1
|
Nogal N, Guisán S, Dellemme D, Surin M, de la Escosura A. Selectivity in the chiral self-assembly of nucleobase-arylazopyrazole photoswitches along DNA templates. J Mater Chem B 2024; 12:3703-3709. [PMID: 38505984 DOI: 10.1039/d4tb00041b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The control of supramolecular DNA assembly through external stimuli such as light represents a promising approach to control bioreactions, and modulate hybridization or delivery processes. Here, we report on the design of nucleobase-containing arylazopyrazole photoswitches that undergo chiral organization upon self-assembly along short DNA templates. Chiroptical spectroscopy shows that the specific nucleobases allow selectivity in the resulting supramolecular DNA complexes, and UV light irradiation triggers partial desorption of the arylazopyrazole photoswitches. Molecular modeling studies reveal the differences of binding modes between the two configurations in the templated assembly. Remarkably, our results show that the photoswitching behaviour controls the self-assembly process along DNA, opening the way to potential applications as nano- and biomaterials.
Collapse
Affiliation(s)
- Noemí Nogal
- Departament of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain.
| | - Santiago Guisán
- Departament of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain.
| | - David Dellemme
- Laboratory for Chemistry of Novel Materials, Center for Innovation in Materials and Polymers, University of Mons - UMONS, 20 Place du Parc, Mons B-7000, Belgium.
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Center for Innovation in Materials and Polymers, University of Mons - UMONS, 20 Place du Parc, Mons B-7000, Belgium.
| | - Andrés de la Escosura
- Departament of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain.
- Institute for Advanced Research in Chemistry (IAdChem), Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
2
|
Cinti S, Tomassi S, Ciardiello C, Migliorino R, Pirozzi M, Leone A, Di Gennaro E, Campani V, De Rosa G, D'Amore VM, Di Maro S, Donati G, Singh S, Raucci A, Di Leva FS, Kessler H, Budillon A, Marinelli L. Paper-based electrochemical device for early detection of integrin αvβ6 expressing tumors. Commun Chem 2024; 7:60. [PMID: 38514757 PMCID: PMC10957923 DOI: 10.1038/s42004-024-01144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Despite progress in the prevention and diagnosis of cancer, current technologies for tumor detection present several limitations including invasiveness, toxicity, inaccuracy, lengthy testing duration and high cost. Therefore, innovative diagnostic techniques that integrate knowledge from biology, oncology, medicinal and analytical chemistry are now quickly emerging in the attempt to address these issues. Following this approach, here we developed a paper-based electrochemical device for detecting cancer-derived Small Extracellular Vesicles (S-EVs) in fluids. S-EVs were obtained from cancer cell lines known to express, at a different level, the αvβ6 integrin receptor, a well-established hallmark of numerous epithelial cancer types. The resulting biosensor turned out to recognize αvβ6-containing S-EVs down to a limit of 0.7*103 S-EVs/mL with a linear range up to 105 S-EVs /mL, and a relative standard deviation of 11%, thus it may represent a novel opportunity for αvβ6 expressing cancers detection.
Collapse
Affiliation(s)
- Stefano Cinti
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131, Naples, Italy.
| | - Stefano Tomassi
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Chiara Ciardiello
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS- Fondazione G. Pascale, Via Mariano Semmola, 53, 80131, Naples, Italy
| | - Rossella Migliorino
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS- Fondazione G. Pascale, Via Mariano Semmola, 53, 80131, Naples, Italy
| | - Marinella Pirozzi
- Second Unit, Institute of Experimenal Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Alessandra Leone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS- Fondazione G. Pascale, Via Mariano Semmola, 53, 80131, Naples, Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS- Fondazione G. Pascale, Via Mariano Semmola, 53, 80131, Naples, Italy
| | - Virginia Campani
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Giuseppe De Rosa
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Vincenzo Maria D'Amore
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Salvatore Di Maro
- Department DiSTABiF, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Greta Donati
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Sima Singh
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Ada Raucci
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Francesco Saverio Di Leva
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Alfredo Budillon
- Istituto Nazionale Tumori -IRCCS- Fondazione G. Pascale, Via Mariano Semmola, 53, 80131, Naples, Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131, Naples, Italy.
| |
Collapse
|
3
|
Kulkarni N, Shinde SD, Maingle M, Nikam D, Sahu B. Reactive oxygen species-responsive thymine-conjugated chitosan: Synthesis and evaluation as cryogel. Int J Biol Macromol 2023:125074. [PMID: 37244332 DOI: 10.1016/j.ijbiomac.2023.125074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Chitosan (CS) is a biodegradable, biocompatible cationic polysaccharide based natural polymer with antibacterial and anti-inflammatory properties. Hydrogels made from CS have been found their applications in wound healing, tissue regeneration and drug delivery. Although, mucoadhesive properties resulted from the polycationic nature of CS, in hydrogel form amines are engaged in interactions with water leading to decrease in mucoadhesive properties. In case of injury, presence of elevated level of reactive oxygen species (ROS) has inspired many drug delivery platform to conjugate ROS responsive linkers for on demand drug delivery. In this report we have conjugated a reactive oxygen species (ROS) responsive thioketal (TK) linker and nucleobase thymine (Thy) with CS. Cryogel from this doubly functionalized polymer CS-Thy-TK was prepared through crosslinking with sodium alginate. Inosine was loaded on the scaffold and studied for its release under oxidative condition. We anticipated that the presence of thymine shall retain the mucoadhesive nature of the CS-Thy-TK polymer in hydrogel form and when placed at the site of injury, due to the presence of excessive ROS at inflammatory condition, loaded drug shall release due to degradation of the linker. Porous cryogel scaffold was prepared via chemical crosslinking of amine functional group of chitosan with carboxylic acid containing polysaccharide sodium alginate. The cryogel was evaluated for porosity (FE-SEM), rheology, swelling, degradation, mucoadhesive properties and biocompatibility. Resulted scaffold was found to be porous with average pore size of 107 ± 23 μm, biocompatible, hemocompatible and possesses improved mucoadhesive property (mucin binding efficiency of 19.54 %) which was found to be 4 times better as compared to chitosan (4.53 %). The cumulative drug release found to be better in the presence of H2O2 (~90 %) when compared to that of PBS alone (~60-70 %). Therefore, the modified CS-Thy-TK polymer may hold potential as interesting scaffold in case of conditions associated with elevated ROS level such as injury and tumor.
Collapse
Affiliation(s)
- Neeraj Kulkarni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gujarat 382355, India
| | - Suchita Dattatray Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gujarat 382355, India
| | - Mohit Maingle
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gujarat 382355, India
| | - Darshani Nikam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gujarat 382355, India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gujarat 382355, India.
| |
Collapse
|
4
|
Tomassi S, Ieranò C, Del Bene A, D’Aniello A, Napolitano M, Rea G, Auletta F, Portella L, Capiluongo A, Mazzarella V, Russo R, Chambery A, Scala S, Di Maro S, Messere A. Tailoring the Structure of Cell Penetrating DNA and RNA Binding Nucleopeptides. Int J Mol Sci 2022; 23:ijms23158504. [PMID: 35955638 PMCID: PMC9369335 DOI: 10.3390/ijms23158504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Synthetic nucleic acid interactors represent an exciting research field due to their biotechnological and potential therapeutic applications. The translation of these molecules into drugs is a long and difficult process that justifies the continuous research of new chemotypes endowed with favorable binding, pharmacokinetic and pharmacodynamic properties. In this scenario, we describe the synthesis of two sets of homo-thymine nucleopeptides, in which nucleobases are inserted in a peptide structure, to investigate the role of the underivatized amino acid residue and the distance of the nucleobase from the peptide backbone on the nucleic acid recognition process. It is worth noting that the CD spectroscopy investigation showed that two of the reported nucleopeptides, consisting of alternation of thymine functionalized L-Orn and L-Dab and L-Arg as underivatized amino acids, were able to efficiently bind DNA and RNA targets and cross both cell and nuclear membranes.
Collapse
Affiliation(s)
- Stefano Tomassi
- Department of Pharmacy, University of Naples “Federico” II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Caterina Ieranò
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori “Fondazione G. Pascale”, IRCCS-Napoli, 80131 Naples, Italy; (C.I.); (M.N.); (G.R.); (F.A.); (L.P.); (A.C.); (S.S.)
| | - Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (A.D.B.); (A.D.); (V.M.); (R.R.); (A.C.)
| | - Antonia D’Aniello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (A.D.B.); (A.D.); (V.M.); (R.R.); (A.C.)
| | - Maria Napolitano
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori “Fondazione G. Pascale”, IRCCS-Napoli, 80131 Naples, Italy; (C.I.); (M.N.); (G.R.); (F.A.); (L.P.); (A.C.); (S.S.)
| | - Giuseppina Rea
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori “Fondazione G. Pascale”, IRCCS-Napoli, 80131 Naples, Italy; (C.I.); (M.N.); (G.R.); (F.A.); (L.P.); (A.C.); (S.S.)
| | - Federica Auletta
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori “Fondazione G. Pascale”, IRCCS-Napoli, 80131 Naples, Italy; (C.I.); (M.N.); (G.R.); (F.A.); (L.P.); (A.C.); (S.S.)
| | - Luigi Portella
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori “Fondazione G. Pascale”, IRCCS-Napoli, 80131 Naples, Italy; (C.I.); (M.N.); (G.R.); (F.A.); (L.P.); (A.C.); (S.S.)
| | - Anna Capiluongo
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori “Fondazione G. Pascale”, IRCCS-Napoli, 80131 Naples, Italy; (C.I.); (M.N.); (G.R.); (F.A.); (L.P.); (A.C.); (S.S.)
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (A.D.B.); (A.D.); (V.M.); (R.R.); (A.C.)
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (A.D.B.); (A.D.); (V.M.); (R.R.); (A.C.)
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (A.D.B.); (A.D.); (V.M.); (R.R.); (A.C.)
| | - Stefania Scala
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori “Fondazione G. Pascale”, IRCCS-Napoli, 80131 Naples, Italy; (C.I.); (M.N.); (G.R.); (F.A.); (L.P.); (A.C.); (S.S.)
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (A.D.B.); (A.D.); (V.M.); (R.R.); (A.C.)
- Correspondence: (S.D.M.); (A.M.)
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (A.D.B.); (A.D.); (V.M.); (R.R.); (A.C.)
- Correspondence: (S.D.M.); (A.M.)
| |
Collapse
|
5
|
Bellavita R, Casciaro B, Di Maro S, Brancaccio D, Carotenuto A, Falanga A, Cappiello F, Buommino E, Galdiero S, Novellino E, Grossmann TN, Mangoni ML, Merlino F, Grieco P. First-in-Class Cyclic Temporin L Analogue: Design, Synthesis, and Antimicrobial Assessment. J Med Chem 2021; 64:11675-11694. [PMID: 34296619 PMCID: PMC8389922 DOI: 10.1021/acs.jmedchem.1c01033] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The pharmacodynamic and pharmacokinetic properties of bioactive peptides can be modulated by introducing conformational constraints such as intramolecular macrocyclizations, which can involve either the backbone and/or side chains. Herein, we aimed at increasing the α-helicity content of temporin L, an isoform of an intriguing class of linear antimicrobial peptides (AMPs), endowed with a wide antimicrobial spectrum, by the employment of diverse side-chain tethering strategies, including lactam, 1,4-substituted [1,2,3]-triazole, hydrocarbon, and disulfide linkers. Our approach resulted in a library of cyclic temporin L analogues that were biologically assessed for their antimicrobial, cytotoxic, and antibiofilm activities, leading to the development of the first-in-class cyclic peptide related to this AMP family. Our results allowed us to expand the knowledge regarding the relationship between the α-helical character of temporin derivatives and their biological activity, paving the way for the development of improved antibiotic cyclic AMP analogues.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Bruno Casciaro
- Center
for Life Nano- & Neuro-Science, Fondazione
Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
| | - Salvatore Di Maro
- DiSTABiF, University of Campania “Luigi
Vanvitelli”, Caserta 81100, Italy
| | - Diego Brancaccio
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Alfonso Carotenuto
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Annarita Falanga
- Department
of Agricultural Sciences, University of
Naples “Federico II”, Portici 80055, Italy
| | - Floriana Cappiello
- Department
of Biochemical Sciences, Laboratory affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, Rome 00185, Italy
| | - Elisabetta Buommino
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Stefania Galdiero
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Ettore Novellino
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Tom N. Grossmann
- Department
of Chemistry & Pharmaceutical Sciences, VU University Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Maria Luisa Mangoni
- Department
of Biochemical Sciences, Laboratory affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, Rome 00185, Italy
| | - Francesco Merlino
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Paolo Grieco
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| |
Collapse
|
6
|
Bellavita R, Falanga A, Buommino E, Merlino F, Casciaro B, Cappiello F, Mangoni ML, Novellino E, Catania MR, Paolillo R, Grieco P, Galdieroa S. Novel temporin L antimicrobial peptides: promoting self-assembling by lipidic tags to tackle superbugs. J Enzyme Inhib Med Chem 2021; 35:1751-1764. [PMID: 32957844 PMCID: PMC7534258 DOI: 10.1080/14756366.2020.1819258] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rapid development of antimicrobial resistance is pushing the search in the discovering of novel antimicrobial molecules to prevent and treat bacterial infections. Self-assembling antimicrobial peptides, as the lipidated peptides, are a novel and promising class of molecules capable of meeting this need. Based on previous work on Temporin L analogs, several new molecules lipidated at the N- or and the C-terminus were synthesised. Our goal is to improve membrane interactions through finely tuning self-assembly to reduce oligomerisation in aqueous solution and enhance self-assembly in bacterial membranes while reducing toxicity against human cells. The results here reported show that the length of the aliphatic moiety is a key factor to control target cell specificity and the oligomeric state of peptides either in aqueous solution or in a membrane-mimicking environment. The results of this study pave the way for the design of novel molecules with enhanced activities.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Annarita Falanga
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | | | - Francesco Merlino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Bruno Casciaro
- Center for Life Nano Science@Sapienza, Italian Institute of Technology, Rome, Italy
| | - Floriana Cappiello
- Department of Biochemical Sciences, Laboratory affiliated to Pasteur Institute Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory affiliated to Pasteur Institute Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Maria Rosaria Catania
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Rossella Paolillo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Paolo Grieco
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Stefania Galdieroa
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
7
|
Ludwig BS, Tomassi S, Di Maro S, Di Leva FS, Benge A, Reichart F, Nieberler M, Kühn FE, Kessler H, Marinelli L, Reuning U, Kossatz S. The organometallic ferrocene exhibits amplified anti-tumor activity by targeted delivery via highly selective ligands to αvβ3, αvβ6, or α5β1 integrins. Biomaterials 2021; 271:120754. [PMID: 33756215 DOI: 10.1016/j.biomaterials.2021.120754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
High levels of reactive oxygen species (ROS) in tumors have been shown to exert anti-tumor activity, leading to the concept of ROS induction as therapeutic strategy. The organometallic compound ferrocene (Fc) generates ROS through a reversible one-electron oxidation. Incorporation of Fc into a tumor-targeting, bioactive molecule can enhance its therapeutic activity and enable tumor specific delivery. Therefore, we conjugated Fc to five synthetic, Arg-Gly-Asp (RGD)-based integrin binding ligands to enable targeting of the cell adhesion and signaling receptor integrin subtypes αvβ3, α5β1, or αvβ6, which are overexpressed in various, distinct tumors. We designed and synthesized a library of integrin-ligand-ferrocene (ILF) derivatives and showed that ILF conjugates maintained the high integrin affinity and selectivity of their parent ligands. A thorough biological characterization allowed us to identify the two most promising ligands, an αvβ3 (L2b) and an αvβ6 (L3b) targeting ILF, which displayed selective integrin-dependent cell uptake and pronounced ferrocene-mediated anti-tumor effects in vitro, along with increased ROS production and DNA damage. Hence, ILFs are promising candidates for the selective, tumor-targeted delivery of ferrocene to maximize its anti-cancer efficacy and minimize systemic toxicity, thereby improving the therapeutic window of ferrocene compared to currently used non-selective anti-cancer drugs.
Collapse
Affiliation(s)
- Beatrice Stefanie Ludwig
- Department of Nuclear Medicine, University Hospital Klinikum rechts der Isar, Technical University Munich, Munich, Germany; Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
| | - Stefano Tomassi
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Salvatore Di Maro
- Università degli Studi della Campania "Luigi Vanvitelli", Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Caserta, Italy
| | | | - Anke Benge
- Department of Obstetrics and Gynecology, Clinical Research Unit, University Hospital Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Florian Reichart
- Institute for Advanced Study, Department of Chemistry, Technical University Munich, Garching, Germany
| | - Markus Nieberler
- Department of Oral and Maxillofacial Surgery, University Hospital Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Fritz E Kühn
- Molecular Catalysis, Catalysis Research Center, Technical University Munich, Munich, Germany; Department of Chemistry, Technical University Munich, Munich, Germany
| | - Horst Kessler
- Institute for Advanced Study, Department of Chemistry, Technical University Munich, Garching, Germany
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Ute Reuning
- Department of Obstetrics and Gynecology, Clinical Research Unit, University Hospital Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum rechts der Isar, Technical University Munich, Munich, Germany; Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany; Department of Chemistry, Technical University Munich, Munich, Germany.
| |
Collapse
|
8
|
Volpi S, Cancelli U, Neri M, Corradini R. Multifunctional Delivery Systems for Peptide Nucleic Acids. Pharmaceuticals (Basel) 2020; 14:14. [PMID: 33375595 PMCID: PMC7823687 DOI: 10.3390/ph14010014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The number of applications of peptide nucleic acids (PNAs)-oligonucleotide analogs with a polyamide backbone-is continuously increasing in both in vitro and cellular systems and, parallel to this, delivery systems able to bring PNAs to their targets have been developed. This review is intended to give to the readers an overview on the available carriers for these oligonucleotide mimics, with a particular emphasis on newly developed multi-component- and multifunctional vehicles which boosted PNA research in recent years. The following approaches will be discussed: (a) conjugation with carrier molecules and peptides; (b) liposome formulations; (c) polymer nanoparticles; (d) inorganic porous nanoparticles; (e) carbon based nanocarriers; and (f) self-assembled and supramolecular systems. New therapeutic strategies enabled by the combination of PNA and proper delivery systems are discussed.
Collapse
Affiliation(s)
| | | | | | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.V.); (U.C.); (M.N.)
| |
Collapse
|
9
|
Halogenation and nitration of 1-carboxymethyl-5-methyluracil. Halophilic reaction involving acetic anhydride. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-3015-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Quigley NG, Tomassi S, di Leva FS, Di Maro S, Richter F, Steiger K, Kossatz S, Marinelli L, Notni J. Click-Chemistry (CuAAC) Trimerization of an α v β 6 Integrin Targeting Ga-68-Peptide: Enhanced Contrast for in-Vivo PET Imaging of Human Lung Adenocarcinoma Xenografts. Chembiochem 2020; 21:2836-2843. [PMID: 32359011 PMCID: PMC7586803 DOI: 10.1002/cbic.202000200] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Indexed: 12/21/2022]
Abstract
αv β6 Integrin is an epithelial transmembrane protein that recognizes latency-associated peptide (LAP) and primarily activates transforming growth factor beta (TGF-β). It is overexpressed in carcinomas (most notably, pancreatic) and other conditions associated with αv β6 integrin-dependent TGF-β dysregulation, such as fibrosis. We have designed a trimeric Ga-68-labeled TRAP conjugate of the αv β6 -specific cyclic pentapeptide SDM17 (cyclo[RGD-Chg-E]-CONH2 ) to enhance αv β6 integrin affinity as well as target-specific in-vivo uptake. Ga-68-TRAP(SDM17)3 showed a 28-fold higher αv β6 affinity than the corresponding monomer Ga-68-NOTA-SDM17 (IC50 of 0.26 vs. 7.4 nM, respectively), a 13-fold higher IC50 -based selectivity over the related integrin αv β8 (factors of 662 vs. 49), and a threefold higher tumor uptake (2.1 vs. 0.66 %ID/g) in biodistribution experiments with H2009 tumor-bearing SCID mice. The remarkably high tumor/organ ratios (tumor-to-blood 11.2; -to-liver 8.7; -to-pancreas 29.7) enabled high-contrast tumor delineation in PET images. We conclude that Ga-68-TRAP(SDM17)3 holds promise for improved clinical PET diagnostics of carcinomas and fibrosis.
Collapse
Affiliation(s)
- Neil Gerard Quigley
- Institute of PathologyTechnische Universität MünchenTrogerstrasse 1881675MünchenGermany
| | - Stefano Tomassi
- Dipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Francesco Saverio di Leva
- Dipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Salvatore Di Maro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e FarmaceuticheUniversità degli Studi della Campania “Luigi Vanvitelli”Via A. Vivaldi 4381100CasertaItaly
| | - Frauke Richter
- Institute of PathologyTechnische Universität MünchenTrogerstrasse 1881675MünchenGermany
| | - Katja Steiger
- Institute of PathologyTechnische Universität MünchenTrogerstrasse 1881675MünchenGermany
| | - Susanne Kossatz
- Klinik für Nuklearmedizin and TranslaTUMCentral Institute for Translational Cancer ResearchTechnische Universität MünchenIsmaninger Str. 2281675MünchenGermany
| | - Luciana Marinelli
- Dipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Johannes Notni
- Institute of PathologyTechnische Universität MünchenTrogerstrasse 1881675MünchenGermany
| |
Collapse
|
11
|
Messore A, Corona A, Madia VN, Saccoliti F, Tudino V, De Leo A, Scipione L, De Vita D, Amendola G, Di Maro S, Novellino E, Cosconati S, Métifiot M, Andreola ML, Valenti P, Esposito F, Grandi N, Tramontano E, Costi R, Di Santo R. Pyrrolyl Pyrazoles as Non-Diketo Acid Inhibitors of the HIV-1 Ribonuclease H Function of Reverse Transcriptase. ACS Med Chem Lett 2020; 11:798-805. [PMID: 32435387 DOI: 10.1021/acsmedchemlett.9b00617] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/05/2020] [Indexed: 01/15/2023] Open
Abstract
Due to the biological liability of diketo acid (DKA) chain, we transferred this element of our previously reported anti-HIV-1 pyrrolyl derivatives to a non-DKA scaffold, obtaining a series of pyrrolyl-pyrazole carboxylic acids as new RNase H inhibitors. Among the newly synthesized derivatives, oxyphenylpyrrolyl-pyrazoles demonstrated inhibitory activities within the low micromolar/submicromolar range with compound 11b being the most potent. Interestingly, all tested compounds showed up to 2 orders of magnitude of selectivity for RNase H vs integrase. Docking studies within the RNase H catalytic site, coupled with site-directed mutagenesis, showed the key structural features that could confer the ability to establish specific interactions within RNase H. Furthermore, they proved the ability of our compounds to interact with amino acids highly conserved among HIV-1 subspecies isolated among patients carrying drug-resistant variants. In the end, the newly discovered pyrazole carboxylic acid derivatives feature promising serum stability with respect to their corresponding DKAs.
Collapse
Affiliation(s)
- Antonella Messore
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, p.le Aldo Moro 5, I-00185 Roma, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, SS554-09042 Monserrato (CA), Italy
| | - Valentina Noemi Madia
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, p.le Aldo Moro 5, I-00185 Roma, Italy
| | - Francesco Saccoliti
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, p.le Aldo Moro 5, I-00185 Roma, Italy
| | - Valeria Tudino
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, p.le Aldo Moro 5, I-00185 Roma, Italy
| | - Alessandro De Leo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, p.le Aldo Moro 5, I-00185 Roma, Italy
| | - Luigi Scipione
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, p.le Aldo Moro 5, I-00185 Roma, Italy
| | - Daniela De Vita
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, p.le Aldo Moro 5, I-00185 Roma, Italy
| | - Giorgio Amendola
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Salvatore Di Maro
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ettore Novellino
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Sandro Cosconati
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Mathieu Métifiot
- Laboratoire MFP, UMR 5234, CNRS, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | - Marie-Line Andreola
- Laboratoire MFP, UMR 5234, CNRS, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, SS554-09042 Monserrato (CA), Italy
| | - Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, SS554-09042 Monserrato (CA), Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, SS554-09042 Monserrato (CA), Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, p.le Aldo Moro 5, I-00185 Roma, Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, p.le Aldo Moro 5, I-00185 Roma, Italy
| |
Collapse
|
12
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
13
|
Morales-Reina S, Giri C, Leclercq M, Vela-Gallego S, de la Torre I, Castón JR, Surin M, de la Escosura A. Programmed Recognition between Complementary Dinucleolipids To Control the Self-Assembly of Lipidic Amphiphiles. Chemistry 2020; 26:1082-1090. [PMID: 31729787 DOI: 10.1002/chem.201904217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/25/2019] [Indexed: 01/01/2023]
Abstract
One of the major goals in systems chemistry is to create molecular assemblies with emergent properties that are characteristic of life. An interesting approach toward this goal is based on merging different biological building blocks into synthetic systems with properties arising from the combination of their molecular components. The covalent linkage of nucleic acids (or their constituents: nucleotides, nucleosides and nucleobases) with lipids in the same hybrid molecule leads, for example, to the so-called nucleolipids. Herein, we describe nucleolipids with a very short sequence of two nucleobases per lipid, which, in combination with hydrophobic effects promoted by the lipophilic chain, allow control of the self-assembly of lipidic amphiphiles to be achieved. The present work describes a spectroscopic and microscopy study of the structural features and dynamic self-assembly of dinucleolipids that contain adenine or thymine moieties, either pure or in mixtures. This approach leads to different self-assembled nanostructures, which include spherical, rectangular and fibrillar assemblies, as a function of the sequence of nucleobases and chiral effects of the nucleolipids involved. We also show evidence that the resulting architectures can encapsulate hydrophobic molecules, revealing their potential as drug delivery vehicles or as compartments to host interesting chemistries in their interior.
Collapse
Affiliation(s)
- Sara Morales-Reina
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Chandan Giri
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Maxime Leclercq
- Laboratory for Chemistry of Novel Materials, Center for Innovation in Materials and Polymers, University of Mons-UMONS, 20 Place du Parc, 7000, Mons, Belgium
| | - Sonia Vela-Gallego
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Isabel de la Torre
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Center for Innovation in Materials and Polymers, University of Mons-UMONS, 20 Place du Parc, 7000, Mons, Belgium
| | - Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
14
|
Baek K, Noblett AD, Ren P, Suggs LJ. Design and Characterization of Nucleopeptides for Hydrogel Self-Assembly. ACS APPLIED BIO MATERIALS 2019; 2:2812-2821. [DOI: 10.1021/acsabm.9b00229] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kiheon Baek
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alexander D. Noblett
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Laura J. Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
15
|
Investigation of the Stereochemical-Dependent DNA and RNA Binding of Arginine-Based Nucleopeptides. Symmetry (Basel) 2019. [DOI: 10.3390/sym11040567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nucleopeptides represent an intriguing class of nucleic acid analogues, in which nucleobases are placed in a peptide structure. The incorporation of D- and/or L-amino acids in nucleopeptide molecules allows the investigation of the role of backbone stereochemistry in determining the formation of DNA and RNA hybrids. Circular Dichroism (CD) spectroscopic studies indicated the nucleopeptide as having fully l-backbone configuration-formed stable hybrid complexes with RNA molecules. Molecular Dynamics (MD) simulations suggested a potential structure of the complex resulting from the interaction between the l-nucleopeptide and RNA strand. From this study, both the backbone (ionics and H-bonds) and nucleobases (pairing and π-stacking) of the chiral nucleopeptide appeared to be involved in the hybrid complex formation, highlighting the key role of the backbone stereochemistry in the formation of the nucleopeptide/RNA complexes.
Collapse
|
16
|
Reichart F, Maltsev OV, Kapp TG, Räder AFB, Weinmüller M, Marelli UK, Notni J, Wurzer A, Beck R, Wester HJ, Steiger K, Di Maro S, Di Leva FS, Marinelli L, Nieberler M, Reuning U, Schwaiger M, Kessler H. Selective Targeting of Integrin αvβ8 by a Highly Active Cyclic Peptide. J Med Chem 2019; 62:2024-2037. [DOI: 10.1021/acs.jmedchem.8b01588] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Florian Reichart
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Oleg V. Maltsev
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Tobias G. Kapp
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Andreas F. B. Räder
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Michael Weinmüller
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Udaya Kiran Marelli
- Central NMR Facility and Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India
| | - Johannes Notni
- Lehrstuhl für Pharmazeutische Radiochemie, Technische Universität München, Walther-Meißner Straße 3, 85748 Garching, Germany
| | - Alexander Wurzer
- Lehrstuhl für Pharmazeutische Radiochemie, Technische Universität München, Walther-Meißner Straße 3, 85748 Garching, Germany
| | - Roswitha Beck
- Lehrstuhl für Pharmazeutische Radiochemie, Technische Universität München, Walther-Meißner Straße 3, 85748 Garching, Germany
| | - Hans-Jürgen Wester
- Lehrstuhl für Pharmazeutische Radiochemie, Technische Universität München, Walther-Meißner Straße 3, 85748 Garching, Germany
| | - Katja Steiger
- Department of Pathology, Technische Universität München, Trogerstraße 18, 81675 München, Germany
| | - Salvatore Di Maro
- DiSTABiF, Università degli Studi della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Francesco Saverio Di Leva
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Markus Nieberler
- Department of Oral and Maxillofacial Surgery, University Hospital Rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81679 München, Germany
| | | | | | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
17
|
Tomassi S, Ieranò C, Mercurio ME, Nigro E, Daniele A, Russo R, Chambery A, Baglivo I, Pedone PV, Rea G, Napolitano M, Scala S, Cosconati S, Marinelli L, Novellino E, Messere A, Di Maro S. Cationic nucleopeptides as novel non-covalent carriers for the delivery of peptide nucleic acid (PNA) and RNA oligomers. Bioorg Med Chem 2018; 26:2539-2550. [PMID: 29656988 DOI: 10.1016/j.bmc.2018.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
Cationic nucleopeptides belong to a family of synthetic oligomers composed by amino acids and nucleobases. Their capability to recognize nucleic acid targets and to cross cellular membranes provided the basis for considering them as novel non-covalent delivery agents for nucleic acid pharmaceuticals. Herein, starting from a 12-mer nucleopeptide model, the number of cationic residues was modulated in order to obtain new nucleopeptides endowed with high solubility in acqueous medium, acceptable bio-stability, low cytotoxicity and good capability to bind nucleic acid. Two candidates were selected to further investigate their potential as nucleic acid carriers, showing higher efficiency to deliver PNA in comparison with RNA. Noteworthy, this study encourages the development of nucleopeptides as new carriers to extend the known strategies for those nucleic acid analogues, especially PNA, that still remain difficult to drive into the cells.
Collapse
Affiliation(s)
- Stefano Tomassi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Caterina Ieranò
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS-Napoli, 80131 Naples, Italy
| | - Maria Emilia Mercurio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Ersilia Nigro
- Department of Cardiothoracic and Respiratory Sciences, University of Campania "Luigi Vanvitelli", Via Leonardo Bianchi c/o Ospedale Monaldi, 80131 Naples, Italy
| | - Aurora Daniele
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy; Ceinge-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Giuseppina Rea
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS-Napoli, 80131 Naples, Italy
| | - Maria Napolitano
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS-Napoli, 80131 Naples, Italy
| | - Stefania Scala
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS-Napoli, 80131 Naples, Italy
| | - Sandro Cosconati
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy.
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy.
| |
Collapse
|
18
|
Brancaccio D, Diana D, Di Maro S, Di Leva FS, Tomassi S, Fattorusso R, Russo L, Scala S, Trotta AM, Portella L, Novellino E, Marinelli L, Carotenuto A. Ligand-Based NMR Study of C-X-C Chemokine Receptor Type 4 (CXCR4)–Ligand Interactions on Living Cancer Cells. J Med Chem 2018. [DOI: 10.1021/acs.jmedchem.7b01830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Diego Brancaccio
- Dipartimento di Farmacia, Università di Napoli Federico II, 80131 Naples, Italy
| | - Donatella Diana
- Istituto di Biostrutture e Bioimmagini, C.N.R., 80134 Naples, Italy
| | - Salvatore Di Maro
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | | | - Stefano Tomassi
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Roberto Fattorusso
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Luigi Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Stefania Scala
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori “Fondazione G. Pascale”, IRCCS-Napoli, 80131 Naples, Italy
| | - Anna Maria Trotta
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori “Fondazione G. Pascale”, IRCCS-Napoli, 80131 Naples, Italy
| | - Luigi Portella
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori “Fondazione G. Pascale”, IRCCS-Napoli, 80131 Naples, Italy
| | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli Federico II, 80131 Naples, Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia, Università di Napoli Federico II, 80131 Naples, Italy
| | - Alfonso Carotenuto
- Dipartimento di Farmacia, Università di Napoli Federico II, 80131 Naples, Italy
| |
Collapse
|
19
|
Di Maro S, Di Leva FS, Trotta AM, Brancaccio D, Portella L, Aurilio M, Tomassi S, Messere A, Sementa D, Lastoria S, Carotenuto A, Novellino E, Scala S, Marinelli L. Structure–Activity Relationships and Biological Characterization of a Novel, Potent, and Serum Stable C-X-C Chemokine Receptor Type 4 (CXCR4) Antagonist. J Med Chem 2017; 60:9641-9652. [DOI: 10.1021/acs.jmedchem.7b01062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Salvatore Di Maro
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Caserta 81100, Italy
| | - Francesco Saverio Di Leva
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Anna Maria Trotta
- Functional
Genomics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Via M. Semmola 52, 80131 Naples, Italy
| | - Diego Brancaccio
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Luigi Portella
- Functional
Genomics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Via M. Semmola 52, 80131 Naples, Italy
| | - Michela Aurilio
- Nuclear
Medicine Unit, Department of Diagnostic Imaging, Radiant and Metabolic
Therapy, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Via M. Semmola
52, 80131 Naples, Italy
| | - Stefano Tomassi
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Caserta 81100, Italy
| | - Anna Messere
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Caserta 81100, Italy
| | - Deborah Sementa
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Secondo Lastoria
- Nuclear
Medicine Unit, Department of Diagnostic Imaging, Radiant and Metabolic
Therapy, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Via M. Semmola
52, 80131 Naples, Italy
| | - Alfonso Carotenuto
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Ettore Novellino
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Stefania Scala
- Functional
Genomics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Via M. Semmola 52, 80131 Naples, Italy
| | - Luciana Marinelli
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
20
|
Merlino F, Carotenuto A, Casciaro B, Martora F, Loffredo MR, Di Grazia A, Yousif AM, Brancaccio D, Palomba L, Novellino E, Galdiero M, Iovene MR, Mangoni ML, Grieco P. Glycine-replaced derivatives of [Pro 3 ,DLeu 9 ]TL, a temporin L analogue: Evaluation of antimicrobial, cytotoxic and hemolytic activities. Eur J Med Chem 2017; 139:750-761. [DOI: 10.1016/j.ejmech.2017.08.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/03/2017] [Accepted: 08/19/2017] [Indexed: 12/23/2022]
|