Chemical Biology (CSIR)
- Kolkata-700032
- India
| | - Chinmay Chowdhury
- Organic and Medicinal Chemistry Division
- Indian Institute of Chemical Biology (CSIR)
- Kolkata-700032
- India
| |
Collapse
|
38
|
Bolotin DS, Bokach NA, Demakova MY, Kukushkin VY. Metal-Involving Synthesis and Reactions of Oximes. Chem Rev 2017; 117:13039-13122. [PMID: 28991449 DOI: 10.1021/acs.chemrev.7b00264] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review classifies and summarizes the past 10-15 years of advancements in the field of metal-involving (i.e., metal-mediated and metal-catalyzed) reactions of oximes. These reactions are diverse in nature and have been employed for syntheses of oxime-based metal complexes and cage-compounds, oxime functionalizations, and the preparation of new classes of organic species, in particular, a wide variety of heterocyclic systems spanning small 3-membered ring systems to macroheterocycles. This consideration gives a general outlook of reaction routes, mechanisms, and driving forces and underlines the potential of metal-involving conversions of oxime species for application in various fields of chemistry and draws attention to the emerging putative targets.
Collapse
Affiliation(s)
- Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Marina Ya Demakova
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| |
Collapse
|
39
|
Guo W, Liu D, Liao J, Ji F, Wu W, Jiang H. Cu-Catalyzed intermolecular [3 + 3] annulation involving oxidative activation of an unreactive C(sp3)–H bond: access to pyrimidine derivatives from amidines and ketones. Org Chem Front 2017. [DOI: 10.1039/c6qo00842a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An efficient approach to pyrimidines through a copper-catalyzed oxidative unreactive C(sp3)–H bond and intermolecular [3 + 3] annulation of amidines and ketones is described.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Dongqing Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Jianhua Liao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Fanghua Ji
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
40
|
Abe T, Takahashi Y, Matsubara Y, Yamada K. An Ullmann N-arylation/2-amidation cascade by self-relay copper catalysis: one-pot synthesis of indolo[1,2-a]quinazolinones. Org Chem Front 2017. [DOI: 10.1039/c7qo00549k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a self-relay copper(i)-catalyzed Ullmann N-arylation/2-amidation cascade to form functionalized indolo[1,2-a]quinazolinones in one-pot from easily available indoles with 2-bromobenzamides.
Collapse
Affiliation(s)
- Takumi Abe
- Faculty of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-tobetsu
- Japan
| | - Yuka Takahashi
- Faculty of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-tobetsu
- Japan
| | - Yuki Matsubara
- Faculty of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-tobetsu
- Japan
| | - Koji Yamada
- Faculty of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-tobetsu
- Japan
| |
Collapse
|
41
|
Chu H, Xue P, Yu JT, Cheng J. Rhodium-Catalyzed Annulation of Primary Benzylamine with α-Diazo Ketone toward Isoquinoline. J Org Chem 2016; 81:8009-13. [DOI: 10.1021/acs.joc.6b01378] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Haoke Chu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Peiran Xue
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jiang Cheng
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|