1
|
Munda M, Chatterjee D, Majhi M, Biswas S, Pal D, Bisai A. Total synthesis of naturally occurring abietane diterpenoids via a late-stage Fe(iii)- bTAML catalysed Csp 3-H functionalization. RSC Adv 2024; 14:20420-20424. [PMID: 38932981 PMCID: PMC11200212 DOI: 10.1039/d4ra03791j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The synthesis of diverse trans-fused decalins, including the abietane diterpenoids scaffold, using an efficient selective oxidation strategy is described. The abietane core was demonstrated to be a versatile scaffold that can be site-selectively functionalized. The utility of this novel oxidation strategy was showcased in a concise total synthesis of six abietane congeners.
Collapse
Affiliation(s)
- Mintu Munda
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri Bhopal-462 066 Madhya Pradesh India
| | - Debasmita Chatterjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Nadia-741 246 West Bengal India
| | - Moumita Majhi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Nadia-741 246 West Bengal India
| | - Souvik Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Nadia-741 246 West Bengal India
| | - Debopam Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Nadia-741 246 West Bengal India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri Bhopal-462 066 Madhya Pradesh India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Nadia-741 246 West Bengal India
| |
Collapse
|
2
|
Khatua A, Jana D, Nandy M, Shyamal P, Bisai A. Total Synthesis of (+)- and (-)-Calycanthine by Means of Thio-Urea-Catalyzed Sequential Michael Reactions of Bis-oxindoles. J Org Chem 2024; 89:4792-4801. [PMID: 38544463 DOI: 10.1021/acs.joc.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
A unified catalytic asymmetric approach to naturally occurring piperidinoindoline and pyrrololidinoindoline alkaloids has been realized via the development of a thio-urea-catalyzed sequential Michael addition of bis-oxindole onto nitroethylene (up to 93% ee and >20:1 dr). This strategy offers the total syntheses of either enantiomers of naturally occurring calycanthine.
Collapse
Affiliation(s)
- Arindam Khatua
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Debgopal Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Kalyani, Nadia 741 246, West Bengal, India
| | - Monosij Nandy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Kalyani, Nadia 741 246, West Bengal, India
| | - Pranay Shyamal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Kalyani, Nadia 741 246, West Bengal, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Kalyani, Nadia 741 246, West Bengal, India
| |
Collapse
|
3
|
Khatua A, Shyamal P, Pal S, Mondal A, Bisai A. Concise total syntheses of bis(cyclotryptamine) alkaloids via thio-urea catalyzed one-pot sequential Michael addition. Chem Commun (Camb) 2022; 58:3929-3932. [PMID: 35244129 DOI: 10.1039/d2cc01008a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naturally occurring bis(cyclotryptamine) alkaloids feature vicinal all-carbon quaternary stereocenters with an elongated labile C-3a-C-3a' Sigma bond with impressive biological activities. In this report, we have developed a thio-urea catalyzed one-pot sequential Michael addition of bis-oxindole onto selenone to access enantioenriched dimeric 2-oxindoles with vicinal quaternary stereogenic centers at the pseudobenzylic position (up to 96% ee and >20 : 1 dr). This strategy has been successfully applied for the total syntheses of either enantiomers of chimonanthine, folicanthine, and calycanthine.
Collapse
Affiliation(s)
- Arindam Khatua
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal - 462 066, Madhya Pradesh, India.
| | - Pranay Shyamal
- Department of Chemistry, IISER Kolkata, Mohanpur Campus, Kalyani, Nadia - 741 246, West Bengal, India
| | - Souvik Pal
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal - 462 066, Madhya Pradesh, India.
| | - Ayan Mondal
- Department of Chemistry, IISER Kolkata, Mohanpur Campus, Kalyani, Nadia - 741 246, West Bengal, India
| | - Alakesh Bisai
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal - 462 066, Madhya Pradesh, India. .,Department of Chemistry, IISER Kolkata, Mohanpur Campus, Kalyani, Nadia - 741 246, West Bengal, India
| |
Collapse
|
4
|
Bayat M, Saeni V, Masoumi M, Hosseini FS. One-Pot Synthesis of Dihydroxyindeno[1,2-d]Imidazoles and Naphthoquinone Substituted Indandione and Oxindole Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2033801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Vosough Saeni
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Milad Masoumi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Fahimeh Sadat Hosseini
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
5
|
Babu KN, Pal S, Khatua A, Roy A, Bisai A. The catalytic decarboxylative allylation of enol carbonates: the synthesis of enantioenriched 3-allyl-3'-aryl 2-oxindoles and the core structure of azonazine. Org Biomol Chem 2021; 20:127-131. [PMID: 34897364 DOI: 10.1039/d1ob02048j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic asymmetric synthesis of 3-allyl-3'-aryl 2-oxindoles has been shown via the Pd(0)-catalyzed decarboxylative allylation of allylenol carbonates. This methodology provides access to a variety of 2-oxindole substrates (5a-v) with all-carbon quaternary stereocenters (up to 94% ee) at the pseudobenzylic position under additive-free and mild conditions. The synthetic potential of this method was shown by the asymmetric synthesis of the tetracyclic core of the diketopiparazine-based alkaloid azonazine (11).
Collapse
Affiliation(s)
- K Naresh Babu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Souvik Pal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Arindam Khatua
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Avishek Roy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India. .,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia - 741246, West Bengal, India
| |
Collapse
|
6
|
Xu JX, Jiang YS, Chen CH, Sathishkumar N, Chu KT, Chiang MH, Chen HT, Han JL. Enantioselective Organocatalytic Three-Component Vinylogous Michael/Aldol Tandem Reaction among 3-Alkylidene oxindoles, Methyleneindolinones, and Aldehydes. J Org Chem 2021; 87:197-210. [PMID: 34882415 DOI: 10.1021/acs.joc.1c02180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We reported a one-pot enantioselective three-component vinylogous Michael/aldol tandem reaction of prochiral 3-alkylidene oxindoles with methyleneindolinones and aldehydes using bifunctional organocatalysts. A variety of enantioenriched 3,3-disubstituted oxindoles 3 and spirolactones 4 were generated in moderate yields (up to 78%) with high stereoselectivities (up to >20:1 dr, >99% ee). Intriguingly, we observed that the aldol reaction with paraformaldehyde generates 3,3-disubstituted oxindoles 3 bearing a hydroxymethyl group, while the reaction with aliphatic aldehydes generates spirolactones 4.
Collapse
Affiliation(s)
- Jing-Xiang Xu
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan R.O.C
| | - Yi-Syun Jiang
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan R.O.C
| | - Chih-Hao Chen
- Department of Chemistry, Chung Yuan Christian University, Taoyuan City 32023, Taiwan R.O.C
| | - Nadaraj Sathishkumar
- Department of Chemistry, Chung Yuan Christian University, Taoyuan City 32023, Taiwan R.O.C
| | - Kai-Ti Chu
- Institute of Chemistry, Academia Sinica, Taipei City 11529, Taiwan R.O.C
| | - Ming-Hsi Chiang
- Institute of Chemistry, Academia Sinica, Taipei City 11529, Taiwan R.O.C
| | - Hsin-Tsung Chen
- Department of Chemistry, Chung Yuan Christian University, Taoyuan City 32023, Taiwan R.O.C
| | - Jeng-Liang Han
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan R.O.C
| |
Collapse
|
7
|
Maity A, Munda M, Niyogi S, Kumar N, Bisai A. Total syntheses of Hexahydropyrrolo[2,3-b]indole Alkaloids, (+)-pseudophrynamine 270 and (+)-pseudophrynamine 272A. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Sonsona IG, Vicenzi A, Guidotti M, Bisag GD, Fochi M, Herrera RP, Bernardi L. Investigation of Squaramide Catalysts in the Aldol Reaction En Route to Funapide. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Isaac G. Sonsona
- Department of Industrial Chemistry “Toso Montanari” & INSTM RU Bologna Alma Mater Studiorum – University of Bologna V. Risorgimento 4 40136 Bologna Italy
- Departamento de Química Orgánica Laboratorio de Organocatálisis Asimétrica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Andrea Vicenzi
- Department of Industrial Chemistry “Toso Montanari” & INSTM RU Bologna Alma Mater Studiorum – University of Bologna V. Risorgimento 4 40136 Bologna Italy
| | - Marco Guidotti
- Department of Industrial Chemistry “Toso Montanari” & INSTM RU Bologna Alma Mater Studiorum – University of Bologna V. Risorgimento 4 40136 Bologna Italy
| | - Giorgiana Denisa Bisag
- Department of Industrial Chemistry “Toso Montanari” & INSTM RU Bologna Alma Mater Studiorum – University of Bologna V. Risorgimento 4 40136 Bologna Italy
| | - Mariafrancesca Fochi
- Department of Industrial Chemistry “Toso Montanari” & INSTM RU Bologna Alma Mater Studiorum – University of Bologna V. Risorgimento 4 40136 Bologna Italy
| | - Raquel P. Herrera
- Departamento de Química Orgánica Laboratorio de Organocatálisis Asimétrica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Luca Bernardi
- Department of Industrial Chemistry “Toso Montanari” & INSTM RU Bologna Alma Mater Studiorum – University of Bologna V. Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
9
|
Dobah F, Mazodze CM, Petersen WF. Cross-Dehydrogenative Cyclization-Dimerization Cascade Sequence for the Synthesis of Symmetrical 3,3'-Bisoxindoles. Org Lett 2021; 23:5466-5470. [PMID: 34232674 DOI: 10.1021/acs.orglett.1c01799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthesis of symmetrical 3,3'-bisoxindoles from simple acyclic β-oxoanilides is reported. The described method forges three new C-C bonds in a single step via a sequential Mn(OAc)3·2H2O mediated oxidative radical cyclization-fragmentation-dimerization process. The scope of this reaction is demonstrated in the preparation of a variety of 3,3'-bisoxindoles, as well as its application toward the formal synthesis of the Calycanthaceae alkaloid, (±)-folicanthine.
Collapse
Affiliation(s)
- Farhaan Dobah
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - C Munashe Mazodze
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Wade F Petersen
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| |
Collapse
|
10
|
Porey A, Mondal BD, Guin J. Hydrogen-Bonding Assisted Catalytic Kinetic Resolution of Acyclic β-Hydroxy Amides. Angew Chem Int Ed Engl 2021; 60:8786-8791. [PMID: 33368918 DOI: 10.1002/anie.202015004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/21/2020] [Indexed: 01/07/2023]
Abstract
Enantioenriched acyclic α-substituted β-hydroxy amides are valuable compounds in chemical, material and medicinal sciences, but their enantioselective synthesis remains challenging. A catalytic kinetic resolution (KR) of such amides with selectivity factor(s) up to >200 is developed via enantioselective acylation of primary alcohol with N-heterocyclic carbene. An enhanced selectivity for the catalytic KR process is realized using cyclic tertiary amine as base additive. Diastereomeric transition state models for the process are proposed to rationalize the origin of enantioselectivity.
Collapse
Affiliation(s)
- Arka Porey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Bhaskar Deb Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
11
|
Porey A, Mondal BD, Guin J. Hydrogen‐Bonding Assisted Catalytic Kinetic Resolution of Acyclic β‐Hydroxy Amides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Arka Porey
- School of Chemical Sciences Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur, Kolkata 700032 India
| | - Bhaskar Deb Mondal
- School of Chemical Sciences Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur, Kolkata 700032 India
| | - Joyram Guin
- School of Chemical Sciences Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur, Kolkata 700032 India
| |
Collapse
|
12
|
Abstract
This review summaries recent synthetic developments towards spirocyclic oxindoles and applications as valuable medicinal and synthetic targets.
Collapse
Affiliation(s)
- Alexander J. Boddy
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| | - James A. Bull
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| |
Collapse
|
13
|
Devi M, Jadhav AP, Singh RP. KOH-mediated stereoselective alkylation of 3-bromooxindoles for the synthesis of 3,3′-disubstituted oxindoles with two contiguous all carbon quaternary centres. NEW J CHEM 2021. [DOI: 10.1039/d0nj06283a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stereoselective synthesis of 3,3′-disubstituted oxindoles having all-carbon quaternary stereocenters has been achieved using KOH as a base with an excellent diastereomeric ratio (98 : 2).
Collapse
Affiliation(s)
- Manju Devi
- Department of Chemistry
- Indian Institute of Technology
- Delhi
- Hauz Khas
- India
| | - Amol P. Jadhav
- Department of Chemistry
- Indian Institute of Technology
- Delhi
- Hauz Khas
- India
| | - Ravi P. Singh
- Department of Chemistry
- Indian Institute of Technology
- Delhi
- Hauz Khas
- India
| |
Collapse
|
14
|
Heravi MM, Momeni T, Zadsirjan V, Mohammadi L. Application of The Dess-Martin Oxidation in Total Synthesis of Natural Products. Curr Org Synth 2020; 18:125-196. [PMID: 32940184 DOI: 10.2174/1570179417666200917102634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Dess-Martin periodinane (DMP), a commercially available chemical, is frequently utilized as a mild oxidative agent for the selective oxidation of primary and secondary alcohols to their corresponding aldehydes and ketones, respectively. DMP shows several merits over other common oxidative agents such as chromiumand DMSO-based oxidants; thus, it is habitually employed in the total synthesis of natural products. In this review, we try to underscore the applications of DMP as an effective oxidant in an appropriate step (steps) in the multi-step total synthesis of natural products.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University, POBox 1993891176, Vanak, Tehran, Iran
| | - Tayebe Momeni
- Department of Chemistry, School of Science, Alzahra University, POBox 1993891176, Vanak, Tehran, Iran
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University, POBox 1993891176, Vanak, Tehran, Iran
| | - Leila Mohammadi
- Department of Chemistry, School of Science, Alzahra University, POBox 1993891176, Vanak, Tehran, Iran
| |
Collapse
|
15
|
Yuan WC, Zhou XJ, Zhao JQ, Chen YZ, You Y, Wang ZH. Catalytic Enantioselective Dearomatization/Rearomatization of 2-Nitroindoles to Access 3-Indolyl-3′-Aryl-/Alkyloxindoles: Application in the Formal Synthesis of Cyclotryptamine Alkaloids. Org Lett 2020; 22:7088-7093. [DOI: 10.1021/acs.orglett.0c02350] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Xiao-Jian Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
16
|
Moreno-Cabrerizo C, Ortega-Martínez A, Esteruelas MA, López AM, Nájera C, Sansano JM. Deacylative Alkylation vs. Photoredox Catalysis in the Synthesis of 3,3'-Bioxindoles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Cristina Moreno-Cabrerizo
- Department of Organic Chemistry; and Instituto de Síntesis Orgánica (ISO); University of Alicante; PO Box 99 03080 Alicante Spain
- Centro de Innovación en Química Avanzada; ORFEO-CINQA; Spain
| | - Aitor Ortega-Martínez
- Department of Organic Chemistry; and Instituto de Síntesis Orgánica (ISO); University of Alicante; PO Box 99 03080 Alicante Spain
- Centro de Innovación en Química Avanzada; ORFEO-CINQA; Spain
| | - Miguel A. Esteruelas
- Centro de Innovación en Química Avanzada; ORFEO-CINQA; Spain
- Departamento de Química Inorgánica; Instituto de Síntesis Química y Catálisis Homogénea; Universidad de Zaragoza-CSIC; 50009 Zaragoza Spain
| | - Ana M. López
- Centro de Innovación en Química Avanzada; ORFEO-CINQA; Spain
- Departamento de Química Inorgánica; Instituto de Síntesis Química y Catálisis Homogénea; Universidad de Zaragoza-CSIC; 50009 Zaragoza Spain
| | - Carmen Nájera
- Centro de Innovación en Química Avanzada; ORFEO-CINQA; Spain
| | - José M. Sansano
- Department of Organic Chemistry; and Instituto de Síntesis Orgánica (ISO); University of Alicante; PO Box 99 03080 Alicante Spain
- Centro de Innovación en Química Avanzada; ORFEO-CINQA; Spain
| |
Collapse
|
17
|
Maity A, Roy A, Das MK, De S, Naskar M, Bisai A. Oxidative cyanation of 2-oxindoles: formal total synthesis of (±)-gliocladin C. Org Biomol Chem 2020; 18:1679-1684. [PMID: 32052001 DOI: 10.1039/c9ob02752a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient oxidative direct cyanations of 3-alkyl/aryl 2-oxindoles using Cyano-1,2-BenziodoXol-3(1H)-one (CBX) (2a) have been reported under 'transition metal-free' conditions to synthesize a wide variety of 3-cyano 3-alkyl/aryl 2-oxindoles sharing an all-carbon quaternary center under additive-free conditions. The application of this process is shown by the formal total synthesis of (±)-gliocladin C (11c) in a few steps.
Collapse
Affiliation(s)
- Arindam Maity
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Avishek Roy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Mrinal Kanti Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Subhadip De
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Malay Naskar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India. and Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia - 741 246, West Bengal, India.
| |
Collapse
|
18
|
Sokolnicki T, Szyling J, Franczyk A, Walkowiak J. Regio‐ and Stereoselective Synthesis of Enynyl Boronates via Ruthenium‐Catalyzed Hydroboration of 1,4‐Diaryl‐Substituted 1,3‐Diynes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tomasz Sokolnicki
- Adam Mickiewicz University in PoznanCenter for Advanced Technology Uniwersytetu Poznańskiego 10 61–712 Poznań Poland
- Adam Mickiewicz University in Poznan Faculty of Chemistry Uniwersytetu Poznańskiego 8 61-712 Poznań Poland
| | - Jakub Szyling
- Adam Mickiewicz University in PoznanCenter for Advanced Technology Uniwersytetu Poznańskiego 10 61–712 Poznań Poland
- Adam Mickiewicz University in Poznan Faculty of Chemistry Uniwersytetu Poznańskiego 8 61-712 Poznań Poland
| | - Adrian Franczyk
- Adam Mickiewicz University in PoznanCenter for Advanced Technology Uniwersytetu Poznańskiego 10 61–712 Poznań Poland
| | - Jędrzej Walkowiak
- Adam Mickiewicz University in PoznanCenter for Advanced Technology Uniwersytetu Poznańskiego 10 61–712 Poznań Poland
| |
Collapse
|
19
|
Odagi M, Nagasawa K. Recent Advances in Natural Products Synthesis Using Bifunctional Organocatalysts Bearing a Hydrogen‐Bonding Donor Moiety. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900459] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Minami Odagi
- Department of Biotechnology and Life ScienceTokyo University of Agriculture and Technology (TUAT) 2-24-16, Naka-cho Koganei city 184-8588 Tokyo Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life ScienceTokyo University of Agriculture and Technology (TUAT) 2-24-16, Naka-cho Koganei city 184-8588 Tokyo Japan
| |
Collapse
|
20
|
Lang J, Li Y, Kang T, Feng X, Liu X. Organocatalytic Asymmetric Michael/Dieckmann Cyclization Reaction of Alkynones To Construct Spirocyclopentene Oxindoles. Org Lett 2019; 21:6897-6902. [DOI: 10.1021/acs.orglett.9b02519] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jiawen Lang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yi Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Tengfei Kang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
21
|
Hu H, Teng F, Liu J, Hu W, Luo S, Zhu Q. Enantioselective Synthesis of 2‐Oxindole Spirofused Lactones and Lactams by Heck/Carbonylative Cylization Sequences: Method Development and Applications. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Huaanzi Hu
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou 510005 China
| | - Fan Teng
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou 510005 China
| | - Jian Liu
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
| | - Weiming Hu
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou 510005 China
| | - Shuang Luo
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou 510005 China
| | - Qiang Zhu
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou 510005 China
| |
Collapse
|
22
|
Hu H, Teng F, Liu J, Hu W, Luo S, Zhu Q. Enantioselective Synthesis of 2-Oxindole Spirofused Lactones and Lactams by Heck/Carbonylative Cylization Sequences: Method Development and Applications. Angew Chem Int Ed Engl 2019; 58:9225-9229. [PMID: 31074567 DOI: 10.1002/anie.201904838] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Indexed: 01/16/2023]
Abstract
An efficient one-pot assembly of all-carbon spiro-oxindole compounds from non-oxindole-based materials has been developed through a palladium-catalyzed asymmetric Heck/carbonylative lactonization and lactamization sequence. Diversified spirooxindole γ-and δ-lactones/lactams were accessed in high yields with good to excellent enantioselectivities (up to 99 % ee) under mild reaction conditions. The natural product coixspirolactam A was conveniently synthesized by applying the current methodology, and thus its absolute configuration was elucidated for the first time. Asymmetric synthesis of an effective CRTH2 receptor antagonist has also been demonstrated utilizing this method in the key step.
Collapse
Affiliation(s)
- Huaanzi Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Fan Teng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Jian Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Weiming Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| |
Collapse
|
23
|
Cinchona-alkaloid-catalyzed enantioselective hydroxymethylation of 3-fluorooxindoles with paraformaldehyde. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Babu KN, Roy A, Singh M, Bisai A. Thiourea-Catalyzed Enantioselective Malonate Addition onto 3-Sulfonyl-3'-indolyl-2-oxindoles: Formal Total Syntheses of (-)-Chimonanthine, (-)-Folicanthine, and (+)-Calycanthine. Org Lett 2018; 20:6327-6331. [PMID: 30299963 DOI: 10.1021/acs.orglett.8b02327] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general approach to bispyrroloindolines via a key thiourea-catalyzed addition of malonates to 3-sulfonyl-3'-indolyl-2-oxindoles is reported. The enantioselelective process is found to be highly effective (up to 94% ee), where a C-C bond formation leads to the synthesis of a number of 2-oxindoles with an all-carbon quaternary stereocenter.
Collapse
Affiliation(s)
- K Naresh Babu
- Department of Chemistry , IISER Bhopal , Bhopal Bypass Road , Bhauri, Bhopal 462 066 , Madhya Pradesh , India
| | - Avishek Roy
- Department of Chemistry , IISER Bhopal , Bhopal Bypass Road , Bhauri, Bhopal 462 066 , Madhya Pradesh , India
| | - Manvendra Singh
- Department of Chemistry , IISER Bhopal , Bhopal Bypass Road , Bhauri, Bhopal 462 066 , Madhya Pradesh , India
| | - Alakesh Bisai
- Department of Chemistry , IISER Bhopal , Bhopal Bypass Road , Bhauri, Bhopal 462 066 , Madhya Pradesh , India
| |
Collapse
|
25
|
Kumar N, Gavit VR, Maity A, Bisai A. Pd(0)-Catalyzed Chemoselective Deacylative Alkylations (DaA) of N-Acyl 2-Oxindoles: Total Syntheses of Pyrrolidino[2,3- b]indoline Alkaloids, (±)-Deoxyeseroline, and (±)-Esermethole. J Org Chem 2018; 83:10709-10735. [PMID: 30058340 DOI: 10.1021/acs.joc.8b01101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report an efficient Pd(0)-catalyzed deacylative allylation of N-acyl 3-substituted 2-oxindoles via the coupling of in situ generated nucleophiles (3 and 4) with allyl electrophiles for the synthesis of a variety of 2-oxindoles with C3-quaternary centers. Gratifyingly, this alkylation process is found to be highly chemoselective in nature, where a C-C bond formation is completely predominant over a C-N bond formation. A variety of key intermediates were synthesized utilizing an aforementioned methodology.
Collapse
Affiliation(s)
- Nivesh Kumar
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal , Madhya Pradesh 462 066 , India
| | - Vipin R Gavit
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal , Madhya Pradesh 462 066 , India
| | - Arindam Maity
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal , Madhya Pradesh 462 066 , India
| | - Alakesh Bisai
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal , Madhya Pradesh 462 066 , India
| |
Collapse
|
26
|
Zhu B, Li F, Lu B, Chang J, Jiang Z. Organocatalytic Enantioselective Vinylogous Aldol Reaction of 5-Alkyl-4-Nitroisoxazoles to Paraformaldehyde. J Org Chem 2018; 83:11350-11358. [DOI: 10.1021/acs.joc.8b01573] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Bo Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Fuyuan Li
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Bohua Lu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Zhiyong Jiang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
27
|
Chen SK, Ma WQ, Yan ZB, Zhang FM, Wang SH, Tu YQ, Zhang XM, Tian JM. Organo-Cation Catalyzed Asymmetric Homo/Heterodialkylation of Bisoxindoles: Construction of Vicinal All-Carbon Quaternary Stereocenters and Total Synthesis of (−)-Chimonanthidine. J Am Chem Soc 2018; 140:10099-10103. [DOI: 10.1021/jacs.8b05386] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Si-Kai Chen
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Wen-Qiang Ma
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zhi-Bo Yan
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Shao-Hua Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Jin-Miao Tian
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
28
|
Bhunia S, Chaudhuri S, De S, Babu KN, Bisai A. An expeditious route to the synthesis of the enantioenriched tetracyclic core of ergot alkaloids via an organocatalytic aldol reaction. Org Biomol Chem 2018; 16:2427-2437. [PMID: 29556598 DOI: 10.1039/c7ob03069j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of the tetracyclic skeleton of ergot alkaloids has been developed via a key organocatalytic enantioselective aldol reaction using paraformaldehyde as the C1-unit in the presence of thiourea catalyst followed by a key Pd-catalyzed directed coupling accelerated by the DavePhos ligand. Utilizing the aforementioned strategy, we have synthesized a key tetracyclic intermediate in up to 95% ee with high yield.
Collapse
Affiliation(s)
- Subhajit Bhunia
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Saikat Chaudhuri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Subhadip De
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - K Naresh Babu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| |
Collapse
|
29
|
Yang G, Zhang W. Renaissance of pyridine-oxazolines as chiral ligands for asymmetric catalysis. Chem Soc Rev 2018; 47:1783-1810. [PMID: 29469141 DOI: 10.1039/c7cs00615b] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxazoline-containing ligands have been widely employed in numerous asymmetric catalytic reactions. Pyridine-oxazoline-type ligands, a class of hybrid ligands, were designed earlier than bisoxazoline and phosphine-oxazoline ligands; however, their unique properties have only been discovered recently. Pyridine-oxazoline-type chiral ligands are rapidly becoming popular for use in asymmetric catalysis, especially for several new and efficient asymmetric methodologies. Several types of challenging asymmetric reactions have been discovered recently using pyridine-oxazoline-type ligands showing their special properties and potential for future application in a wide range of new catalytic methodologies. This review provides an overview of this field, with the aim of highlighting both ligand design and synthetic methodology development.
Collapse
Affiliation(s)
- Guoqiang Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | | |
Collapse
|
30
|
Yamashita Y, Yasukawa T, Yoo WJ, Kitanosono T, Kobayashi S. Catalytic enantioselective aldol reactions. Chem Soc Rev 2018; 47:4388-4480. [DOI: 10.1039/c7cs00824d] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent developments in catalytic asymmetric aldol reactions have been summarized.
Collapse
Affiliation(s)
- Yasuhiro Yamashita
- Department of Chemistry
- School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Tomohiro Yasukawa
- Department of Chemistry
- School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Woo-Jin Yoo
- Department of Chemistry
- School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Taku Kitanosono
- Department of Chemistry
- School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Shū Kobayashi
- Department of Chemistry
- School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| |
Collapse
|
31
|
Kinthada LK, Medisetty SR, Parida A, Babu KN, Bisai A. FeCl3-Catalyzed Allylation Reactions onto 3-Hydroxy-2-oxindoles: Formal Total Syntheses of Bis-cyclotryptamine Alkaloids, (±)-Chimonanthine, and (±)-Folicanthine. J Org Chem 2017; 82:8548-8567. [DOI: 10.1021/acs.joc.7b01232] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lakshmana K. Kinthada
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| | - Sai Raghavendra Medisetty
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| | - Amarchand Parida
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| | - K. Naresh Babu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| |
Collapse
|
32
|
Wang CM, Xia PJ, Xiao JA, Li J, Xiang HY, Chen XQ, Yang H. Photoredox-Catalyzed Reductive Dimerization of Isatins and Isatin-Derived Ketimines: Diastereoselective Construction of 3,3′-Disubstituted Bisoxindoles. J Org Chem 2017; 82:3895-3900. [DOI: 10.1021/acs.joc.6b03056] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chao-Ming Wang
- College of Chemistry and
Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Peng-Ju Xia
- College of Chemistry and
Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun-An Xiao
- College of Chemistry and
Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun Li
- College of Chemistry and
Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and
Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xiao-Qing Chen
- College of Chemistry and
Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and
Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
33
|
Cheng Y, Zhang P, Jia Y, Fang Z, Li P. Organocatalytic condensation–ring opening–annulation cascade reactions between N-Bocindolin-2-ones/benzofuran-2(3H)-ones and salicylaldehydes for synthesis of 3-arylcoumarins. Org Biomol Chem 2017; 15:7505-7508. [DOI: 10.1039/c7ob01730h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An organocatalytic cascade synthesis of 3-arylcoumarins has been developed.
Collapse
Affiliation(s)
- Yuyu Cheng
- Department of Chemistry
- South University of Science and Technology of China
- Shenzhen
- P. R. China
| | - Pengfei Zhang
- Department of Chemistry
- South University of Science and Technology of China
- Shenzhen
- P. R. China
| | - Yanwen Jia
- Department of Chemistry
- South University of Science and Technology of China
- Shenzhen
- P. R. China
| | - Zhiqiang Fang
- Department of Chemistry
- South University of Science and Technology of China
- Shenzhen
- P. R. China
| | - Pengfei Li
- Department of Chemistry
- South University of Science and Technology of China
- Shenzhen
- P. R. China
| |
Collapse
|