1
|
Wang L, Li Y, Qu X, Ma D, Iqbal MZ, Kong X, Mao L. Reversible encapsulation and release of fullerenes using calix[ n]phenoxazines. Org Biomol Chem 2024. [PMID: 39435739 DOI: 10.1039/d4ob01569j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
This investigation presents the synthesis of butyl-decorated calix[n]phenoxazines of varying sizes by kinetic control and the ring-expansion of calix[3]phenoxazine, which uniquely exhibits distinct binding affinities for fullerenes C60 and C70. Calix[3]phenoxazine demonstrates a higher binding affinity for cationic ammonium, which can be reversibly deprotonated and protonated, enabling the reversible release and reloading of fullerenes. This system holds potential for applications in fullerene extraction and separation.
Collapse
Affiliation(s)
- Lu Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang, China.
| | - Yunxiao Li
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang, China.
| | - Xin Qu
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang, China.
| | - Da Ma
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang, China.
| | - M Zubair Iqbal
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.
| | - Xiangdong Kong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.
| | - Lijun Mao
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang, China.
| |
Collapse
|
2
|
Liu J, Fu M, Yuan S, Lin C, Yuan Y. The synthesis and application of o-carborane-based macrocyclic arenes. Dalton Trans 2024; 53:15316-15323. [PMID: 39224067 DOI: 10.1039/d4dt02001d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Two o-carborane-hybridized macrocyclic arenes have been synthesized via Friedel-Crafts alkylation of carborane diaryl derivatives. The single-crystal X-ray diffraction analysis clearly revealed their cavity structure and intermolecular interaction force. These novel macrocycles exhibited aggregation-induced luminescence and intramolecular charge transfer properties and also significant selectivity towards nitro explosive compounds. This work provided a method for the synthesis of hybridized macrocyclic arenes.
Collapse
Affiliation(s)
- Jiayi Liu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Meigui Fu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Shuai Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Caixia Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Yaofeng Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
3
|
Li TR, Das C, Cornu I, Prescimone A, Piccini G, Tiefenbacher K. Window[1]resorcin[3]arenes: A Novel Macrocycle Able to Self-Assemble to a Catalytically Active Hexameric Cage. JACS AU 2024; 4:1901-1910. [PMID: 38818056 PMCID: PMC11134363 DOI: 10.1021/jacsau.4c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
The hexameric resorcin[4]arene capsule has been utilized as one of the most versatile supramolecular capsule catalysts. Enlarging its size would enable expansion of the substrate size scope. However, no larger catalytically active versions have been reported. Herein, we introduce a novel class of macrocycles, named window[1]resorcin[3]arene (wRS), that assemble to a cage-like hexameric host. The new host was studied by NMR, encapsulation experiments, and molecular dynamics simulations. The cage is able to bind tetraalkylammonium ions that are too large for encapsulation inside the hexameric resorcin[4]arene capsule. Most importantly, it retained its catalytic activity, and the accelerated conversion of a large substrate that does not fit the closed hexameric resorcin[4]arene capsule was observed. Thus, it will help to expand the limited substrate size scope of the closed hexameric resorcin[4]arene capsule.
Collapse
Affiliation(s)
- Tian-Ren Li
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Chintu Das
- Institute
of Technical and Macromolecular Chemistry RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Ivan Cornu
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - GiovanniMaria Piccini
- Institute
of Technical and Macromolecular Chemistry RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Konrad Tiefenbacher
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse
26, 4058 Basel, Switzerland
| |
Collapse
|
4
|
An S, Gong K, Yang C, Su J, Zhang Z. Prism[2]dihydrophenazines: Synthesis, Configurational Analysis, and Supramolecular Tessellation through Exo-Wall Interactions. Chemistry 2024; 30:e202400305. [PMID: 38440943 DOI: 10.1002/chem.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Macrocyclic arenes have gained considerable attention for their structural diversity and widespread applications. In this research, a new kind of macrocyclic arenes, namely prism[2]dihydrophenazines (anti-P2P20, syn-P2P20, and P2P22), composed of two dihydrophenazine derivatives subunits bridged by methylene groups, were conveniently synthesized by AlCl3-catalyzed one-pot condensation in 1,2-dichloroethane. Both anti-P2P20 and its isomer syn-P2P20 exhibited flexible and convertible conformation with narrow cavity, while P2P22 possessed rigid and rhombic-like skeleton due to the more steric hindrance on subunits. In addition, the selection of electron-deficient guest was found to influence the outside binding behavior of syn-P2P20. Fantastic regular supramolecular tessellation was fabricated by tiling of syn-P2P20 with tetrafluoro-1,4-benzoquinone (TFB) through the exo-wall interactions. Using 1,5-difluoro-2,4-dinitrobenzene (DFN) as a linker, only the regular 2D network superstructure with periodic units in a plane was obtained through cocrystallization. This work not only reports the construction of supramolecular tessellations by using prism[2]dihydrophenazines as building blocks, but also provides a new perspective for the design of macrocyclic arenes and fabrication of 2D supramolecular materials.
Collapse
Affiliation(s)
- Shenglong An
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237, China
| | - Kehui Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237, China
| | - Chuanxing Yang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237, China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237, China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237, China
| |
Collapse
|
5
|
Zhang F, Du XS, Song KZ, Han Y, Lu HY, Chen CF. A calix[3]carbazole-based cavitand: synthesis, structure and its complexation with fullerenes. Chem Commun (Camb) 2024; 60:4962-4965. [PMID: 38629394 DOI: 10.1039/d4cc00928b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A calix[3]carbazole-based cavitand was conveniently synthesized. It was found that the cavitand with adjustable conformation could show excellent complexation with fullerenes C60 and C70 in both solution and the solid state. Moreover, the crystal structures of the host-guest complexes show that the cavitand can stack into channel-like architectures, in which fullerenes are orderly arranged inside.
Collapse
Affiliation(s)
- Fan Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xu-Sheng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Kui-Zhu Song
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Hai-Yan Lu
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chuan-Feng Chen
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
6
|
Li ZX, Du XS, Wang J, Wu ZQ, Zheng Z, Yao S, Wang B, Li C. Modular Synthesis of Biphen[ n]arenes Directed by Five-Membered Heterocycles. Org Lett 2023; 25:7836-7840. [PMID: 37862603 DOI: 10.1021/acs.orglett.3c03078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Modular synthesis of novel biphen[n]arenes (n = 2-4) with customizable heterocycle blocks, functional skeletons, binding sites, and topological structures could be facilely achieved through the rational design and replacement of reaction modules (furan and thiophene), functional modules (substituted benzene, biphenyl, and naphthalene), and linking modules (methylene). These biphen[n]arenes were characterized by NMR, HRMS, and X-ray crystalline diffraction, complemented by DFT calculations. Their photophysical properties were thoroughly studied.
Collapse
Affiliation(s)
- Zhao-Xian Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Xu-Sheng Du
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jing Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Zhuo-Qian Wu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Zhe Zheng
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Shibo Yao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Bin Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Chunju Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
7
|
Han XN, Han Y, Chen CF. Recent advances in the synthesis and applications of macrocyclic arenes. Chem Soc Rev 2023; 52:3265-3298. [PMID: 37083011 DOI: 10.1039/d3cs00002h] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Macrocyclic arenes including calixarenes, resorcinarenes, cyclotriveratrylene, pillararenes and so on have emerged as highly attractive synthetic macrocyclic hosts due to their unique structures, facile functionalization, and broad range of applications. In recent years, there has been growing interest in the development of novel macrocyclic arenes composed of various aromatic building blocks bridged by methylene groups, which have found applications in various research areas. Consequently, the development of novel macrocyclic arenes has become a frontier and hot topic in supramolecular and macrocyclic chemistry. In this review, we feature the recent advances in the synthesis and applications of novel macrocyclic arenes that have emerged in the last decade. The general synthetic strategies employed for these macrocyclic arenes are systematically summarized, and their wide applications in molecular recognition and assemblies, molecular machines, biomedical science and functional materials are highlighted.
Collapse
Affiliation(s)
- Xiao-Ni Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Zhang H, Li H, Sun S, Tan L, Shen H, Lin B, Yang P. N-Embedded Cubarene: A Quadrangular Member of the Macrocycle Family. Org Lett 2023; 25:2078-2083. [PMID: 36946503 DOI: 10.1021/acs.orglett.3c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Despite the large number of synthetic macrocycles, the cubarenes, the quadrangular-shaped macrocyclic arenes, remain less investigated, possibly due either to synthetic challenges or to the lack of suitable building blocks. In this paper, a N-embedded cubarene (cub[4]indolocarbazole) is facilely synthesized by FeCl3·6H2O-catalyzed cyclization in dichloromethane. The endo cavity of cub[4]indolocarbazole can bury quaternary ammonium salts in an intramolecular manner, whereas the intermolecular interaction between its exo walls with Cu2+ generates two-dimensional supramolecular tessellation.
Collapse
Affiliation(s)
- Haibin Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Heshan Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shitao Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Lei Tan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hongyan Shen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Bin Lin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Peng Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
9
|
Wang Y, Yao H, Yang L, Quan M, Jiang W. Synthesis, Configurational Analysis, Molecular Recognition and Chirality Sensing of Methylene‐Bridged Naphthotubes. Angew Chem Int Ed Engl 2022; 61:e202211853. [DOI: 10.1002/anie.202211853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yan‐Fang Wang
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Huan Yao
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Liu‐Pan Yang
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Mao Quan
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Wei Jiang
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| |
Collapse
|
10
|
Yan D, Cai L, Hu S, Zhou Y, Zhou L, Sun Q. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induced‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022; 61:e202209879. [DOI: 10.1002/anie.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Dan‐Ni Yan
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Xuan Cai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Shao‐Jun Hu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Fang Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Li‐Peng Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Qing‐Fu Sun
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
11
|
Wang YF, Yao H, Yang LP, Quan M, Jiang W. Synthesis, Configurational Analysis, Molecular Recognition and Chirality Sensing of Methylene‐Bridged Naphthotubes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yan Fang Wang
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Huan Yao
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Liu-Pan Yang
- Southern University of Science and Technology Department of Chemistry Xueyuan Blvd 1088Nanshan District 518055 Shenzhen CHINA
| | - Mao Quan
- Southern University of Science and Technology Department of Chemistry Xueyuan Blvd 1088Nanshan District 518055 Shenzhen CHINA
| | - Wei Jiang
- Southern University of Science and Technology Department of Chemistry Xueyuan Blvd 1088, Nanshan District 518055 Shenzhen CHINA
| |
Collapse
|
12
|
Yan DN, Cai LX, Hu SJ, Zhou YF, Zhou LP, Sun QF. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induce‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dan-Ni Yan
- University of the Chinese Academy of Sciences Fujian College CHINA
| | - Li-Xuan Cai
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Shao-Jun Hu
- University of the Chinese Academy of Sciences Fujian College 350002 Fuzhou CHINA
| | - Yan-Fang Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Li-Peng Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Qing-Fu Sun
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 155 Yangqiao Road West 350002 Fuzhou CHINA
| |
Collapse
|
13
|
Chen H, Shi X, Lun Y, Xu Y, Lu T, Duan Z, Shao M, Sessler JL, Yu H, Lei C. 3,6-Carbazoylene Octaphyrin (1.0.0.0.1.0.0.0) and Its Bis-BF 2 Complex. J Am Chem Soc 2022; 144:8194-8203. [PMID: 35482960 DOI: 10.1021/jacs.2c01240] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
3,6-Carbazole precursors were used to prepare an octaphyrin. The conformation and electronic structure of the system could be modulated through trifluoroacetate (TFA) protonation and BF2 complexation. The resulting nonaromatic macrocyclic complexes, 2-2TFA and 2-2BF2, displayed noteworthy photophysical properties. For instance, the diprotonated species 2-2TFA showed a strong panchromic absorption up to 800 nm, while the bis-BF2-chelated dipyrromethene (BODIPY)-like complex 2-2BF2 exhibited an intense visible absorption feature (ε535nm = 2.1 × 105 M-1 cm-1), as well as a relatively red-shifted emission at 640 nm characterized by a large Stokes shift. It was found that 2-2BF2 could be used to construct a high-quality organic microlaser that functions under optical pumping. The present study highlights the potential utility of expanded porphyrins as possible laser dyes.
Collapse
Affiliation(s)
- Hao Chen
- Department of Physics, College of Sciences, Shanghai University, Shanghai 200444, P. R. China.,Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, P. R. China
| | - Xusheng Shi
- State Key Laboratory of Luminescent Materials and Devices, School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yipeng Lun
- State Key Laboratory of Luminescent Materials and Devices, School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yan Xu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, P. R. China
| | - Tian Lu
- Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China
| | - Zhiming Duan
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, P. R. China
| | - Min Shao
- Laboratory for Microstructures, Instrumental Analysis and Research Center of Shanghai University, Shanghai University, Shanghai 200444, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Huakang Yu
- State Key Laboratory of Luminescent Materials and Devices, School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, P. R. China.,China-Singapore International Joint Research Institute, Guangzhou Knowledge City, Guangzhou 510663, P. R. China
| | - Chuanhu Lei
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
14
|
Dong M, Liu X, Zhang ZY, Yu C, Huo B, Li C. Synthesis of a large-cavity carbazole macrocycle for size-dependent recognition. Chem Commun (Camb) 2022; 58:2319-2322. [PMID: 35076035 DOI: 10.1039/d1cc06788e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A large-cavity carbazole macrocycle (1) is reported through condensation of a long and rigid monomer and paraformaldehyde. 1 exhibits highly selective binding of large-sized tetra(n-propyl) ammonium cation 3+. The complexation of 3+ by 1 is counter anion-dependent, where Cl- gives the highest association constant of 3010 ± 230 M-1.
Collapse
Affiliation(s)
- Ming Dong
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Xiu Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Zhi-Yuan Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Chengmao Yu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China. .,Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai 200444, P. R. China
| | - Bochao Huo
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai 200444, P. R. China
| | - Chunju Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China. .,Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
15
|
Shi Q, Wang X, Liu B, Qiao P, Li J, Wang L. Macrocyclic host molecules with aromatic building blocks: the state of the art and progress. Chem Commun (Camb) 2021; 57:12379-12405. [PMID: 34726202 DOI: 10.1039/d1cc04400a] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Macrocyclic host molecules play the central role in host-guest chemistry and supramolecular chemistry. The highly structural symmetry of macrocyclic host molecules can meet people's pursuit of aesthetics in molecular design, and generally means a balance of design, synthesis, properties and applications. For macrocyclic host molecules with highly symmetrical structures, building blocks, which could be described as repeat units as well, are the most fundamental elements for molecular design. The structural features and recognition ability of macrocyclic host molecules are determined by the building blocks and their connection patterns. Using different building blocks, different macrocyclic host molecules could be designed and synthesized. With decades of developments of host-guest chemistry and supramolecular chemistry, diverse macrocyclic host molecules with different building blocks have been designed and synthesized. Aromatic building blocks are a big family among the various building blocks used in constructing macrocyclic host molecules. In this feature article, the recent developments of macrocyclic host molecules with aromatic building blocks were summarized and discussed.
Collapse
Affiliation(s)
- Qiang Shi
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xuping Wang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Bing Liu
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Panyu Qiao
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jing Li
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Leyong Wang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Pfeuffer-Rooschüz J, Schmid L, Prescimone A, Tiefenbacher K. Xanthene[ n]arenes: Exceptionally Large, Bowl-Shaped Macrocyclic Building Blocks Suitable for Self-Assembly. JACS AU 2021; 1:1885-1891. [PMID: 34841407 PMCID: PMC8611668 DOI: 10.1021/jacsau.1c00343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 05/05/2023]
Abstract
A new class of macrocycles denoted as "xanthene[n]arenes" was synthesized. In contrast to most other macrocycles, they feature a conformationally restricted bowl shape due to the attached alkyl groups at the linking methylene units. This facilitates the synthesis of cavitands and the self-assembly to molecular capsules via noncovalent interactions. The derivatization potential of the novel macrocycles was demonstrated on the xanthene[3]arene scaffold. Besides a deep cavitand and an oxygen-embedded zigzag hydrocarbon belt[12]arene, a modified macrocycle was synthesized that self-assembles into a hydrogen-bonded tetrameric capsule, demonstrating the potential of xanthene[n]arenes as a new set of macrocyclic building blocks.
Collapse
Affiliation(s)
| | - Lucius Schmid
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - Konrad Tiefenbacher
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zürich, Mattenstrasse
26, CH-4058 Basel, Switzerland
- or
| |
Collapse
|
17
|
Li J, Zhou H, Han Y, Chen C. Saucer[
n
]arenes: Synthesis, Structure, Complexation, and Guest‐Induced Circularly Polarized Luminescence Property. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108209] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jing Li
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - He‐Ye Zhou
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Chuan‐Feng Chen
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
18
|
Li J, Zhou HY, Han Y, Chen CF. Saucer[n]arenes: Synthesis, Structure, Complexation, and Guest-Induced Circularly Polarized Luminescence Property. Angew Chem Int Ed Engl 2021; 60:21927-21933. [PMID: 34378287 DOI: 10.1002/anie.202108209] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/20/2021] [Indexed: 11/08/2022]
Abstract
Macrocycles denoted as saucer[n]arenes (n=4,5) were easily synthesized by the one-pot condensation of 2,7-dimethoxynaphthalene (2,7-DMN) and paraformaldehyde in the presence of TFA or catalytic BF3 ⋅OEt2 . With 1,1-dimethylpiperidin-1-ium as the template, saucer[4]arene was selectively obtained. Crystal structures show that saucer[n]arenes are all composed of 2,7-DMN moiety bridged by the methylene groups at 1,6-positions: all of the 7-methoxy groups lie on one face, and all of the 2-methoxy groups lie on the other. Saucer[n]arenes exhibit strong fluorescence properties with the quantum yields of 19.6 % and 23.4 %. They form 1:1 complexes with ammonium salts in both solution and solid state (association constant up to 105 M-1 in CDCl3 ). Chiral quaternary ammonium salts can induce the chirality of the dynamically racemic inherently chiral saucer[n]arenes in solution, and thus show mirror-imaged circular dichroism signals and circularly polarized luminescence (CPL) properties.
Collapse
Affiliation(s)
- Jing Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Mu L, Yang Y, Liu J, Du W, Chen J, Shi G, Fang H. Hydrated cation-π interactions of π-electrons with hydrated Li +, Na +, and K + cations. Phys Chem Chem Phys 2021; 23:14662-14670. [PMID: 34213518 DOI: 10.1039/d1cp01609a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cation-π interactions are essential for many chemical, biological, and material processes, and these processes usually involve an aqueous salt solution. However, there is still a lack of a full understanding of the hydrated cation-π interactions between the hydrated cations and the aromatic ring structures on the molecular level. Here, we report a molecular picture of hydrated cation-π interactions, by using the calculations of density functional theory (DFT). Specifically, the graphene sheet can distort the hydration shell of the hydrated K+ to interact with K+ directly, which is hereafter called water-cation-π interactions. In contrast, the hydration shell of the hydrated Li+ is quite stable and the graphene sheet interacts with Li+ indirectly, mediated by water molecules, which we hereafter call the cation-water-π interactions. The behavior of hydrated cations adsorbed on a graphene surface is mainly attributed to the competition between the cation-π interactions and hydration effects. These findings provide valuable details of the structures and the adsorption energy of hydrated cations adsorbed onto the graphene surface.
Collapse
Affiliation(s)
- Liuhua Mu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yizhou Yang
- Department of Physics, East China University of Science and Technology, Shanghai 200237, China.
| | - Jian Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Du
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jige Chen
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Guosheng Shi
- Shanghai Applied Radiation Institute and State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, China.
| | - Haiping Fang
- Department of Physics, East China University of Science and Technology, Shanghai 200237, China. and Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| |
Collapse
|
20
|
Kudo K, Ide T, Kishida N, Yoshizawa M. Preparation of a Multicarbazole-Based Nanocapsule Capable of Largely Modulating Guest Spectroscopic Properties in Water. Angew Chem Int Ed Engl 2021; 60:10552-10556. [PMID: 33635566 DOI: 10.1002/anie.202102043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 02/01/2023]
Abstract
A nanocapsule composed of multiple carbazole panels (ca. 12 panels) was quantitatively generated from bent carbazole-based amphiphiles in water. Unlike previously reported macrocycles and coordination cages bearing several carbazole panels, the resultant nanocapsule displays enhanced emissivity and improved electrochemical stability as compared with the monomeric amphiphile. The spectroscopic properties of substituted coumarin and boron-dipyrromethene dyes can be modulated upon encapsulation by the nanocapsule in water. In the cavity, a highly blue-shifted absorption band is observed from largely twisted coumarin dyes and two absorption bands are found from boron-dipyrromethene dimers stacked in an unusual L-shaped fashion. Moreover, the encapsulated dimers exhibit unique excimer-like emission.
Collapse
Affiliation(s)
- Kohi Kudo
- Department of Chemical Science and Engineering, National Institute of Technology, Tokyo College, 1220-2 Kunugida-machi, Hachioji-shi, Tokyo, 193-0997, Japan
| | - Tomohito Ide
- Department of Chemical Science and Engineering, National Institute of Technology, Tokyo College, 1220-2 Kunugida-machi, Hachioji-shi, Tokyo, 193-0997, Japan
| | - Natsuki Kishida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
21
|
Guo W, Zhao L, Cui N, Gong X, Huang Y, Li Z, Lin B, Zhou X, Yang P. Host-guest binding triggered visual detection of p-toluenesulfonic acid. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Kudo K, Ide T, Kishida N, Yoshizawa M. Preparation of a Multicarbazole‐Based Nanocapsule Capable of Largely Modulating Guest Spectroscopic Properties in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kohi Kudo
- Department of Chemical Science and Engineering National Institute of Technology Tokyo College 1220-2 Kunugida-machi, Hachioji-shi Tokyo 193-0997 Japan
| | - Tomohito Ide
- Department of Chemical Science and Engineering National Institute of Technology Tokyo College 1220-2 Kunugida-machi, Hachioji-shi Tokyo 193-0997 Japan
| | - Natsuki Kishida
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
23
|
Host-guest co-assembly triggered turn-on and ratiometric sensing of berberine and its detoxicating. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Mao L, Zhou M, Niu YF, Zhao XL, Shi X. Aryl carbazole-based macrocycles: synthesis, their remarkably stable radical cations and host–guest complexation with fullerenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00686j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Herein, we have designed and synthesized a series of aryl carbazole-based macrocycles and their stable radical cation species and interesting fullerene recognition were systematically investigated.
Collapse
Affiliation(s)
- Lijun Mao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Manfei Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Yan-Fei Niu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
25
|
Liao X, Guo W, Zhang J, Zhao L, Liu C, Zhang H, Shu Z, Tian Y, Gao H, Yang P. Ketocalix[3]carbazole: facile synthesis, rigid conformation and baicalin-selective sensing. Org Chem Front 2020. [DOI: 10.1039/d0qo00670j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ketocalix[3]carbazole, a facilely synthesized rigid “basket” capable of sensing baicalin.
Collapse
|
26
|
Li G, Tang H, Liu C, Liao X, Li S, Shu Z, Yu H, Yang P. One-step synthesis of methylene-bridged bis-carbazole and evaluation of its antitumor activity and G-quadruplex DNA binding property. Bioorg Chem 2019; 90:103074. [PMID: 31255989 DOI: 10.1016/j.bioorg.2019.103074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/05/2019] [Accepted: 06/17/2019] [Indexed: 11/29/2022]
Abstract
Most reported carbazolyl G-quadruplex DNA (G4-DNA) ligands possess a rigid structure rather than a flexible one. The conformationally flexible ligands are paid much less attention. In this study, we report a novel class of non-rigid methylene-bridged biscarbazolyl ligand and their G4-DNA binding properties. Moreover, the antitumor activities of all these oligomers have been evaluated. The results show that this family of oligomers could be facilely synthesized via solely one step. Among them, compound 2, the bis-carbazole derivative, displays the best antitumor activity and IC50 values against HT-29, HepG2, A375 and MCF-7 cells are 0.69, 5.09, 3.15 and 3.8 μ mol/L, respectively. Although conformationally flexible, 2 is still capable of binding to as well as stabilizing G4-DNA via π-π stacking interaction. Moreover, 2 selectively binds to G4-DNA over duplex DNA. The current study enriches the category of carbazolyl G4-DNA ligands and paves the way for the search of more efficient G4-DNA ligands and antitumor leads.
Collapse
Affiliation(s)
- Gang Li
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haodong Tang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chuanfeng Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoyu Liao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sicong Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhengning Shu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hui Yu
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Peng Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
27
|
Shu Z, Chen Y, Yu H, Liao X, Liu C, Tang H, Li S, Yang P. Supramolecular catalytic synthesis of a novel bis(salicylaldehyde hydrazone) ligand for ratiometric recognition of AT-DNA. Chem Commun (Camb) 2019; 55:5491-5494. [PMID: 31017143 DOI: 10.1039/c9cc01436e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrazone bond formation under physiological conditions remains challenging. In this study, bis(salicylaldehyde hydrazone) was synthesized using supramolecular catalysis under physiological conditions and its AT-DNA ratiometric sensing properties were identified.
Collapse
Affiliation(s)
- Zhengning Shu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
This feature article summarizes the latest research progress in the design and development of new synthetic macrocyclic arenes.
Collapse
Affiliation(s)
- Jia-Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- 2699 Qianjin Street
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- 2699 Qianjin Street
| |
Collapse
|
29
|
Tashiro S, Umeki T, Kubota R, Shionoya M. Rational synthesis of benzimidazole[3]arenes by Cu II-catalyzed post-macrocyclization transformation. Chem Sci 2018; 9:7614-7619. [PMID: 30393521 PMCID: PMC6187690 DOI: 10.1039/c8sc03086c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/05/2018] [Indexed: 11/21/2022] Open
Abstract
A new series of calix[n]arene analogues, benzimidazole[3]arenes, was rationally synthesized by CuII-catalyzed post-macrocyclization transformation of a tris(o-phenylenediamine) macrocycle, and fully characterized by NMR, MS, and single-crystal X-ray diffraction (XRD) analyses.
A new series of calix[n]arene analogues, benzimidazole[3]arenes, was rationally synthesized by CuII-catalyzed post-macrocyclization transformation of a tris(o-phenylenediamine) macrocycle, and fully characterized by NMR, MS, and single-crystal X-ray diffraction (XRD) analyses. The resulting syn- and anti-benzimidazole[3]arenes have a bowl-shaped and a warped structure, respectively, in their crystalline states, and both display a dynamic inversion behavior in solution. This modification resulted in strong fluorescence due to the generated benzimidazole moieties. The mechanistic study of the post-macrocyclization transformation demonstrated that the formation of both benzimidazole[3]arenes was catalyzed, via triimine intermediates, by CuII ions in air through oxidation and cyclization of the tris(o-phenylenediamine) macrocycle.
Collapse
Affiliation(s)
- Shohei Tashiro
- Department of Chemistry , Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan .
| | - Tsutomu Umeki
- Department of Chemistry , Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan .
| | - Ryou Kubota
- Department of Chemistry , Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan .
| | - Mitsuhiko Shionoya
- Department of Chemistry , Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan .
| |
Collapse
|
30
|
Yang Z, Chen Y, Li G, Tian Z, Zhao L, Wu X, Ma Q, Liu M, Yang P. Supramolecular Recognition of Three Way Junction DNA by a Cationic Calix[3]carbazole. Chemistry 2018; 24:6087-6093. [PMID: 29315943 DOI: 10.1002/chem.201705564] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Indexed: 12/31/2022]
Abstract
DNA three-way junctions (TWJ-DNA) are intermediate structures in DNA replication and/or recombination. They play very important roles in biological processes, but more subtle functions are still unknown due partially to the lack of a fluorescent ligand. In this study, a cationic calix[3]carbazole (2) has been synthesized and its properties of interacting with TWJ-DNA have been evaluated by UV/Vis and fluorescence spectroscopy, circular dichroism (CD), gel electrophoresis, and 1 H NMR studies. The results show that 2 binds to the central hydrophobic cavity of TWJ-DNA. Moreover, it could selectively bind to TWJ-DNA over duplex and quadruplex DNA. Furthermore, 2 possesses the capability of serving as the TWJ-DNA probe as its trap-II excimer emission is turned on by TWJ-DNA.
Collapse
Affiliation(s)
- Zhaozheng Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Yan Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Gang Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University), Ministry of Education, Shenyang, 110016, P. R. China
| | - Zhangmin Tian
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Liang Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Xi Wu
- Shenzhen Institute for Drug Control, Shenzhen, 518057, P. R. China
| | - Qi Ma
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University), Ministry of Education, Shenyang, 110016, P. R. China
| | - Mingzhe Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University), Ministry of Education, Shenyang, 110016, P. R. China
| | - Peng Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| |
Collapse
|
31
|
Zhu DJ, Ding W, Wang DH, Xue M, Yang Y. One-pot, highly efficient, cavity controllable synthesis and binding properties of carbazole-based macrocycles with sulfonamide linkages. Org Chem Front 2018. [DOI: 10.1039/c8qo00538a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new type of carbazole-based sulfonamide macrocycle was synthesized efficiently in one single step.
Collapse
Affiliation(s)
- Deng-Jie Zhu
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Wen Ding
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Dong-Hui Wang
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Min Xue
- Department of Physics
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Yong Yang
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| |
Collapse
|
32
|
Kim I, Ko KC, Lee WR, Cho J, Moon JH, Moon D, Sharma A, Lee JY, Kim JS, Kim S. Calix[n]triazoles and Related Conformational Studies. Org Lett 2017; 19:5509-5512. [DOI: 10.1021/acs.orglett.7b02557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Illan Kim
- College
of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Kyoung Chul Ko
- Department
of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Woo Ram Lee
- Department
of Chemistry, Sejong University, Seoul 05006, Korea
| | - Jihee Cho
- College
of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jong Hun Moon
- Department
of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Dohyun Moon
- Beamline
Division, Pohang Accelerator Laboratory, Pohang 790-784, Korea
| | - Amit Sharma
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Jin Yong Lee
- Department
of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Jong Seung Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Sanghee Kim
- College
of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
33
|
Iwanaga T, Yamauchi T, Toyota S, Suzuki S, Okada K. Oxidation State-Dependent Intramolecular Electronic Interaction of Carbazole-Based Azacyclophanes with 9,10-Anthrylene Units. J Org Chem 2017; 82:10699-10703. [DOI: 10.1021/acs.joc.7b01688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tetsuo Iwanaga
- Department
of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| | - Tomokazu Yamauchi
- Department
of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| | - Shinji Toyota
- Department
of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1
Ookayama, Meguro-ku, Tokyo 152−8551, Japan
| | - Shuichi Suzuki
- Department
of Chemistry, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Keiji Okada
- Department
of Chemistry, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
34
|
Pan SJ, Ye G, Jia F, He Z, Ke H, Yao H, Fan Z, Jiang W. Regioselective Synthesis of Methylene-Bridged Naphthalene Oligomers and Their Host-Guest Chemistry. J Org Chem 2017; 82:9570-9575. [PMID: 28836436 DOI: 10.1021/acs.joc.7b01579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this research, we report the regioselective synthesis of methylene-bridged naphthalene oligomers from 2,6-dialkoxyl naphthanene and paraformaldehyde by using p-TsOH as the catalyst and CH2Cl2 as the solvent. The structures were characterized by NMR spectroscopy and X-ray crystallography. Their host-guest chemistry with organic cations was studied, and optimal naphthalene numbers in the oligomers were revealed for different guests. In addition, the reason for the unsuccessful synthesis of methylene-bridged naphthalene macrocycles was discussed.
Collapse
Affiliation(s)
- San-Jiang Pan
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology , No. 29, 13th Avenue, TEDA, Tianjin 300457, China.,Department of Chemistry, South University of Science and Technology of China , Xueyuan Blvd 1088, Nanshan District, Shenzhen 518055, P. R. China
| | - Gang Ye
- Department of Chemistry, South University of Science and Technology of China , Xueyuan Blvd 1088, Nanshan District, Shenzhen 518055, P. R. China
| | - Fei Jia
- Department of Chemistry, South University of Science and Technology of China , Xueyuan Blvd 1088, Nanshan District, Shenzhen 518055, P. R. China
| | - Zhenfeng He
- School of Chemical Engineering and Technology, North University of China , Taiyuan 030051, China
| | - Hua Ke
- Department of Chemistry, South University of Science and Technology of China , Xueyuan Blvd 1088, Nanshan District, Shenzhen 518055, P. R. China
| | - Huan Yao
- Department of Chemistry, South University of Science and Technology of China , Xueyuan Blvd 1088, Nanshan District, Shenzhen 518055, P. R. China
| | - Zhi Fan
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology , No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Wei Jiang
- Department of Chemistry, South University of Science and Technology of China , Xueyuan Blvd 1088, Nanshan District, Shenzhen 518055, P. R. China
| |
Collapse
|
35
|
Yang Z, Tian Z, Yang P, Deng T, Li G, Zhou X, Chen Y, Zhao L, Shen H. Calix[3]carbazole: A C 3-symmetrical receptor for barium ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 174:32-36. [PMID: 27865137 DOI: 10.1016/j.saa.2016.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 10/28/2016] [Accepted: 11/12/2016] [Indexed: 06/06/2023]
Abstract
The binding ability of calix[3]carbazole (1) to metal ions has been investigated. It is found that 1 could serve as a non crown ether based, C3-symmetrical receptor for Ba2+ via the marriage of cation-π and cation-dipole interactions. FID assay further illustrates that 1 could selectively interact with Ba2+ over Pd2+. A possible binding mechanism for [1-Ba2+] complex is proposed.
Collapse
Affiliation(s)
- Zhaozheng Yang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China (Shenyang Pharmaceutical University), Benxi 117004, PR China
| | - Zhangmin Tian
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China (Shenyang Pharmaceutical University), Benxi 117004, PR China
| | - Peng Yang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China (Shenyang Pharmaceutical University), Benxi 117004, PR China.
| | - Tuo Deng
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China (Shenyang Pharmaceutical University), Benxi 117004, PR China
| | - Gang Li
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China (Shenyang Pharmaceutical University), Benxi 117004, PR China
| | - Xue Zhou
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China (Shenyang Pharmaceutical University), Benxi 117004, PR China
| | - Yan Chen
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China (Shenyang Pharmaceutical University), Benxi 117004, PR China
| | - Liang Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China (Shenyang Pharmaceutical University), Benxi 117004, PR China
| | - Hongyan Shen
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China (Shenyang Pharmaceutical University), Benxi 117004, PR China.
| |
Collapse
|
36
|
Yang LP, Liu H, Lu SB, Jia F, Jiang W. H2S-Responsive Lower Critical Solution Temperature of the Host–Guest Complex Based on Oxatub[4]arene with Tri(ethylene oxide) Moieties. Org Lett 2017; 19:1212-1215. [DOI: 10.1021/acs.orglett.7b00181] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Liu-Pan Yang
- Department
of Chemistry, South University of Science and Technology of China, Xueyuan Blvd 1088, Nanshan District, Shenzhen 518055, P. R. China
- Dalian
Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, P. R. China
| | - Hao Liu
- Department
of Chemistry, South University of Science and Technology of China, Xueyuan Blvd 1088, Nanshan District, Shenzhen 518055, P. R. China
| | - Song-Bo Lu
- Department
of Chemistry, South University of Science and Technology of China, Xueyuan Blvd 1088, Nanshan District, Shenzhen 518055, P. R. China
| | - Fei Jia
- Department
of Chemistry, South University of Science and Technology of China, Xueyuan Blvd 1088, Nanshan District, Shenzhen 518055, P. R. China
| | - Wei Jiang
- Department
of Chemistry, South University of Science and Technology of China, Xueyuan Blvd 1088, Nanshan District, Shenzhen 518055, P. R. China
| |
Collapse
|
37
|
Chen M, Li HL, Cong H, Yan Y, Li KL, Li MQ, Tao Z. Synthesis of benzo[6]urils and their selective interactions with bipyridines. NEW J CHEM 2017. [DOI: 10.1039/c7nj02786a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benzo[6]urils bearing hydroxymethyl or methyl groups have been synthesized with a facile method, and their supramolecular interactions with bipyridine guests have been investigated.
Collapse
Affiliation(s)
- Man Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Hai-Ling Li
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Hang Cong
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Yan Yan
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Kai-Li Li
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Ming-Qiong Li
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| |
Collapse
|
38
|
Li G, Zhao L, Yang P, Yang Z, Tian Z, Chen Y, Shen H, Hu C. Engineering 1,3-Alternate Calixcarbazole for Recognition and Sensing of Bisphenol F in Water. Anal Chem 2016; 88:10751-10756. [DOI: 10.1021/acs.analchem.6b03398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Gang Li
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, People’s Republic of China
| | - Liang Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, People’s Republic of China
| | - Peng Yang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, People’s Republic of China
| | - Zhaozheng Yang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, People’s Republic of China
| | - Zhangmin Tian
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, People’s Republic of China
| | - Yan Chen
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, People’s Republic of China
| | - Hongyan Shen
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, People’s Republic of China
| | - Chun Hu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, People’s Republic of China
| |
Collapse
|
39
|
|
40
|
Boinski T, Cieszkowski A, Rosa B, Leśniewska B, Szumna A. Calixarenes with naphthalene units: calix[4]naphthalenes and hybrid[4]arenes. NEW J CHEM 2016. [DOI: 10.1039/c6nj01736c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile, one-step synthesis of new calix[4]naphthalenes and the conformational and complexation properties of the homomacrocycles and the hybrid macrocycle are presented.
Collapse
Affiliation(s)
- T. Boinski
- Institute of Organic Chemistry
- Polish Academy of Science
- 01-244 Warsaw
- Poland
| | - A. Cieszkowski
- Institute of Organic Chemistry
- Polish Academy of Science
- 01-244 Warsaw
- Poland
| | - B. Rosa
- Institute of Organic Chemistry
- Polish Academy of Science
- 01-244 Warsaw
- Poland
| | - B. Leśniewska
- Institute of Physical Chemistry
- Polish Academy of Science
- 01-244 Warsaw
- Poland
| | - A. Szumna
- Institute of Organic Chemistry
- Polish Academy of Science
- 01-244 Warsaw
- Poland
| |
Collapse
|