1
|
Ji CB. Advances and Strategies towards Synthesis of Aspidosperma Indole Alkaloids Goniomitine. Chem Biodivers 2024; 21:e202400416. [PMID: 38587971 DOI: 10.1002/cbdv.202400416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Goniomitine is of the aspidosperma alkaloid family, with an angularly fused tetracyclic skeleton housing an all-carbon quaternary carbon chiral center alongside an aminal functional group. This natural product has garnered attention as a synthetic target due to its intriguing molecular architecture and anti-proliferative activity in recent years. Following the first synthesis of (-)-goniomitine by Takano in 1991, synthetic chemists have developed various methods. This review provides an overview of the methodologies used in the synthesis of goniomitine in racemic and enantiopure forms via divergent construction indole framework, indole functionalization, and the integrated oxidation/reduction/cyclization (iORC) sequence from 1991 to 2023.
Collapse
Affiliation(s)
- Cong-Bin Ji
- School of Chemistry and Environmental Sciences, Shangrao Normal University, 334001, Shangrao, P. R. China
| |
Collapse
|
2
|
Subbi Reddy M, Nanubolu JB, Suresh S. Design and development of intramolecular doubly vinylogous Michael addition to access 3-aryl substituted 2-alkenyl-benzofurans and -indoles. Org Biomol Chem 2023. [PMID: 37326590 DOI: 10.1039/d3ob00861d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Herein, we have disclosed a rare example of an intramolecular doubly vinylogous Michael addition (DVMA). The reaction design exploits the innate reactivity of ortho-heteroatom substituted para-quinone methide (p-QM) derivatives. The sequential reaction of p-QMs and activated allyl halides proceeds through heteroatom-allylation, DVMA and oxidation to furnish a diverse range of 2-alkenyl benzofuran and 2-alkenyl indole derivatives in high yields.
Collapse
Affiliation(s)
- Manyam Subbi Reddy
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagadeesh Babu Nanubolu
- Laboratory of X-Ray Crystallography, Department of Analytical Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Surisetti Suresh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Park J, Cheon CH. A cyanide-catalyzed imino-Stetter reaction enables the concise total syntheses of rucaparib. RSC Adv 2022; 12:21172-21180. [PMID: 35975042 PMCID: PMC9341288 DOI: 10.1039/d2ra03619c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
Two routes toward the synthesis of rucaparib, an FDA-approved drug used for the treatment of ovarian and prostate cancers, have been developed from commercially available starting materials utilizing the cyanide-catalyzed imino-Stetter reaction as the key step for the construction of the indole motif bearing all the desired substituents in their correct positions. In the first-generation synthesis, meta-fluorobenzoate, the starting material currently used in the process chemistry route of rucaparib, was converted into 4,6-disubstituted 2-aminocinnamic acid derivatives (ester or amide). The cyanide-catalyzed imino-Stetter reaction of aldimines derived from the resulting 2-aminocinnamic acid derivatives and a commercially available aldehyde afforded the desired indole-3-acetic acid derivatives. The final azepinone formation completed the total synthesis of rucaparib in 27% overall yield. To resolve the issues raised in the first-generation synthesis, we further developed a second-generation synthesis of rucaparib. The Heck reaction of a commercially available ortho-iodoaniline derivative with acrylonitrile provided 4,6-disubstituted 2-aminocinnamonitrile, which was subjected to the imino-Stetter reaction with the same aldehyde to provide the desired indole-3-acetonitrile product. Subsequent construction of the azepinone scaffold completed the total synthesis of rucaparib in 59% overall yield over three separation operations. The synthetic strategy reported herein can provide a highly practical route to access rucaparib from commercially available starting materials (5.2% overall yield in the current process chemistry route vs. 59% overall yield in the second-generation synthesis).
Collapse
Affiliation(s)
- Jinjae Park
- Department of Chemistry Korea University 145 Anam-ro Seongbuk-gu Seoul 02841 Republic of Korea
| | - Cheol-Hong Cheon
- Department of Chemistry Korea University 145 Anam-ro Seongbuk-gu Seoul 02841 Republic of Korea
| |
Collapse
|
4
|
Abstract
A concise total synthesis of rucaparib, an FDA-approved drug for ovarian and prostate cancers, is reported. The Heck reaction of the commercially available aryl iodide with acrylonitrile provided the desired (E)-2-aminocinnamonitrile derivative. A subsequent imino-Stetter reaction of the aldimine derived from 2-aminocinnamonitrile and aldehyde furnished indole-3-acetonitrile bearing the desired substituents at appropriate positions. The construction of the final azepinone scaffold via reduction of the nitrile group followed by seven-membered lactamization afforded rucaparib. Notably, the synthesis of rucaparib is achieved using commercially available starting materials in only three separation operations with 54% overall yield.
Collapse
Affiliation(s)
- Jinjae Park
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Cheol-Hong Cheon
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
5
|
Schneider C, Hofmann F, Gärtner C, Kretzschmar M. Asymmetric Synthesis of Fused Tetrahydroquinolines via Intramolecular Aza-Diels–Alder Reaction of ortho-Quinone Methide Imines. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1517-7515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractAza-Diels–Alder reactions are straightforward processes for the construction of N-heterocycles, featuring inherent atom-economy and stereospecificity. Intramolecular strategies allow the formation of bicyclic core structures with up to three stereocenters within a single step. Herein, this concept is combined with the chemistry of chiral Brønsted acid bound ortho-quinone methide imines to generate a range of interesting fused tetrahydroquinolines in a diastereo- and enantioselective manner.
Collapse
|
6
|
Elshaier YA, Nemr MTM, Al Refaey M, Fadaly WAA, Barakat A. Chemistry of 2-Vinylindoles: Synthesis and Applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj00460g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a class of compounds, 2-vinylindoles have demonstrated a wide range of biological properties. Due to the general interest in these synthons, new divergent protocols of chemical synthesis have been...
Collapse
|
7
|
Christoffers J, Kieslich D. Cyanide Anions as Nucleophilic Catalysts in Organic Synthesis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1499-8943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe nucleophilic addition of a cyanide anion to a carbonyl group is the basis for several cyanide-catalyzed organic reactions, which are summarized in this review. Since cyanide is also a good leaving group, it is an excellent catalyst for transacylation reactions. As an electron-withdrawing group, it also stabilizes a negative charge in its α-position, thus allowing the umpolung of aldehydes to formyl anion equivalents. The two leading examples are the benzoin condensation and the Michael–Stetter reaction furnishing α-hydroxy ketones and 1,4-dicarbonyl compounds, which are both catalyzed by cyanides. The review also covers variants like the silyl-benzoin coupling, the aldimine coupling and the imino-Stetter reaction. Moreover, some cyanide-catalyzed heterocyclic syntheses are reviewed.1 Introduction2 Nucleophilic Additions2.1 Cyanohydrin Formation2.2 Corey–Gilman–Ganem and Related Oxidation Reactions2.3 Conjugate Addition2.4 Intramolecular Carbocyanation3 Transacylation Reactions3.1 Ester Hydrolysis and Transesterification3.2 Formation of Amides3.3 Ketones from Esters3.4 Esters from Ketones4 Transformations Involving an Umpolung4.1 Benzoin Condensation4.2 Aldimine Coupling4.3 Michael–Stetter Reaction4.4 Imino-Stetter Reaction5 Formation of Heterocycles5.1 Oxazolines from Isocyanoacetates5.2 Imidazoles from TosMIC via Oxazolines5.3 Bargellini Reaction6 Conclusion
Collapse
|
8
|
Shelke YG, Hande PE, Gharpure SJ. Recent advances in the synthesis of pyrrolo[1,2- a]indoles and their derivatives. Org Biomol Chem 2021; 19:7544-7574. [PMID: 34524330 DOI: 10.1039/d1ob01103k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pyrrolo[1,2-a]indole unit is a privileged heterocycle found in numerous natural products and has been shown to exhibit diverse pharmacological properties. Thus, recent years have witnessed immense interest from the synthesis community on the synthesis of this scaffold. In light of the ever-increasing demand for pyrrolo[1,2-a]indoles in drug discovery, this review provides an overview of recent synthesis methods for the preparation of pyrrolo[1,2-a]indoles and their derivatives. The mechanistic pathway and stereo-electronic factors affecting the yield and selectivity of the product are briefly explained. Furthermore, we have attempted to demonstrate the utility of the developed methods in the synthesis of bioactive molecules and natural products, wherever offered.
Collapse
Affiliation(s)
- Yogesh G Shelke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Pankaj E Hande
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
9
|
Akulov AA, Varaksin MV, Charushin VN, Chupakhin ON. C(sp2) – H functionalization of aldimines and related compounds: advances and prospects. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This is the first systematic review of the most relevant approaches to direct C(sp2)–H bond functionalization of azomethine derivatives. The scope of the applicability of various transformations is analyzed. The review assesses prospects of the application of this functionalization strategy in the multistep synthesis of valuable compounds for use in medicinal chemistry, materials science and related areas.
The bibliography includes 124 references.
Collapse
|
10
|
Abstract
The total synthesis of (±)-hinckdentine A is described herein. A cyanide-catalyzed imino-Stetter reaction of the aldimine derived from ethyl 2-amino-3,5-dibromocinnamate and 5-bromo-2-nitrobenzaldehyde followed by oxidative rearrangement afforded a 2,2-disubstituted 3-indolinone derivative containing the carbon skeleton and all of the functional groups present in the natural product correctly positioned, including three bromine atoms. Subsequent D-ring formation and seven-membered C-ring construction completed the total synthesis of hinckdentine A.
Collapse
Affiliation(s)
- Jiye Jeon
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Eun Lee
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Cheol-Hong Cheon
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
11
|
Das A, Das A, Basu A, Datta P, Gupta M, Mukherjee A. Newer guar gum ester/chicken feather keratin interact films for tissue engineering. Int J Biol Macromol 2021; 180:339-354. [PMID: 33711372 DOI: 10.1016/j.ijbiomac.2021.03.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 01/09/2023]
Abstract
This work intends to synthesis newer guar gum indole acetate ester and design film scaffolds based on protein-polysaccharide interactions for tissue engineering applications. Guar gum indole acetate(GGIA) was synthesized for the first time from guar gum in presence of aprotic solvent activated hofmeister ions. The newer biopolymer was fully characterized in FT-IR,13C NMR, XRD and TGA analysis. High DS (Degree of Substitution, DS = 0.61) GGIA was cross-linked with hydrolyzed keratin, extracted from chicken feather wastes. Films were synthesized from different biopolymer ratios and the surface chemistry appeared interesting. Physicochemical properties for GGIA-keratin association were notable. Fully bio-based films were non-cytotoxic and exhibited excellent biocompatibility for human dermal fibroblast cell cultivations. The film scaffold showed 63% porosity and the recorded tensile strength at break was 6.4 MPa. Furthermore, the standardised film exerted superior antimicrobial activity against both the Gram-positive and Gram-negative bacteria. MICs were recorded at 130 μg/mL and 212 μg/mL for E. coli and S. aureus respectively. In summary, GGIA-keratin film scaffolds represented promising platforms for skin tissue engineering applications.
Collapse
Affiliation(s)
- Aatrayee Das
- Division of Pharmaceutical and Fine Chemical Technology, Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Ankita Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Aalok Basu
- Division of Pharmaceutical and Fine Chemical Technology, Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India; Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Bidhannagar, Durgapur 713206, West Bengal, India
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Mradu Gupta
- Dravyaguna Department, Institute of Post Graduate Ayurvedic Education and Research, 294/3/1, A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Arup Mukherjee
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, NH 12, Haringhata, Nadia 721249, West Bengal, India.
| |
Collapse
|
12
|
Chambers GE, Sayan AE, Brown RCD. The synthesis of biologically active indolocarbazole natural products. Nat Prod Rep 2021; 38:1794-1820. [PMID: 33666619 DOI: 10.1039/d0np00096e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Covering: up to 2020The indolocarbazoles, in particular indolo[2,3-a]pyrrolo[3,4-c]carbazole derivatives, are an important class of natural products that exhibit a wide range of biological activities. There has been a plethora of synthetic approaches to this family of natural products, leading to advances in chemical methodology, as well as affording access to molecular scaffolds central to protein kinase drug discovery programmes. In this review, we compile and summarise the synthetic approaches to the indolo[2,3-a]pyrrolo[3,4-c]carbazole derivatives, spanning the period from their isolation in 1980 up to 2020. The selected natural products include indolocarbazoles not functionalised at indolic nitrogen, pyranosylated indolocarbazoles, furanosylated indolocarbazoles and disaccharideindolocarbazoles.
Collapse
Affiliation(s)
- George E Chambers
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - A Emre Sayan
- University of Southampton Cancer Sciences Division, University of Southampton, Southampton SO17 1BJ, UK
| | - Richard C D Brown
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
13
|
Harish B, Yadav S, Suresh S. Design and application of intramolecular vinylogous Michael reaction for the construction of 2-alkenyl indoles. Chem Commun (Camb) 2021; 57:231-234. [PMID: 33300907 DOI: 10.1039/d0cc06564a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A base-mediated transformation based on a designed intramolecular vinylogous Michael addition (intra-VMA) is presented to access 3-substituted 2-alkenyl indole derivatives. The reaction represents the first example of the intra-VMA for the construction of indoles. A one-pot N-allylation of ortho-tosylamidocinnamates/congeners with γ-bromocrotonates followed by intra-VMA has been described to provide access to a diverse range of 2-alkenyl indole derivatives in reasonable to high yields. The synthetic value of the developed intra-VMA has been demonstrated by gram-scale synthesis of a representative indole derivative and also by the formal synthesis of MK-7246: a Merck's clinical CRTH2 antagonist.
Collapse
Affiliation(s)
- Battu Harish
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
| | | | | |
Collapse
|
14
|
Kim HJ, Cheon C. Synthesis of 2‐Substituted Tryptamines via Cyanide‐Catalyzed Imino‐Stetter Reaction. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Hyung Joo Kim
- Department of Chemistry Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Cheol‐Hong Cheon
- Department of Chemistry Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| |
Collapse
|
15
|
|
16
|
Jeon J, Kim HJ, Cheon CH. Total Synthesis of Iheyamine A via the Cyanide-Catalyzed Imino-Stetter Reaction. J Org Chem 2020; 85:8149-8156. [PMID: 32441099 DOI: 10.1021/acs.joc.0c01051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The total synthesis of iheyamine A from readily available ethyl 2-aminocinnamate and 5-methoxyindole-2-carboxaldehyde is described. The cyanide-catalyzed imino-Stetter reaction of an aldimine derived from ethyl 2-aminocinnamate and 5-methoxyindole-2-carboxaldehyde provided the desired unsymmetrical 2,2'-bisindole-3-acetic acid derivative. The subsequent introduction of an amino group at the C-3' position, followed by the formation of the azepine ring, completed the total synthesis of iheyamine A.
Collapse
Affiliation(s)
- Jiye Jeon
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyung Joo Kim
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Cheol-Hong Cheon
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
17
|
Bae C, Park E, Cho CG, Cheon CH. General Strategy for the Synthesis of Antirhine Alkaloids: Divergent Total Syntheses of (±)-Antirhine, (±)-18,19-Dihydroantirhine, and Their 20-Epimers. Org Lett 2020; 22:2354-2358. [PMID: 32141756 DOI: 10.1021/acs.orglett.0c00544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A general synthetic strategy for antirhine alkaloids was developed in this study. The cyanide-catalyzed imino-Stetter reaction of ethyl 2-aminocinnamate and 4-bromopyridine-2-carboxaldehyde afforded the corresponding indole-3-acetic acid derivative. Subsequent formation of the six-membered C ring followed by trans-selective installation of the two-carbon unit at C-15 provided rapid access to the key intermediate. Stereoselective installation of substituents at C-20 allowed the total syntheses of (±)-antirhine, (±)-18,19-dihydroantirhine, and their 20-epimers, all of the known natural products in the antirhine family.
Collapse
Affiliation(s)
- Cheolwoo Bae
- Center for New Directions in Organic Synthesis, Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Eunjoon Park
- Center for New Directions in Organic Synthesis, Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Cheon-Gyu Cho
- Center for New Directions in Organic Synthesis, Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Cheol-Hong Cheon
- Center for New Directions in Organic Synthesis, Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
18
|
Hua G, Cordes DB, Slawin AMZ, Woollins JD. Reactivity of Woollins' Reagent toward 2-En-1-imines (Schiff Bases): A Facile Approach to Synthesize New Selenium-Phosphorus-Nitrogen Heterocycles. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201901030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Guoxiong Hua
- EastChem School of Chemistry; University of St Andrews; Fife; KY16 9ST St Andrews UK
| | - David B. Cordes
- EastChem School of Chemistry; University of St Andrews; Fife; KY16 9ST St Andrews UK
| | | | - J. Derek Woollins
- EastChem School of Chemistry; University of St Andrews; Fife; KY16 9ST St Andrews UK
- Department of Chemistry; Khalifa University; Abu Dhabi United Arab Emirates
| |
Collapse
|
19
|
Affiliation(s)
- Eunjoon Park
- Department of ChemistryKorea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Cheol‐Hong Cheon
- Department of ChemistryKorea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| |
Collapse
|
20
|
Das TK, Ghosh A, Balanna K, Behera P, Gonnade RG, Marelli UK, Das AK, Biju AT. N-Heterocyclic Carbene-Catalyzed Umpolung of Imines for the Enantioselective Synthesis of Dihydroquinoxalines. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00737] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tamal Kanti Das
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110020, India
| | - Avik Ghosh
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Kuruva Balanna
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pradipta Behera
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rajesh G. Gonnade
- Centre for Materials Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Udaya Kiran Marelli
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110020, India
| | - Abhijit Kumar Das
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Akkattu T. Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
21
|
Jeon J, Cheon CH. Synthesis of benzo[a]carbazoles via cyanide-catalyzed imino-Stetter reaction/Friedel–Crafts reaction sequence. Org Chem Front 2019. [DOI: 10.1039/c8qo01209a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new sequential protocol for the synthesis of benzo[a]carbazoles was developed via the cyanide-catalyzed imino-Stetter reaction followed by Friedel–Crafts reaction.
Collapse
Affiliation(s)
- Jiye Jeon
- Department of Chemistry
- Korea University
- Seoul 02841
- Republic of Korea
| | - Cheol-Hong Cheon
- Department of Chemistry
- Korea University
- Seoul 02841
- Republic of Korea
| |
Collapse
|
22
|
Hsueh NC, Lai KS, Chang MY. Stereocontrolled Construction of 1-Vinylindanes via Intramolecular Cyclization of o-Cinnamyl Chalcones. J Org Chem 2018; 83:11415-11424. [PMID: 30122047 DOI: 10.1021/acs.joc.8b01729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this paper, a concise route for the synthesis of 1-vinylindanes is described, including (i) NaBH4-mediated reduction of o-cinnamyl chalcones and (ii) sequential BF3·OEt2-mediated intramolecular annulation of the resulting alkenols. The plausible mechanism is proposed and discussed herein. This protocol provides highly effective stereocontrolled cinnamyl-enone cross-coupling to construct three contiguous trans- trans stereocenters and one ( E)-configured alkenyl or styryl group.
Collapse
Affiliation(s)
- Nein-Chen Hsueh
- Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 807 , Taiwan
| | - Kai-Shang Lai
- Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 807 , Taiwan
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 807 , Taiwan.,Department of Medical Research , Kaohsiung Medical University Hospital , Kaohsiung 807 , Taiwan
| |
Collapse
|
23
|
Park E, Jeon J, Cheon CH. Chemistry of Cyanide Adducts of Aldimines from Aniline Derivatives. CHEM REC 2018; 18:1474-1488. [PMID: 29665280 DOI: 10.1002/tcr.201800005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/22/2018] [Indexed: 12/19/2022]
Abstract
The chemistry of hydrogen cyanide adducts of imines is well-developed, but that of cyanide adducts remains unexplored. This is presumably because these cyanide adducts are not stable and thus not readily available in their isolated forms. In this personal account, we present the progress made in our research program towards the development of novel organic transformations utilizing cyanide adducts of imines as key intermediates. We also report the application of these methodologies to the total synthesis of natural products including indole alkaloids.
Collapse
Affiliation(s)
- Eunjoon Park
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jiye Jeon
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Cheol-Hong Cheon
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
24
|
Lee S, Kim KH, Cheon CH. Total Syntheses of Arcyriaflavin A and Calothrixin B Using 2,2′-Bisindole-3-acetic Acid Derivative as a Common Intermediate. Org Lett 2017; 19:2785-2788. [DOI: 10.1021/acs.orglett.7b00687] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sungjong Lee
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyung-Hee Kim
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Cheol-Hong Cheon
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
25
|
Morita T, Satoh T, Miura M. Rhodium(III)-Catalyzed Ortho-Alkenylation of Anilines Directed by a Removable Boc-Protecting Group. Org Lett 2017; 19:1800-1803. [DOI: 10.1021/acs.orglett.7b00569] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tomohiro Morita
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tetsuya Satoh
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Department
of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Masahiro Miura
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Park E, Cheon CH. A general strategy for the synthesis of indoloquinolizine alkaloids via a cyanide-catalyzed imino-Stetter reaction. Org Biomol Chem 2017; 15:10265-10275. [DOI: 10.1039/c7ob02691a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general synthetic strategy applicable to indoloquinolizine alkaloids has been developed using a cyanide-catalyzed imino-Stetter reaction as a key step.
Collapse
Affiliation(s)
- Eunjoon Park
- Department of Chemistry
- Korea University
- Seoul 02841
- Republic of Korea
| | - Cheol-Hong Cheon
- Department of Chemistry
- Korea University
- Seoul 02841
- Republic of Korea
| |
Collapse
|
27
|
Kwon SH, Seo HA, Cheon CH. Total Synthesis of Luotonin A and Rutaecarpine from an Aldimine via the Designed Cyclization. Org Lett 2016; 18:5280-5283. [DOI: 10.1021/acs.orglett.6b02597] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Se Hyun Kwon
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hong-Ahn Seo
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Cheol-Hong Cheon
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|