1
|
Bhatt N, Tyagi A, Purohit S, Kumar A. Click Chemistry for the Generation of Combination of Triazole Core and Thioether Donor Site in Organosulfur Ligands: Applications of Metal Complexes in Catalysis. Chem Asian J 2024; 19:e202400379. [PMID: 39276029 DOI: 10.1002/asia.202400379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/30/2024] [Indexed: 09/16/2024]
Abstract
During the last two decades, organosulfur compounds have been used in the field of transition metal catalysis. Some of such compounds are known for their ability to withstand their exposure to air and moisture. These compounds are very important ligands. They may be obtained using simple and smooth modular synthetic protocols which include nucleophilic substitution reactions. The development of click chemistry represents a new era of innovation. It is a lighthouse of reliable and efficient reactions. In recent past, click chemistry has also been applied for the synthesis of such organosulfur ligands specifically suited for the dynamic field of transition metal catalysis. In order to synthesize novel compounds containing sulfur and triazole ring, click chemistry is an advantageous methodology over other approaches. This article covers the general features and uses of this methodology for the development of catalytically active organosulfur compounds. The significant advances in the design of transition metal catalytic systems utilizing such ligands, their use in the catalysis of many chemical transformations are also covered in this article. Effort has also been made to present a comparative overview of the performances of such catalysts vis-à-vis the catalysts designed commonly used ligands. Catalytic performances have been discussed thoroughly in order to identify the impact of ligand architecture on efficacy of the catalyst. Effect of reaction conditions (such as time, temperature etc.) and mechanistic aspects have also been rationalized.
Collapse
Affiliation(s)
- Neeraj Bhatt
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India
| | - Anupma Tyagi
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India
| | - Suraj Purohit
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India
| |
Collapse
|
2
|
Mora Flores EW, Suarez D, Uhrig ML, Postigo A. Photocatalyzed Perfluoroalkylation of Endoglycals. J Org Chem 2023. [PMID: 38050850 DOI: 10.1021/acs.joc.3c01488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The visible light-induced perfluoroalkyl (RF) radical reactions on peracetylglycals derived from hexoses and pentoses (galactal, glucal, arabinal, and xylal derivatives) were investigated. Various photocatalysts and perfluoroalkyl iodides (RF-I) were employed as sources of RF radicals with LEDs as the irradiation source. Particularly noteworthy was the use of an Iridium photocatalyst, Ir[dF(CF3)ppy]2(dtbpy))PF6, which yielded two distinct product types when applied to glucal. On the one hand, the 2-RF-substituted glucal was formed, a trend observed even when utilizing organic dyes as photocatalysts. On the other hand, the unexpected addition product, namely the 1-RF-2-iodo-α-manno-configured C-glycosyl derivative, was also obtained, as a result of a highly regioselective addition reaction of the RF moiety into the anomeric carbon, followed by attachment of the iodine atom on C-2 in axial disposition. This result contrasted with other radical reactions carried out on 2-unsubstituted glycals, where the incipient radical adds to C-2, generating a stabilized 1-glycosyl radical. The photocatalyzed radical perfluoroalkylations of peracetyl glycals derived from galactose, arabinose, and xylose all afforded the 2-RF-substituted glycals in good yields as a result of the expected vinylic substitution reaction. Mechanistic studies revealed that the 1-RF-2-iodo-α-manno-configured C-glycosyl derivatives arise from a radical chain reaction, whereas the 2-RF-substituted glycals proceed from inefficient chain processes.
Collapse
Affiliation(s)
- Erwin W Mora Flores
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| | - Daniel Suarez
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| | - María Laura Uhrig
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Al Postigo
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| |
Collapse
|
3
|
Wen P, Jia P, Fan Q, McCarty BJ, Tang W. Streamlined Iterative Assembly of Thio-Oligosaccharides by Aqueous S-Glycosylation of Diverse Deoxythio Sugars. CHEMSUSCHEM 2022; 15:e202102483. [PMID: 34911160 PMCID: PMC9100857 DOI: 10.1002/cssc.202102483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/13/2021] [Indexed: 06/14/2023]
Abstract
A streamlined iterative assembly of thio-oligosaccharides was developed by aqueous glycosylation. Facile syntheses of various deoxythio sugars with the sulfur on different positions from commercially available starting materials were described. These syntheses featured efficient chemical methods including our recently reported BTM-catalyzed site-selective acylation. The resulting deoxythio sugars could then be used for the Ca(OH)2 -promoted protecting group-free S-glycosylation in water at room temperature. The aqueous glycosylation reaction proceeded smoothly to afford the corresponding 1,2-trans S-glycosides in good yields with high chemo- and stereoselectivity. An appropriate choice of protecting groups for the thiol in the glycosyl donor was necessary for the development of iterative synthesis of thio-oligosaccharides. The aqueous glycosylation was then applied to the synthesis of a trimannoside moiety of N-linked glycans core region.
Collapse
Affiliation(s)
- Peng Wen
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Peijing Jia
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Qiuhua Fan
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Bethany J McCarty
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
4
|
Chen J, Yang H, Zhang M, Chen H, Liu J, Yin K, Chen S, Shao A. Electrochemical-induced regioselective C-3 thiocyanation of imidazoheterocycles with hydrogen evolution. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Abstract
Radical reactions have found many applications in carbohydrate chemistry, especially in the construction of carbon–carbon bonds. The formation of carbon–heteroatom bonds has been less intensively studied. This mini-review will summarize the efforts to add heteroatom radicals to unsaturated carbohydrates like endo-glycals. Starting from early examples, developed more than 50 years ago, the importance of such reactions for carbohydrate chemistry and recent applications will be discussed. After a short introduction, the mini-review is divided in sub-chapters according to the heteroatoms halogen, nitrogen, phosphorus, and sulfur. The mechanisms of radical generation by chemical or photochemical processes and the subsequent reactions of the radicals at the 1-position will be discussed. This mini-review cannot cover all aspects of heteroatom-centered radicals in carbohydrate chemistry, but should provide an overview of the various strategies and future perspectives.
Collapse
|
6
|
Mai-Linde Y, Linker T. Radical Clock Probes to Determine Carbohydrate Radical Stabilities. Org Lett 2020; 22:1525-1529. [PMID: 32009406 DOI: 10.1021/acs.orglett.0c00111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Carbohydrate radical stabilities in the 1- and 2-position have been determined by a radical clock approach, starting from cyclopropanated sugars with xanthates as precursors. Various hexoses and pentoses afforded 1-deoxy sugars as main products, indicating that anomeric radicals are more stable than radicals in the 2-position. An additional influence of the configurations on radical stabilities has been observed. Our results should be interesting for the understanding of 1,2-radical rearrangements in carbohydrate chemistry and offer an easy access to deoxy-vinyl sugars.
Collapse
Affiliation(s)
- Yasemin Mai-Linde
- Department of Chemistry , University of Potsdam , Karl-Liebknecht-Str. 24-25 , 14476 Golm , Germany
| | - Torsten Linker
- Department of Chemistry , University of Potsdam , Karl-Liebknecht-Str. 24-25 , 14476 Golm , Germany
| |
Collapse
|
7
|
Hevey R. Bioisosteres of Carbohydrate Functional Groups in Glycomimetic Design. Biomimetics (Basel) 2019; 4:E53. [PMID: 31357673 PMCID: PMC6784292 DOI: 10.3390/biomimetics4030053] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
The aberrant presentation of carbohydrates has been linked to a number of diseases, such as cancer metastasis and immune dysregulation. These altered glycan structures represent a target for novel therapies by modulating their associated interactions with neighboring cells and molecules. Although these interactions are highly specific, native carbohydrates are characterized by very low affinities and inherently poor pharmacokinetic properties. Glycomimetic compounds, which mimic the structure and function of native glycans, have been successful in producing molecules with improved pharmacokinetic (PK) and pharmacodynamic (PD) features. Several strategies have been developed for glycomimetic design such as ligand pre-organization or reducing polar surface area. A related approach to developing glycomimetics relies on the bioisosteric replacement of carbohydrate functional groups. These changes can offer improvements to both binding affinity (e.g., reduced desolvation costs, enhanced metal chelation) and pharmacokinetic parameters (e.g., improved oral bioavailability). Several examples of bioisosteric modifications to carbohydrates have been reported; this review aims to consolidate them and presents different possibilities for enhancing core interactions in glycomimetics.
Collapse
Affiliation(s)
- Rachel Hevey
- Molecular Pharmacy, Department Pharmaceutical Sciences, University of Basel, Klingelbergstr. 50, 4056 Basel, Switzerland.
| |
Collapse
|
8
|
Tian GZ, Hu J, Zhang HX, Rademacher C, Zou XP, Zheng HN, Xu F, Wang XL, Linker T, Yin J. Synthesis and conformational analysis of linear homo- and heterooligomers from novel 2-C-branched sugar amino acids (SAAs). Sci Rep 2018; 8:6625. [PMID: 29700416 PMCID: PMC5919921 DOI: 10.1038/s41598-018-24927-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/05/2018] [Indexed: 11/09/2022] Open
Abstract
Sugar amino acids (SAAs), as biologically interesting structures bearing both amino and carboxylic acid functional groups represent an important class of multifunctional building blocks. In this study, we develop an easy access to novel SAAs in only three steps starting from nitro compounds in high yields in analytically pure form, easily available by ceric (IV) mediated radical additions. Such novel SAAs have been applied in the assembly of total nine carbopeptoids with the form of linear homo- and heterooligomers for the structural investigations employing circular dichroism (CD) spectroscopy, which suggest that the carbopeptoids emerge a well-extended, left (or right)-handed conformation similar to polyproline II (PPII) helices. NMR studies also clearly demonstrated the presence of ordered secondary structural elements. 2D-ROESY spectra were acquired to identify i+1 NH ↔ i C 1 H, i C 2 H correlations which support the conformational analysis of tetramers by CD spectroscopy. These findings provide interesting information of SAAs and their oligomers as potential scaffolds for discovering new drugs and materials.
Collapse
Affiliation(s)
- Guang-Zong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, P.R. China
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, P.R. China.
| | - Heng-Xi Zhang
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Xiao-Peng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, P.R. China
| | - Hong-Ning Zheng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, P.R. China
| | - Fei Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, P.R. China
| | - Xiao-Li Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, P.R. China
| | - Torsten Linker
- Department of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, P.R. China.
| |
Collapse
|
9
|
Komissarov VV, Kritzyn AM. Polymethylene derivatives of nucleic bases bearing ω-functional groups: IX—An unusual reaction of methyl 2-thiocyano-5-chloropentanoate with uracyl and thymine. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162017060061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Fudickar W, Pavashe P, Linker T. Thiocarbohydrates on Gold Nanoparticles: Strong Influence of Stereocenters on Binding Affinity and Interparticle Forces. Chemistry 2017; 23:8685-8693. [DOI: 10.1002/chem.201700846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Werner Fudickar
- Department of Chemistry; University of Potsdam; Karl-Liebknecht-Str. 24-25 14476 Potsdam Germany
| | - Prashant Pavashe
- Department of Chemistry; University of Potsdam; Karl-Liebknecht-Str. 24-25 14476 Potsdam Germany
| | - Torsten Linker
- Department of Chemistry; University of Potsdam; Karl-Liebknecht-Str. 24-25 14476 Potsdam Germany
| |
Collapse
|
11
|
Ji F, Fan Y, Yang R, Yang Y, Yu D, Wang M, Li Z. Regioselective Synthesis of Thiocyanate-Containing Isoxazolines via FeIII
/K2
S2
O8
-Mediated Radical Thiocyanation/Cyclization Cascade Reaction of β,γ-Unsaturated Oximes. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Fei Ji
- Department of Pharmaceutical Engineering; China Pharmaceutical University; 639 Longmian Avenue, Jiangning District Nanjing 211198 China
| | - Yun Fan
- Department of Pharmaceutical Engineering; China Pharmaceutical University; 639 Longmian Avenue, Jiangning District Nanjing 211198 China
| | - Run Yang
- Department of Pharmaceutical Engineering; China Pharmaceutical University; 639 Longmian Avenue, Jiangning District Nanjing 211198 China
| | - Yueyan Yang
- Department of Pharmaceutical Engineering; China Pharmaceutical University; 639 Longmian Avenue, Jiangning District Nanjing 211198 China
| | - Dianwen Yu
- Department of Pharmaceutical Engineering; China Pharmaceutical University; 639 Longmian Avenue, Jiangning District Nanjing 211198 China
| | - Minyu Wang
- Department of Pharmaceutical Engineering; China Pharmaceutical University; 639 Longmian Avenue, Jiangning District Nanjing 211198 China
| | - Zhiyu Li
- Department of Medicinal Chemistry; China Pharmaceutical University; #24 Tongjiaxiang Nanjing 210009 China
| |
Collapse
|