1
|
Boruah A, Deb ML, Thakuria R, Baruah PK. L-Proline catalyzed multi-component synthesis of N-pyridyl-tetrahydroisoquinolines and their α-C(sp 3)-H oxygenation. Org Biomol Chem 2024; 22:8608-8616. [PMID: 39354875 DOI: 10.1039/d4ob01343c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Herein, we report an effective multi-component synthesis that starts with readily available starting materials and accesses poly-substituted pyridine derivatives by using L-proline as a benign catalyst. This process uses cyclic amines, aldehydes, and malononitrile in a condensation reaction to produce a variety of pyridine derivatives under mild conditions. Furthermore, depending on the catalysts used, the selective synthesis of an amide and/or an aldehyde functionality is achieved through α-C(sp3)-H oxygenation of the tertiary amine moiety in the resultant pyridine derivatives. The pyridine ring's nitrogen atom plays a crucial role in accelerating C-H oxygenation at the α-position of the tertiary amine, highlighting the synthetic versatility and usefulness of this method.
Collapse
Affiliation(s)
- Aditi Boruah
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India.
| | - Mohit L Deb
- Advanced Research Centre and Department of Chemistry, University of Science and Technology Meghalaya, Ri-Bhoi, Meghalaya-793101, India.
| | - Ranjit Thakuria
- Department of Chemistry, Gauhati University, Guwahati-781014, Assam, India
| | - Pranjal K Baruah
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India.
| |
Collapse
|
2
|
Olyaei A, Sadeghpour M. Recent advances in the synthesis of highly substituted imidazolidines. RSC Adv 2024; 14:30758-30806. [PMID: 39328874 PMCID: PMC11426194 DOI: 10.1039/d4ra06010e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Imidazolidine is a saturated heterocycle with a cyclic aminal core that can be found in natural products and biologically active molecules. Additionally, these heterocyclic compounds have been utilized as chiral ligands, N-heterocyclic carbene precursors, and catalysts in organic synthesis. This review is an attempt to compile the literature of various synthetic procedures of highly substituted imidazolidines, chiral imidazolidines with high diastereoselectivities and enantioselectivities, bis-imidazolidines, and spiro-imidazolidines, as well as their pharmacological properties during the period from 1949 to 2023.
Collapse
Affiliation(s)
- Abolfazl Olyaei
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin Iran
| | - Mahdieh Sadeghpour
- Department of Chemistry, Qazvin Branch, Islamic Azad University Qazvin Iran
| |
Collapse
|
3
|
Nayak MK, Chakraborty S, Mohanty A, Roy S. SnCl 2-catalyzed multicomponent coupling: synthesis of 1,3-oxazolidine derivatives using paraformaldehyde as a C1 feedstock. Org Biomol Chem 2024; 22:5768-5775. [PMID: 38920417 DOI: 10.1039/d4ob00791c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
SnCl2 catalyzed the three-component coupling of aniline, epoxide, and paraformaldehyde, resulting in the synthesis of 1,3-oxazolidine derivatives. The reaction is simple and does not require any additives, bases, or oxidants, and proceeds at moderate temperature with good functional group tolerance. The scope of the utilization of paraformaldehyde as the methylene source was further extended to the synthesis of benzothiazole and 4,4'-methylenebis(N,N-dimethylaniline) using the same catalyst. A catalytic pathway was proposed based on the control experiments.
Collapse
Affiliation(s)
- Mukesh Kumar Nayak
- Organometallics & Catalysis Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Arugul, Jatani, Khurda 752050, Odisha, India.
| | - Swati Chakraborty
- Organometallics & Catalysis Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Arugul, Jatani, Khurda 752050, Odisha, India.
| | - Anuradha Mohanty
- Organometallics & Catalysis Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Arugul, Jatani, Khurda 752050, Odisha, India.
| | - Sujit Roy
- Organometallics & Catalysis Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Arugul, Jatani, Khurda 752050, Odisha, India.
| |
Collapse
|
4
|
Shah TA, Sarkar T, Kar S, Maharana PK, Talukdar K, Punniyamurthy T. Transition-Metal-Catalyzed Directed C-H Functionalization in/on Water. Chem Asian J 2024; 19:e202300815. [PMID: 37932013 DOI: 10.1002/asia.202300815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 11/08/2023]
Abstract
Directing group assisted C-H bond functionalization using transition-metal-catalysis has emerged as a reliable synthetic tool for the construction of regioselective carbon-carbon/heteroatom bonds. Off late, "in/on water directed transition-metal-catalysis", though still underdeveloped, has appeared as one of the prominent themes in sustainable organic chemistry. This article covers the advancements, mechanistic insights and application of the sustainable directed C-H bond functionalization of (hetero)arenes in/on water in the presence of transition-metal-catalysis.
Collapse
Affiliation(s)
- Tariq A Shah
- Department of Chemistry and Advanced Material Chemistry Center (AMCC), Khalifa University, PO Box, 127788, Abu Dhabi, U.A.E
| | - Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Subhradeep Kar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Kangkan Talukdar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | | |
Collapse
|
5
|
Deb ML, Baruah PK. Strategies Toward the Catalyst-Free α-C-H Functionalizations of Tertiary Amines. Top Curr Chem (Cham) 2023; 381:14. [PMID: 37131054 DOI: 10.1007/s41061-023-00424-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 05/04/2023]
Abstract
α-C-H functionalization of tertiary amines has been a highly studied field for the past two decades because several important nitrogen containing heterocycles or compounds can be synthesized through this strategy. Though transition metal catalysts and some metal-free catalysts are mainly used for these reactions, a few catalyst-free reactions have recently been efficiently performed. Catalyst-free reactions are cost-effective, less sensitive to air/moisture, easier to operate, have a simple purification process, and are relatively environment-friendly. In this article, we have summarized all the α-C-H functionalization reactions of tertiary amines performed without using any external catalysts. The content of this article will undoubtedly encourage readers to do more work in this area.
Collapse
Affiliation(s)
- Mohit L Deb
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati, Assam, 781014, India.
| | - Pranjal K Baruah
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati, Assam, 781014, India.
| |
Collapse
|
6
|
Rahman I, Baruah B, Rajbongshi BK, Deb ML, Baruah PK. Catalyst‐/Additive‐Free One‐Pot Synthesis of Oxazolidines in Water via Regioselective and Stereoselective C−H Functionalization Approach. ChemistrySelect 2023. [DOI: 10.1002/slct.202300093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Iftakur Rahman
- Department of Applied Sciences GUIST Gauhati University Guwahati 781014 Assam India
| | - Biswajita Baruah
- Department of Chemistry Pandu College Guwahati-781012 Assam India
| | | | - Mohit L. Deb
- Department of Applied Sciences GUIST Gauhati University Guwahati 781014 Assam India
| | - Pranjal K. Baruah
- Department of Applied Sciences GUIST Gauhati University Guwahati 781014 Assam India
| |
Collapse
|
7
|
Qiao J, Wang S, Liu X, Feng X. Enantioselective [3+2] Cycloaddition of Donor-Acceptor Aziridines and Imines to Construct 2,5-trans-Imidazolidines. Chemistry 2023; 29:e202203757. [PMID: 36602265 DOI: 10.1002/chem.202203757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
An enantioselective [3+2] cycloaddition of donor-acceptor aziridines with N-aryl protected imines was developed with a Ni(ClO4 )2 ⋅ 6H2 O/N,N'-dioxide catalyst system, providing a broad range of chiral trans-substituted imidazolidine compounds with good yields and excellent enantioselectivities (up to 99 % yield, up to 98 % ee). Control experiments indicated that the products could offer excellent diastereoselectivities with the control of chiral Ni(II)-N,N'-dioxide complex and the interaction of the substrates. The possible catalytic process was proposed to rationalize the stereocontrol.
Collapse
Affiliation(s)
- Jianglin Qiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Shiyu Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
8
|
Lee W, Kim D, Seo S, Chang S. Photoinduced α-C-H Amination of Cyclic Amine Scaffolds Enabled by Polar-Radical Relay. Angew Chem Int Ed Engl 2022; 61:e202202971. [PMID: 35403797 DOI: 10.1002/anie.202202971] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/09/2022]
Abstract
Herein, we report a polar-radical relay strategy for α-C-H amination of cyclic amines with N-chloro-N-sodio-carbamates. The relay is initiated by in situ generation of cyclic iminium intermediate using N-iodosuccinimide (NIS) oxidant as an initiator, which then operates through a series of polar (addition and elimination) and radical (homolysis, hydrogen- and halogen atom transfer) reactions to enable the challenging C-N bond formation in a controlled manner. A broad range of α-amino cyclic amines were readily accessed with excellent regioselectivity, and the superb applicability was further demonstrated by functionalization of biologically relevant compounds.
Collapse
Affiliation(s)
- Wongyu Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sangwon Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
9
|
Lee W, Kim D, Seo S, Chang S. Photoinduced α‐C−H Amination of Cyclic Amine Scaffolds Enabled by Polar‐Radical Relay. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wongyu Lee
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Dongwook Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sangwon Seo
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sukbok Chang
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
10
|
Cui HL, Chen XH. Asymmetric Synthesis of Imidazo[2,1‐a]isoquinolin‐3‐ones with Dihydroisoquinolines and N‐substituted Amino Acids. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hai-Lei Cui
- Chongqing University of Arts and Sciences Laboratory of Asymmetric Synthesis 319 Honghe Ave, Yongchuan, Chongqing 402160 Chongqing CHINA
| | | |
Collapse
|
11
|
Gurung B, Pradhan S, Sharma D, Bhujel D, Basel S, Chettri S, Rasaily S, Pariyar A, Tamang S. CsPbBr 3 perovskite quantum dots as a visible light photocatalyst for cyclisation of diamines and amino alcohols: an efficient approach to synthesize imidazolidines, fused-imidazolidines and oxazolidines. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis of highly stable CsPbBr3QD based photocatalysts using dibromoisocyanuric acid (DBI) as a benign non-toxic bromide precursor.
Collapse
Affiliation(s)
- Bikram Gurung
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India
| | - Sajan Pradhan
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India
| | - Debesh Sharma
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India
| | - Deshaj Bhujel
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India
| | - Siddhant Basel
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India
| | - Shivanand Chettri
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India
| | - Sagarmani Rasaily
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India
| | - Anand Pariyar
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India
| | - Sudarsan Tamang
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India
| |
Collapse
|
12
|
Deb ML, Saikia BS, Borpatra PJ, Baruah PK. Progress of metal‐free visible‐light‐driven a‐C‐H functionalization of tertiary amines: A decade journey. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | - Pranjal K. Baruah
- GUIST, Gauhati University Applied Sciences Gopinath Bordoloi Nagar 781014 Guwahati INDIA
| |
Collapse
|
13
|
Isozaki K, Ueno R, Ishibashi K, Nakano G, Yin H, Iseri K, Sakamoto M, Takaya H, Teranishi T, Nakamura M. Gold Nanocluster Functionalized with Peptide Dendron Thiolates: Acceleration of the Photocatalytic Oxidation of an Amino Alcohol in a Supramolecular Reaction Field. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Katsuhiro Isozaki
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ryo Ueno
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kosuke Ishibashi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Genta Nakano
- Department of Technological Systems, Osaka Prefecture University College of Technology, Saiwaicho 26-12, Neyagawa, Osaka 572-8572, Japan
| | - Haozhi Yin
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenta Iseri
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masanori Sakamoto
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Hikaru Takaya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masaharu Nakamura
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
14
|
Cui H, Li J. Synthesis of Imidazo[2,3‐
a
]isoquinoline and Imidazo[3,2‐
a
]quinoline Derivatives with Ynones, Isoquinolines and Quinolines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hai‐Lei Cui
- Laboratory of Asymmetric Synthesis Chongqing University of Arts and Sciences 319 Honghe Ave. Yongchuan, Chongqing 402160 P.R. China
| | - Jia‐Qin Li
- Laboratory of Asymmetric Synthesis Chongqing University of Arts and Sciences 319 Honghe Ave. Yongchuan, Chongqing 402160 P.R. China
| |
Collapse
|
15
|
Chen W, Li C, Li H, Wu Y. Intermolecular Amination of Ketoximes with Anthranils by Rh‐Catalyzed C−H Bond Activation in Air. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Weiqiang Chen
- Weihai Marine Organism & Medical Technology Research Institute Harbin Institute of Technology 2 Wenhuaxi Road Weihai 264209 P.R. China
| | - Chao‐Yi Li
- Weihai Marine Organism & Medical Technology Research Institute Harbin Institute of Technology 2 Wenhuaxi Road Weihai 264209 P.R. China
| | - Hui‐Jing Li
- Weihai Marine Organism & Medical Technology Research Institute Harbin Institute of Technology 2 Wenhuaxi Road Weihai 264209 P.R. China
- Weihai Huiankang Biotechnology Co., Ltd Weihai 264200 P. R. China
| | - Yan‐Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute Harbin Institute of Technology 2 Wenhuaxi Road Weihai 264209 P.R. China
| |
Collapse
|
16
|
Shi Z, Fan T, Zhang X, Zhan F, Wang Z, Zhao L, Lin J, Jiang Y. Synthesis of Diversely Substituted Imidazolidines
via
[3+2] Cycloaddition of 1,3,5‐Triazinanes with Donor‐Acceptor Aziridines and Their Anti‐Tumor Activity. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhichao Shi
- Department of Chemistry Tsinghua University Beijing 100084 People's Republic of China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 People's Republic of China
| | - Tingting Fan
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 People's Republic of China
- Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
- Shenzhen Bay Laboratory Shenzhen 518055 People's Republic of China
| | - Xun Zhang
- Department of Chemistry Tsinghua University Beijing 100084 People's Republic of China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 People's Republic of China
| | - Feng Zhan
- Department of Chemistry Tsinghua University Beijing 100084 People's Republic of China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 People's Republic of China
| | - Zhe Wang
- Department of Chemistry Tsinghua University Beijing 100084 People's Republic of China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 People's Republic of China
| | - Lei Zhao
- Department of Chemistry Tsinghua University Beijing 100084 People's Republic of China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 People's Republic of China
| | - Jin‐Shun Lin
- Department of Chemistry Tsinghua University Beijing 100084 People's Republic of China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 People's Republic of China
| | - Yuyang Jiang
- Department of Chemistry Tsinghua University Beijing 100084 People's Republic of China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 People's Republic of China
- Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
- Shenzhen Bay Laboratory Shenzhen 518055 People's Republic of China
- School of Pharmaceutical Sciences Tsinghua University Beijing 100084 People's Republic of China
| |
Collapse
|
17
|
Deb ML, Saikia BS, Borpatra PJ, Baruah PK. α-C–H functionalization of tertiary amines catalyzed/promoted by molecular iodine/derivatives. NEW J CHEM 2021. [DOI: 10.1039/d1nj02695j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A recent review on the α-C–H functionalization of tertiary amines using low-cost and benign I2 or its derivatives.
Collapse
Affiliation(s)
- Mohit L. Deb
- Department of Applied Sciences
- GUIST
- Gauhati University
- Guwahati 781014
- India
| | - B. Shriya Saikia
- Department of Applied Sciences
- GUIST
- Gauhati University
- Guwahati 781014
- India
| | - Paran J. Borpatra
- Department of Applied Sciences
- GUIST
- Gauhati University
- Guwahati 781014
- India
| | - Pranjal K. Baruah
- Department of Applied Sciences
- GUIST
- Gauhati University
- Guwahati 781014
- India
| |
Collapse
|
18
|
Claraz A, Djian A, Masson G. Electrochemical tandem trifluoromethylation of allylamines/formal (3 + 2)-cycloaddition for the rapid access to CF3-containing imidazolines and oxazolidines. Org Chem Front 2021. [DOI: 10.1039/d0qo01307b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A straightforward and environmentally friendly synthesis of CF3-containing imidazolines and oxazolidines has been developed through an electrochemical three-component reaction among allylamines, the Langlois reagent, and nitrile or carbonyl compounds.
Collapse
Affiliation(s)
- Aurélie Claraz
- Institut de Chimie des Substances Naturelles
- Université Paris Saclay
- CNRS
- UPR2301
- 91198 Gif-sur-Yvette cedex
| | - Aurélie Djian
- Institut de Chimie des Substances Naturelles
- Université Paris Saclay
- CNRS
- UPR2301
- 91198 Gif-sur-Yvette cedex
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles
- Université Paris Saclay
- CNRS
- UPR2301
- 91198 Gif-sur-Yvette cedex
| |
Collapse
|
19
|
Raja D, Philips A, Palani P, Lin WY, Devikala S, Senadi GC. Metal-Free Synthesis of Benzimidazoles via Oxidative Cyclization of d-Glucose with o-Phenylenediamines in Water. J Org Chem 2020; 85:11531-11540. [PMID: 32786645 DOI: 10.1021/acs.joc.0c01053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
d-Glucose has been identified as an efficient C1 synthon in the synthesis of benzimidazoles from o-phenylenediamines via an oxidative cyclization strategy. Isotopic studies with 13C6-d-glucose and D2O unambiguously confirmed the source of methine. The notable features of this method include the following: broad functional group tolerance, a biorenewable methine source, excellent reaction yields, a short reaction time, water as an environmentally benign solvent, and the synthesis of vitamin B12 component on the gram scale.
Collapse
Affiliation(s)
- Dineshkumar Raja
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India
| | - Abigail Philips
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India
| | - Pushbaraj Palani
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India
| | - Wei-Yu Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan First Road, Sanmin District, Kaohsiung City 807, Taiwan
| | - Sundaramurthy Devikala
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India
| | - Gopal Chandru Senadi
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
20
|
Thiyagamurthy P, Khan FRN. A Base‐Free Pd‐Precatalyst Mediated Suzuki‐Miyaura and Sonogashira Cross‐Coupling in Deep Eutectic Solvents. ChemistrySelect 2020. [DOI: 10.1002/slct.202000276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Pandurangan Thiyagamurthy
- Department of Chemistry School of Advanced Sciences (SAS),Vellore Institute of Technology (VIT), Vellore 632014 Tamil Nadu India
| | - Fazlur Rahman Nawaz Khan
- Department of Chemistry School of Advanced Sciences (SAS),Vellore Institute of Technology (VIT), Vellore 632014 Tamil Nadu India
| |
Collapse
|
21
|
Zhao H, Qin X, Zhao L, Dong S, Gu L, Sun W, Wang D, Zheng Y. Invisible Inks for Secrecy and Anticounterfeiting: From Single to Double-encryption by Hydrochromic Molecules. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8952-8960. [PMID: 31972084 DOI: 10.1021/acsami.0c00462] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Secret information recorded by traditional single-encrypted invisible inks is easily cracked because the inks can switch only between "NONE" and "TRUTH". Developing double-encrypted systems makes the information reversibly switchable between "FALSE" and "TRUTH", which is helpful to ensure the safety of the secret information during transport. Here, we prepared heat-developed invisible inks by hydrochromic molecules donor-acceptor Stenhouse adducts (DASAs) and oxazolidines (OXs) and promoted the invisible inks from single to double encryption. DASAs coordinate with water molecules and form stable colorless cyclic DASA·xH2O molecules, which lose coordinated water molecules after heating and switch to colored linear DASAs. In contrast, OXs are colored with water and are colorless after heating. Single-encrypted secrecy was realized by DASA invisible inks. The information is invisible under the encrypted state and becomes bright purple after heating. Vapor treating re-encrypted the information in ∼5 min. Furthermore, the single-encryption was promoted to double-encryption by a DASA/OX invisible inks system. Heating and vapor treating switch the information between the "FALSE" and "TRUTH" reversibly. The DASA/OX invisible ink system is applied for secrecy of texts, graphic images, and quick response (QR) codes.
Collapse
Affiliation(s)
- Haiquan Zhao
- School of Optoelectronic Science and Engineering of UESTC , University of Electronic Science and Technology of China , Chengdu 610054 , China
| | - Xingchen Qin
- School of Optoelectronic Science and Engineering of UESTC , University of Electronic Science and Technology of China , Chengdu 610054 , China
| | - Lei Zhao
- School of Optoelectronic Science and Engineering of UESTC , University of Electronic Science and Technology of China , Chengdu 610054 , China
- Department of Chemistry and Biochemistry , California State University Northridge , Northridge , California 91330-8262 , United States
| | - Shumin Dong
- School of Optoelectronic Science and Engineering of UESTC , University of Electronic Science and Technology of China , Chengdu 610054 , China
| | - Lianghong Gu
- School of Optoelectronic Science and Engineering of UESTC , University of Electronic Science and Technology of China , Chengdu 610054 , China
- School of Materials Science and Engineering , Xihua University , Chengdu , 610039 , China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian , 116024 , China
| | - Dongsheng Wang
- School of Optoelectronic Science and Engineering of UESTC , University of Electronic Science and Technology of China , Chengdu 610054 , China
- State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Yonghao Zheng
- School of Optoelectronic Science and Engineering of UESTC , University of Electronic Science and Technology of China , Chengdu 610054 , China
| |
Collapse
|
22
|
Tarannum S, Sk S, Das S, Wani IA, Ghorai MK. Stereoselective Syntheses of Highly Functionalized Imidazolidines and Oxazolidines via Ring-Opening Cyclization of Activated Aziridines and Epoxides with Amines and Aldehydes. J Org Chem 2020; 85:367-379. [PMID: 31782305 DOI: 10.1021/acs.joc.9b02278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A mild one-pot stereospecific synthetic route to highly functionalized imidazolidines and oxazolidines via SN2-type ring-opening of the corresponding activated aziridines and epoxides with amines followed by p-toluenesulfonic acid (PTSA)-catalyzed intramolecular cyclization with aldehydes has been developed. The methodology tolerates a variety of functional groups and furnishes the desired products in high yields (up to 92%) with excellent stereoselectivities (de, ee > 99%). Interestingly, imidazolidines were formed as the cis-isomers, whereas oxazolidines were produced as trans-isomers exclusively.
Collapse
Affiliation(s)
- Saima Tarannum
- Department of Chemistry , Indian Institute of Technology , 208016 Kanpur , Uttar Pradesh , India
| | - Sahid Sk
- Department of Chemistry , Indian Institute of Technology , 208016 Kanpur , Uttar Pradesh , India
| | - Subhomoy Das
- Department of Chemistry , Indian Institute of Technology , 208016 Kanpur , Uttar Pradesh , India
| | - Imtiyaz Ahmad Wani
- Department of Chemistry , Indian Institute of Technology , 208016 Kanpur , Uttar Pradesh , India
| | - Manas K Ghorai
- Department of Chemistry , Indian Institute of Technology , 208016 Kanpur , Uttar Pradesh , India
| |
Collapse
|
23
|
Bao X, Jiang W, Liang J, Huo C. One-electron oxidative dehydrogenative annulation and cyclization reactions. Org Chem Front 2020. [DOI: 10.1039/d0qo00422g] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review focuses on the recent advances in one-electron oxidation involved oxidative dehydrogenative annulations and cyclizations for the intermolecular and intramolecular construction of valuable ring structures.
Collapse
Affiliation(s)
- Xiazhen Bao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Wei Jiang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Jia Liang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| |
Collapse
|
24
|
Wang K, Li Y, Wang Z, Ma X, Mei Y, Zhang S, Chen R. Formal [3 + 2] cycloaddition of azomethine ylides generated
in situ
with unactivated cyclic imines: A facile approach to tricyclic imidazolines derivatives. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kai‐Kai Wang
- College of Chemistry and Chemical EngineeringXinxiang University Xinxiang People's Republic of China
| | - Yan‐Li Li
- Medical CollegeXinxiang University Xinxiang People's Republic of China
| | - Zhan‐Yong Wang
- College of Chemistry and Chemical EngineeringXinxiang University Xinxiang People's Republic of China
| | - Xueji Ma
- College of Chemistry and Chemical EngineeringXinxiang University Xinxiang People's Republic of China
| | - Ya‐Lei Mei
- College of Chemistry and Chemical EngineeringXinxiang University Xinxiang People's Republic of China
| | - Shan‐Shan Zhang
- College of Chemistry and Chemical EngineeringXinxiang University Xinxiang People's Republic of China
| | - Rongxiang Chen
- College of Chemistry and Chemical EngineeringXinxiang University Xinxiang People's Republic of China
| |
Collapse
|
25
|
Harry NA, Radhika S, Neetha M, Anilkumar G. Recent Advances and Prospects of Organic Reactions “On Water”. ChemistrySelect 2019. [DOI: 10.1002/slct.201903360] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Nissy Ann Harry
- School of Chemical Sciences, Mahatma Gandhi UniversityPriyadarsini Hills, Kottayam 686 560 Kerala INDIA
| | - Sankaran Radhika
- School of Chemical Sciences, Mahatma Gandhi UniversityPriyadarsini Hills, Kottayam 686 560 Kerala INDIA
| | - Mohan Neetha
- School of Chemical Sciences, Mahatma Gandhi UniversityPriyadarsini Hills, Kottayam 686 560 Kerala INDIA
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi UniversityPriyadarsini Hills, Kottayam 686 560 Kerala INDIA
- Advanced Molecular Materials Research Centre (AMMRC)Mahatma Gandhi University, Priyadarsini Hills, Kottayam Kerala 686 560 INDIA
| |
Collapse
|
26
|
Vijay M, Kumar SV, Satheesh V, Ananthappan P, Srivastava HK, Ellairaja S, Vasantha VS, Punniyamurthy T. Stereospecific Assembly of Fused Imidazolidines via Tandem Ring Opening/Oxidative Amination of Aziridines with Cyclic Secondary Amines Using Photoredox Catalysis. Org Lett 2019; 21:7649-7654. [DOI: 10.1021/acs.orglett.9b02957] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Murugan Vijay
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sundaravel Vivek Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Vanaparthi Satheesh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | | | | | | | | | |
Collapse
|
27
|
Thunga S, Poshala S, Anugu N, Konakanchi R, Vanaparthi S, Kokatla HP. An efficient Pd(II)-(2-aminonicotinaldehyde) complex as complementary catalyst for the Suzuki-Miyaura coupling in water. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Panda N, Arpitabala Yadav S. Ni-Catalyzed Deacylative Oxosulfonamidation of Vinyl Acetate. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Niranjan Panda
- Department of Chemistry; National Institute of Technology Rourkela; Odisha- 769008 India
| | | |
Collapse
|
29
|
Borpatra PJ, Deka B, Deb ML, Baruah PK. Recent advances in intramolecular C–O/C–N/C–S bond formationviaC–H functionalization. Org Chem Front 2019. [DOI: 10.1039/c9qo00863b] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presents the construction of C–X bonds (X = O/N/S) by using intramolecular C–H functionalization for the synthesis of heterocyclic compounds.
Collapse
Affiliation(s)
- Paran J. Borpatra
- Department of Applied Sciences
- GUIST
- Gauhati University
- Guwahati-781014
- India
| | - Bhaskar Deka
- Department of Applied Sciences
- GUIST
- Gauhati University
- Guwahati-781014
- India
| | - Mohit L. Deb
- Department of Applied Sciences
- GUIST
- Gauhati University
- Guwahati-781014
- India
| | - Pranjal K. Baruah
- Department of Applied Sciences
- GUIST
- Gauhati University
- Guwahati-781014
- India
| |
Collapse
|
30
|
Singh N, Dar AA, Kumar A. A Simple and Efficient Approach for the Synthesis of 1,3-Oxazolidines from β-Amino Alcohols Using Grinding Technique. ChemistrySelect 2018. [DOI: 10.1002/slct.201802369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Nasseb Singh
- Synthetic Organic Chemistry Laboratory; Faculty of Sciences; Shri Mata Vaishno Devi University Katra; Jammu and Kashmir - 182320 India
| | - Alamgir A. Dar
- Bioorganic Chemistry Division; CSIR-Indian Institute of Integrative Medicine; Canal Road, Jammu Tawi, J & K 180 001 India
- Research Centre for Residue and Quality Analysis; Sher-e-Kashmir University of Agricultural Sciences & Technology Kashmir; Srinagar - 190025, J & K India
| | - Anil Kumar
- Synthetic Organic Chemistry Laboratory; Faculty of Sciences; Shri Mata Vaishno Devi University Katra; Jammu and Kashmir - 182320 India
| |
Collapse
|
31
|
Liu S, Zhao Z, Wang Y. Construction of N-Heterocycles through Cyclization of Tertiary Amines. Chemistry 2018; 25:2423-2441. [PMID: 30357981 DOI: 10.1002/chem.201803960] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 12/27/2022]
Abstract
N-Heterocycles have been found in a large number of natural products, drug molecules, and bioactive compounds, and they thereby play a vital role in diverse research disciplines including drug discovery, organic synthesis, chemical biology, and material science. To this end, the development of new methods and strategies for the construction of N-heterocyclic frameworks is arguably one of the most dynamic and significant research areas in organic synthesis. One of these powerful approaches to the synthesis of N-heterocycles is to establish cyclization reactions based on the transformation of tertiary amines, which has emerged as an attractive research topic. In this Minireview, the significant achievements in the construction of N-heterocycles through cyclization of tertiary amines are highlighted and a comprehensive overview of the rational design, development, and application of these synthetic methods is presented.
Collapse
Affiliation(s)
- Shuya Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, Shandong, P. R. China
| | - Zhiguo Zhao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, Shandong, P. R. China
| | - Yao Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, Shandong, P. R. China
| |
Collapse
|
32
|
|
33
|
Hikawa H, Ichinose R, Kikkawa S, Azumaya I. Palladium-Catalyzed Dehydrogenation of Benzyl Alcohols for Construction of 2-Arylbenzimidazoles “On Water”. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hidemasa Hikawa
- Faculty of Pharmaceutical Sciences; Toho University; 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| | - Risa Ichinose
- Faculty of Pharmaceutical Sciences; Toho University; 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| | - Shoko Kikkawa
- Faculty of Pharmaceutical Sciences; Toho University; 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| | - Isao Azumaya
- Faculty of Pharmaceutical Sciences; Toho University; 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| |
Collapse
|
34
|
Laha JK, Jethava KP, Tummalapalli KSS, Sharma S. Synthesis of Mono-N
-sulfonylimidazolidines by a 1,3-Dipolar Cycloaddition Strategy, as an Alternative to Selective N
-Sulfonylation, and Their Ring Cleavage To Afford 1,2-Diamines. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Joydev K. Laha
- Department of Pharmaceutical Technology (Process Chemistry); National Institute of Pharmaceutical Education and Research; 160062 S. A. S. Nagar Punjab India
| | - Krupal P. Jethava
- Department of Pharmaceutical Technology (Process Chemistry); National Institute of Pharmaceutical Education and Research; 160062 S. A. S. Nagar Punjab India
| | - K. S. Satyanarayana Tummalapalli
- Department of Pharmaceutical Technology (Process Chemistry); National Institute of Pharmaceutical Education and Research; 160062 S. A. S. Nagar Punjab India
| | - Sheetal Sharma
- Department of Pharmaceutical Technology (Process Chemistry); National Institute of Pharmaceutical Education and Research; 160062 S. A. S. Nagar Punjab India
| |
Collapse
|