1
|
Wang CC, Wang QL, Ren MR, Xue YJ, Wang ZH, Hou XH, Ma ZW, Xie YX, Chen YJ. [1+5] Cyclization of Indoline-Derived Azadienes with 1,3,5-Triazinanes: An Efficient Protocol for the Synthesis of Indoline-Spiro-Hexahydropyrimidines. Chemistry 2025:e202404277. [PMID: 39777962 DOI: 10.1002/chem.202404277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
An unprecedented formal [1+5] cyclization of indoline-derived azadienes with 1,3,5-triazinanes has been realized, providing a facile access to biologically important indoline-spiro-hexahydropyrimidines with good to excellent yields (up to 99 % yield). Different from previous reports, this is the first study that indoline-derived azadienes could participate in cyclizations as one-atom synthons. This methodology is also distinguished by not involving any additive or catalyst, readily available starting materials, wide range of substrate applicability, operational simplicity and simultaneously reassembling two C-N and two C-C bonds in one-step reaction.
Collapse
Affiliation(s)
- Chuan-Chuan Wang
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou, 450044, Henan, China
| | - Qing-Long Wang
- College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengzhou, 450046, Henan, China
| | - Meng-Ru Ren
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan, China
| | - Yao-Jie Xue
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan, China
| | - Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan, China
| | - Xue-Hui Hou
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou, 450044, Henan, China
| | - Zhi-Wei Ma
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou, 450044, Henan, China
| | - Ying-Xin Xie
- College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengzhou, 450046, Henan, China
| | - Ya-Jing Chen
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan, China
| |
Collapse
|
2
|
Liu Q, Yoshikawa I, Okuyama K, Kudo K. Asymmetric synthesis of spiro[oxindole-3,2'-pyrrolidine]s through organocatalytic 1,3-dipolar cycloaddition via cycloreversion of precursor isatinimine homodimers. Org Biomol Chem 2024. [PMID: 39699294 DOI: 10.1039/d4ob01727g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The chiral amine catalyzed diastereo- and enantioselective [3 + 2] cycloaddition between isatin-derived azomethine ylides and α,β-unsaturated aldehydes was successfully carried out to afford spiro[oxindole-3,2'-pyrrolidine]s. It was anticipated that the formation of azomethine ylides occurred via the cycloreversion of dispirooxindole-imidazolidines, which are precursor imine homodimers, in aqueous solvents.
Collapse
Affiliation(s)
- Qian Liu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | - Isao Yoshikawa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | - Kohsaku Okuyama
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | - Kazuaki Kudo
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| |
Collapse
|
3
|
Biswas S, Mallick M, K S GN, Chandu P, Sureshkumar D. A Visible Light Photoredox Approach for Synthesizing Sulfone-Functionalized Cyclopropenes. Org Lett 2024; 26:10207-10212. [PMID: 39585300 DOI: 10.1021/acs.orglett.4c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
We have developed a tandem method essential for synthesizing sulfone-containing organic molecules, which has wide-ranging applications in agrochemicals, medicinal chemistry, and polymer science. This method involves a two-step process: an iodo-sulfonylated intermediate is formed initially, followed by elimination to regenerate the double bond, ultimately yielding sulfone-containing cyclopropenes. Control studies have confirmed the intermediacy of iodo-sulfonylated cyclopropane within the reaction sequence. Additionally, this protocol demonstrated an excellent tolerance for various functional groups. Moreover, the resulting sulfonylated-cyclopropenes are promising synthons for late-stage modification and molecular diversification.
Collapse
Affiliation(s)
- Sourabh Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Manasi Mallick
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Gouri Nanda K S
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Palasetty Chandu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
4
|
Kornev AA, Shmakov SV, Ponyaev AI, Stepakov AV, Boitsov VM. Study of Cytotoxicity of Spiro-Fused [3-Azabicyclo[3.1.0]hexane]oxindoles and Cyclopropa[a]pyrrolizidine-oxindoles Against Tumor Cell Lines. Pharmaceuticals (Basel) 2024; 17:1582. [PMID: 39770424 PMCID: PMC11680018 DOI: 10.3390/ph17121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Background: A series of spiro-fused heterocyclic compounds containing cyclopropa[a]pyrrolizidine-2,3'-oxindole and 3-spiro[3-azabicyclo[3.1.0]-hexane]oxindole frameworks were synthesized and studied for their in vitro antiproliferative activity against human erythroleukemia (K562), cervical carcinoma (HeLa), acute T cell leukemia (Jurkat), melanoma (Sk-mel-2) and breast cancer (MCF-7) as well as mouse colon carcinoma (CT26) cell lines. Methods: Cell proliferation was evaluated in vitro by MTS assay. Confocal microscopy was used to study actin cytoskeleton structure and cell motility. Cell cycle analysis was evaluated by flow cytometry. Results: It was found that compounds 4, 8, 18 and 24 showed antiproliferative activity against the Jurkat, K-562, HeLa and Sk-mel-2 cell lines with IC50 ranging from 2 to 10 μM (72 h). Evaluation of the impact on cell cycle progression showed that the tested compounds achieved significant cell-cycle perturbation with a higher accumulation of cells in the SubG1 and G0/G1 phases of the cell cycle, in comparison to the negative control. I Incubation with tested compounds led to the disappearance of stress fibers (granular actin was distributed diffusely in the cytoplasm in up to 38% of treated HeLa cells) and changes in the number of filopodia-like deformations (reduced from 93% in control cells to 64% after treatment). The impact on the Sk-mel-2 cell actin cytoskeleton structure was even greater: granular actin was distributed diffusely in the cytoplasm in up to 90% of treated cells while the number of filopodia-like deformations was reduced by up to 23%. A scratch test performed on the human melanoma cell line showed that these cells did not fill the scratched strip and lose their ability to move under treatment. Conclusions: The obtained results support the antitumor effect of the tested spiro-compounds and encourage the extension of this study in order to improve their anticancer activity as well as reduce their toxicological risks.
Collapse
Affiliation(s)
- Anton A. Kornev
- Laboratory of Nanobiotechnologies, Saint-Petersburg National Research Academic University of the Russian Academy of Sciences, Saint Petersburg 194021, Russia
| | - Stanislav V. Shmakov
- Laboratory of Nanobiotechnologies, Saint-Petersburg National Research Academic University of the Russian Academy of Sciences, Saint Petersburg 194021, Russia
| | | | - Alexander V. Stepakov
- Saint-Petersburg State Institute of Technology, Saint Petersburg 190013, Russia
- Department of Chemistry, Saint-Petersburg State University, Saint Petersburg 199034, Russia
| | - Vitali M. Boitsov
- Laboratory of Nanobiotechnologies, Saint-Petersburg National Research Academic University of the Russian Academy of Sciences, Saint Petersburg 194021, Russia
| |
Collapse
|
5
|
Ma C, Guo Q, Meng H, Yan S, Ding Q, Jiang Y, Yu B. Photoredox-Catalyzed Carbamoyl Radical-Initiated Dearomative Spirocyclization To Access Spiro-Cyclohexadiene Oxindoles. Org Lett 2024; 26:8503-8508. [PMID: 39353048 DOI: 10.1021/acs.orglett.4c03045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The sustainable construction of spirocyclic compounds is important to the scientific community and the pharmaceutical industries. Herein, we demonstrate a carbamoyl radical-initiated intramolecular dearomative spirocyclization to access the spiro-cyclohexadiene oxindoles under visible light irradiation, which constitutes the first example of accessing the I-substituted derivatives that facilitate diversified transformations. Additionally, the scalability, late-stage modification of drugs, and significant antitumor activity of the products demonstrate the novel spirocyclic synthesis platform for expediting drug development.
Collapse
Affiliation(s)
- Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Qing Guo
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Hui Meng
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shengnan Yan
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Qingjie Ding
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Liu Y, Shen X, Zhu P, Hu JM, Wang X, Ge S. Gold-Catalyzed Cascade Reaction of Yne-Enones with Iminooxindoles, Access to 3,2'-Pyrrolidinyl-Spirooxindole Derivatives. Org Lett 2024. [PMID: 38804575 DOI: 10.1021/acs.orglett.4c01395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Herein, a gold-catalyzed cascade reaction of yne-enones with iminooxindoles has been developed through a cascade cycloisomerization/(3 + 2) annulation process. This approach provides a straightforward and efficient route for the synthesis of functionalized 3,2'-pyrrolidinyl-spirooxindoles in high reactivity and broad substrate scope with excellent cis-selectivity. Moreover, the subsequent functionalization of furan units allows for the diverse synthesis of spirooxindole derivatives, which have demonstrated good antitumoral activity.
Collapse
Affiliation(s)
- Yijun Liu
- College of Science, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Puerh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaojiang Shen
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Pengyan Zhu
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Jiang-Miao Hu
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xuanjun Wang
- Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Shulin Ge
- College of Science, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Puerh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
7
|
Izmest Ev AN, Vinogradov DB, Kravchenko AN, Kolotyrkina NG, Gazieva GA. Diastereoselective Synthesis of Dispiro[Imidazothiazolotriazine-Pyrrolidin-Oxindoles] and Their Isomerization Pathways in Basic Medium. Int J Mol Sci 2023; 24:16359. [PMID: 38003560 PMCID: PMC10671214 DOI: 10.3390/ijms242216359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Highly diastereoselective methods for the synthesis of two series of regioisomeric polynuclear dispyroheterocyclic compounds with five or six chiral centers, comprising moieties of pyrrolidinyloxindole and imidazo[4,5-e]thiazolo[3,2-b]-1,2,4-triazine of linear structure or imidazo[4,5-e]thiazolo[2,3-c]-1,2,4-triazine of angular structure, have been developed on the basis of a [3+2] cycloaddition of azomethine ylides to functionalized imidazothiazolotriazines. Depending on the structure of the ethylenic component, cycloaddition proceeds as an anti-exo process for linear derivatives, while cycloaddition to angular ones resulted in a syn-endo diastereomer. Novel pathways of isomerization for the synthesized anti-exo products upon treatment with sodium alkoxides have been found, which resulted in two more series of diastereomeric dispiro[imidazothiazolotriazine-pyrrolidin-oxindoles] inaccessible with the direct cycloaddition reaction. For the first series, the inversion of the configuration of one stereocenter, i.e., C-4' atom of the pyrrolidine cycle, (epimerization) was established. For the second one, configuration of the obtained diastereomer formally corresponded to the syn-endo approach of the azomethine ylide in the case of cycloaddition to the ethylenic component.
Collapse
Affiliation(s)
- Alexei N Izmest Ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russia
- Department of General and Inorganic Chemistry, National University of Science and Technology "MISIS", 4 Leninsky Prosp., Moscow 119049, Russia
| | - Dmitry B Vinogradov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russia
| | - Angelina N Kravchenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russia
| | - Natalya G Kolotyrkina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russia
| | - Galina A Gazieva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russia
| |
Collapse
|
8
|
Miankooshki FR, Bayat M, Nasri S, Samet NH. 1,3-Dipolar cycloaddition reactions of isatin-derived azomethine ylides for the synthesis of spirooxindole and indole-derived scaffolds: recent developments. Mol Divers 2023; 27:2365-2397. [PMID: 35925529 DOI: 10.1007/s11030-022-10510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/28/2022] [Indexed: 10/16/2022]
Abstract
The unique therapeutic and biological characteristics of spirooxindole have led to the presentation of numerous reactions for the synthesis of spirooxindoles through 1,3-Dipolar cycloaddition of highly reactive isatin-derived azomethine ylides with activated olefins as the main tool for the formation of spirocyclic oxindoles during the last 4 years. Therefore, there is a need to highlight the recent developments in this area, along with the representative synthetic methods and relevant reaction mechanisms from 2018 to 2021. The representative synthetic methodologies were listed in four sections based on the procedure to form the azomethine ylide species including isatins and amino acids, isatin-derived α-(trifluoromethyl)imine, isatins and benzylamines, and from isatin-derived cyclic imine 1,3-dipoles.
Collapse
Affiliation(s)
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | - Shima Nasri
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Narges Habibi Samet
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
9
|
Donnelly K, Singh A, Tuttle T, Baumann M. [3+2]-Cycloaddition Reactions of gem-Difluorocyclopropenes with Azomethine Ylides - Access to Novel Fluorinated Scaffolds. Chemistry 2023; 29:e202301861. [PMID: 37402163 DOI: 10.1002/chem.202301861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
The introduction of fluorinated moieties into drugs as well as the increase of their overall three-dimensionality have become key strategies amongst medicinal chemists to generate sets of compounds with favorable drug-like properties. However, the introduction of fluorinated cyclopropane ring systems which combines both strategies is not widely exploited to date. This paper reports synthetic strategies exploiting the reactivity of gem-difluorocyclopropenes in dipolar cycloaddition reactions with azomethine ylides to afford sets of new fluorine-containing 3-azabicyclo[3.1.0]hexanes. In addition, the unexpected formation of complex trifluorinated scaffolds arising from proline esters and gem-difluorocyclopropenes is highlighted along with computational studies to elucidate the underlying mechanism. This study presents new avenues towards pharmaceutically relevant fluorinated 3-azabicyclo[3.1.0]hexanes that are accessible via robust and short synthetic sequences.
Collapse
Affiliation(s)
- Kian Donnelly
- School of Chemistry, University College Dublin, Belfield, D04 N2E2, Ireland
| | - Amritpal Singh
- Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Tell Tuttle
- Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Marcus Baumann
- School of Chemistry, University College Dublin, Belfield, D04 N2E2, Ireland
| |
Collapse
|
10
|
Zhao H, Zhao Y. Engaging Isatins and Amino Acids in Multicomponent One-Pot 1,3-Dipolar Cycloaddition Reactions-Easy Access to Structural Diversity. Molecules 2023; 28:6488. [PMID: 37764264 PMCID: PMC10536439 DOI: 10.3390/molecules28186488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Multicomponent reactions (MCRs) have undoubtedly emerged as the most indispensable tool for organic chemists worldwide, finding extensive utility in the synthesis of intricate natural products, heterocyclic molecules with significant bioactivity, and pharmaceutical agents. The multicomponent one-pot 1,3-dipolar cycloaddition reactions, which were initially conceptualized by Rolf Huisgen in 1960, find extensive application in contemporary heterocyclic chemistry. In terms of green synthesis, the multicomponent 1,3-dipolar cycloaddition is highly favored owing to its numerous advantages, including high step- and atom-economies, remarkable product diversity, as well as excellent efficiency and diastereoselectivity. Among the numerous pieces of research, the most fascinating reaction involves the utilization of azomethine ylides generated from isatins and amino acids that can be captured by various dipolarophiles. This approach offers a highly efficient and convenient method for constructing spiro-pyrrolidine oxindole scaffolds, which are crucial building blocks in biologically active molecules. Consequently, this review delves deeper into the dipolarophiles utilized in the 1,3-dipolar cycloaddition of isatins and amino acids over the past six years.
Collapse
Affiliation(s)
- Hua Zhao
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | | |
Collapse
|
11
|
Shi Y, Zhao H, Zhao Y. An Efficient Synthesis of Oxygen-Bridged Spirooxindoles via Microwave-Promoted Multicomponent Reaction. Molecules 2023; 28:molecules28083508. [PMID: 37110742 PMCID: PMC10146779 DOI: 10.3390/molecules28083508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
A microwave-promoted multicomponent reaction of isatins, α-amino acids and 1,4-dihydro-1,4-epoxynaphthalene is achieved under environmentally friendly conditions, delivering oxygen-bridged spirooxindoles within 15 min in good to excellent yields. The attractive features of the 1,3-dipolar cycloaddition are the compatibility of various primary amino acids and the high efficiency of the short reaction time. Moreover, the scale-up reaction and synthetic transformations of spiropyrrolidine oxindole further demonstrate its synthetic utility. This work provides powerful means to expand the structural diversity of spirooxindole as a promising scaffold for novel drug discovery.
Collapse
Affiliation(s)
- Yaojing Shi
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Hua Zhao
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
12
|
Wang Y, Yan L, Yan Y, Li S, Lu H, Liu J, Dong J. Dipolarophile-Controlled Regioselective 1,3-Dipolar Cycloaddition: A Switchable Divergent Access to Functionalized N-Fused Pyrrolidinyl Spirooxindoles. Int J Mol Sci 2023; 24:ijms24043771. [PMID: 36835183 PMCID: PMC9966135 DOI: 10.3390/ijms24043771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
N-fused pyrrolidinyl spirooxindole belongs to a class of privileged heterocyclic scaffolds and is prevalent in natural alkaloids and synthetic pharmaceutical molecules. To realize the switchable synthesis of divergent N-fused pyrrolidinyl spirooxindoles for further biological activity evaluation via a substrate-controlled strategy, a chemically sustainable, catalysis-free, and dipolarophile-controlled three-component 1,3-dipolar cycloaddition of isatin-derived azomethine ylides with diverse dipolarophiles is described in this work. A total of 40 functionalized N-fused pyrrolidinyl spirooxindoles were synthesized in 76-95% yields with excellent diastereoselectivities (up to >99:1 dr). The scaffolds of these products can be well-controlled by employing different 1,4-enedione derivatives as dipolarophiles in EtOH at room temperature. This study provides an efficient strategy to afford a spectrum of natural-like and potentially bioactive N-fused pyrrolidinyl spirooxindoles.
Collapse
Affiliation(s)
- Yongchao Wang
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
- Correspondence: or (Y.W.); (J.D.)
| | - Lijun Yan
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Yuxin Yan
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Sujin Li
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Hongying Lu
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Jia Liu
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Jianwei Dong
- Colleage of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
- Correspondence: or (Y.W.); (J.D.)
| |
Collapse
|
13
|
Filatov AS, Pronina YA, Selivanov SI, Shmakov SV, Uspenski AA, Boitsov VM, Stepakov AV. 11 H-Benzo[4,5]imidazo[1,2- a]indol-11-one as a New Precursor of Azomethine Ylides: 1,3-Dipolar Cycloaddition Reactions with Cyclopropenes and Maleimides. Int J Mol Sci 2022; 23:13202. [PMID: 36361988 PMCID: PMC9657675 DOI: 10.3390/ijms232113202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 05/19/2024] Open
Abstract
The possibility of generating azomethine ylides from 11H-benzo[4,5]imidazo[1,2-a]indol-11-one and amino acids is shown for the first time. Based on the cycloaddition reactions of these azomethine ylides with cyclopropenes and maleimides, cyclopropa[a]pyrrolizines, 3-azabicyclo[3.1.0]hexanes, and pyrrolo[3,4-a]pyrrolizines spiro-fused with a benzo[4,5]imidazo[1,2-a]indole fragment were synthesized. Spirocyclic compounds were obtained in moderate to good yields, albeit with poor diastereoselectivity. Density functional theory calculations were performed to obtain an insight into the mechanism of the 1,3-dipolar cycloaddition of 11H-benzo[4,5]imidazo[1,2-a]indol-11-one-derived azomethine ylides to cyclopropenes. The cytotoxic activity of some of the obtained cycloadducts against the human erythroleukemia (K562) cell line was evaluated in vitro by MTS-assay.
Collapse
Affiliation(s)
- Alexander S. Filatov
- Department of Chemistry, Saint-Petersburg State University, Saint Petersburg 199034, Russia
| | - Yulia A. Pronina
- Department of Organic Chemistry, Saint-Petersburg State Institute of Technology, Saint Petersburg 190013, Russia
| | - Stanislav I. Selivanov
- Department of Organic Chemistry, Saint-Petersburg State Institute of Technology, Saint Petersburg 190013, Russia
- Laboratory of Biomolecular NMR, Saint-Petersburg State University, Saint Petersburg 199034, Russia
| | - Stanislav V. Shmakov
- Laboratory of Nanobiotechnologies, Saint-Petersburg National Research Academic University of the Russian Academy of Sciences, Saint Petersburg 194021, Russia
| | - Anton A. Uspenski
- Department of Monitoring and Research of the Chemical Composition of the Atmosphere, Voeikov Main Geophysical Observatory, Saint Petersburg 194021, Russia
| | - Vitali M. Boitsov
- Laboratory of Nanobiotechnologies, Saint-Petersburg National Research Academic University of the Russian Academy of Sciences, Saint Petersburg 194021, Russia
| | - Alexander V. Stepakov
- Department of Chemistry, Saint-Petersburg State University, Saint Petersburg 199034, Russia
- Department of Organic Chemistry, Saint-Petersburg State Institute of Technology, Saint Petersburg 190013, Russia
| |
Collapse
|
14
|
Biological Evaluation of 3-Azaspiro[Bicyclo[3.1.0]Hexane-2,5′-Pyrimidines] as Potential Antitumor Agents. Int J Mol Sci 2022; 23:ijms231810759. [PMID: 36142688 PMCID: PMC9506420 DOI: 10.3390/ijms231810759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
A series of heterocyclic compounds containing spirofused barbiturate and 3-azabicyclo[3.1.0]hexane frameworks have been studied as potential antitumor agents. Antiproliferative activity of products was screened in human erythroleukemia (K562), T lymphocyte (Jurkat), and cervical carcinoma (HeLa) as well as mouse colon carcinoma (CT26) and African green monkey kidney epithelial (Vero) cell lines. The most effective among the screened compounds show IC50 in the range from 4.2 to 24.1 μM for all tested cell lines. The screened compounds have demonstrated a significant effect of the distribution of HeLa and CT26 cells across the cell cycle stage, with accumulation of cells in SubG1 phase and induced apoptosis. It was found, using a confocal microscopy, that actin filaments disappeared and granular actin was distributed diffusely in the cytoplasm of up to 90% of HeLa cells and up to 64% of CT26 cells after treatment with tested 3-azaspiro[bicyclo [3.1.0]hexane-2,5′-pyrimidines]. We discovered that the number of HeLa cells with filopodium-like membrane protrusions was reduced significantly (from 91% in control cells to 35%) after treatment with the most active compounds. A decrease in cell motility was also noticed. Preliminary in vivo experiments on the impact of the studied compounds on the dynamics of CT26 tumor growth in Balb/C mice were also performed.
Collapse
|
15
|
Filatov AS, Khoroshilova OV, Larina AG, Boitsov VM, Stepakov AV. Synthesis of bis-spirocyclic derivatives of 3-azabicyclo[3.1.0]hexane via cyclopropene cycloadditions to the stable azomethine ylide derived from Ruhemann's purple. Beilstein J Org Chem 2022; 18:769-780. [PMID: 35859623 PMCID: PMC9263550 DOI: 10.3762/bjoc.18.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
A reliable method for the synthesis of bis-spirocyclic derivatives of 3-azabicyclo[3.1.0]hexanes through the 1,3-dipolar cycloaddition (1,3-DC) reactions of cyclopropenes to the stable azomethine ylide - protonated form of Ruhemann's purple (PRP) has been developed. Both 3-substituted and 3,3-disubstituted cyclopropenes reacted with PRP, affording the corresponding bis-spirocyclic 3-azabicyclo[3.1.0]hexane cycloadducts in moderate to good yields with high diastereofacial selectivity. Moreover, several unstable 1,2-disubstituted cyclopropenes were successfully trapped by the stable 1,3-dipole under mild conditions. The mechanism of the cycloaddition reactions of cyclopropenes with PRP has been thoroughly studied using density functional theory (DFT) methods at the M11/cc-pVDZ level of theory. The cycloaddition reactions have been found to be HOMOcyclopropene-LUMOylide controlled while the transition-state energies for the reaction of 3-methyl-3-phenylcyclopropene with PRP are fully consistent with the experimentally observed stereoselectivity.
Collapse
Affiliation(s)
- Alexander S Filatov
- Saint-Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russian Federation
| | - Olesya V Khoroshilova
- Saint-Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russian Federation
| | - Anna G Larina
- Saint-Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russian Federation
| | - Vitali M Boitsov
- Saint-Petersburg National Research Academic University of the Russian Academy of Sciences, ul. Khlopina 8/3, 194021, St. Petersburg, Russian Federation
| | - Alexander V Stepakov
- Saint-Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russian Federation
- Saint-Petersburg State Institute of Technology, Moskovskii pr. 26, 190013, St. Petersburg, Russian Federation
| |
Collapse
|
16
|
Abstract
Heterocyclic rings are the fundamental building blocks of biological systems and have wide applications in synthetic chemistry and medicinal science. The development of novel synthetic methodology for heterocyclic skeletons from a variety of starting materials has made great progress in the past decades. Meanwhile, highly strained cyclopropenes as reactive reagents in organic transformations have drawn much attention from chemists. The rich chemical reactivity and reaction routes have been well investigated, and some review articles related to the reactivity of cyclopropenes and the construction of carbocycles and acyclic compounds have appeared in these years. Thus, this review mainly focuses on the progress in the construction of heterocyclic rings starting from various cyclopropenes including the reactions of commonly available stable cyclopropenes, in situ generated reactive cyclopropenes and cyclopropene precursors during this decade. Firstly, the transformations of common cyclopropenes into donor-type vinyl metal carbenes via transition metal induced ring opening, direct metalation of the CC bond of metal complexes, and cycloaddition reactions with 1,3-dipoles are described. Next, the annulation reactions of reactive cyclopropenes generated in situ with donor-acceptor reagents, intramolecular nucleophilic addition, and the cycloaddition reactions with 1,3-dipoles are introduced. Then, the transformation of cyclopropene precursors such as alkyl 1-chloro- or 1-alkoxy-2-aroylcyclopropanecarboxylates into five-membered heteroaromatic compounds is also mentioned. In addition, a brief outlook of the opportunity and challenges in the field of bio-orthogonal reactions related to cyclopropenes is given.
Collapse
Affiliation(s)
- Hengrui Huo
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China. .,Hebei Key Laboratory of Heterocyclic Compounds, College of Chemical Engineering and Materials, Handan University, 530 North College Road, Handan 056005, China
| | - Yuefa Gong
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.
| |
Collapse
|
17
|
Cyclopropenes and methylenecyclopropanes in 1,3-dipolar cycloaddition reactions. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Boitsov VM, Stepakov AV, Filatov AS, Selivanov SI, Shmakov SV, Larina AG. An Experimental and Theoretical Study of the 1,3-Dipolar Cycloaddition of Alloxan-Derived Azomethine Ylides to Cyclopropenes. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1700-3115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AbstractA diastereoselective synthesis of biologically interesting spirobarbiturates has been achieved via [3+2] cycloaddition of alloxan-derived azomethine ylides to 3-R-1,2-diphenylcyclopropenes. With this approach, a range of spirobarbiturate-3-azabicyclo[3.1.0]hexanes and spirobarbiturate-cyclopropa[a]pyrrolizines were obtained in moderate to good yields with excellent diastereoselectivities. DFT calculations (M11 density functional theory) were carried out to shed light on the molecular mechanism of 1,3-dipolar cycloaddition of alloxan-derived azomethine ylides to cyclopropenes. The cytotoxic activity of some obtained compounds against human erythroleukemia (K562) cell line was evaluated in vitro by MTS-assay.
Collapse
Affiliation(s)
- Vitali M. Boitsov
- Saint Petersburg National Research Academic University of the Russian Academy of Sciences
| | | | | | | | - Stanislav V. Shmakov
- Saint Petersburg National Research Academic University of the Russian Academy of Sciences
| | | |
Collapse
|
19
|
Stepakov AV, Filatov AS, Boitsov VM, Lozovskiy SV. Diastereoselective cycloaddition of tosylpropadiene to azomethine ylides, derived from proline and carbonyl compounds: an experimental and DFT study. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.2017436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Alexander V. Stepakov
- Institute of Chemistry, Saint Petersburg State University, Petersburg, Russian Federation
- Saint Petersburg State Institute of Technology, Petersburg, Russian Federation
| | - Alexander S. Filatov
- Institute of Chemistry, Saint Petersburg State University, Petersburg, Russian Federation
| | - Vitali M. Boitsov
- Saint Petersburg National Research Academic University of the Russian Academy of Sciences, Petersburg, Russian Federation
| | | |
Collapse
|
20
|
Xue Y, Guo Z, Chen X, Li J, Zou D, Wu Y, Wu Y. Copper-promoted difunctionalization of unactivated alkenes with silanes. Org Biomol Chem 2022; 20:989-994. [PMID: 35018960 DOI: 10.1039/d1ob02318g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An efficient copper-catalyzed cascade difunctionalization of N-allyl anilines toward the synthesis of silylated indolines using commercially available silanes has been reported. This strategy provides a new avenue for the synthesis of a diverse array of indolines in reasonable yields. Preliminary mechanistic investigations indicate that the reaction probably proceeds via a radical pathway with unactivated alkenes as radical acceptors and simple silanes as radical precursors. This protocol is distinguished by its atom economy, broad substrate scope and readily available starting materials.
Collapse
Affiliation(s)
- Yingying Xue
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Zhuangzhuang Guo
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Xiaoyu Chen
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Jingya Li
- TetranovBiopharm, LLC., Zhengzhou, 450052, People's Republic of China
| | - Dapeng Zou
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Yangjie Wu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Yusheng Wu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China. .,Tetranov International, Inc., 100 Jersey Avenue, Suite A340, New Brunswick, NJ 08901, USA.
| |
Collapse
|
21
|
Tian X, Zhang Y, Ren W, Wang Y. Synthesis of functionalized 3,2′-pyrrolidinyl spirooxindoles via domino 1,6-addition/annulation reactions of para-quinone methides and 3-chlorooxindoles. Org Chem Front 2022. [DOI: 10.1039/d1qo01605a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A highly efficient diastereoselective [4 + 1] cycloaddition of ortho-tosylaminophenyl-substituted p-QMs with 3-chlorooxindoles has been developed to afford 3,2′-pyrrolidinyl spirooxindoles.
Collapse
Affiliation(s)
- Xiaochen Tian
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yongxing Zhang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Weiwu Ren
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| | - Yang Wang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| |
Collapse
|
22
|
Latypova DK, Shmakov SV, Pechkovskaya SA, Filatov AS, Stepakov AV, Knyazev NA, Boitsov VM. Identification of Spiro-Fused Pyrrolo[3,4- a]pyrrolizines and Tryptanthrines as Potential Antitumor Agents: Synthesis and In Vitro Evaluation. Int J Mol Sci 2021; 22:ijms222111997. [PMID: 34769424 PMCID: PMC8584944 DOI: 10.3390/ijms222111997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 01/01/2023] Open
Abstract
A series of heterocyclic compounds containing a spiro-fused pyrrolo[3,4-a]pyrrolizine and tryptanthrin framework have been synthesized and studied as potential antitumor agents. Cytotoxicity of products was screened against human erythroleukemia (K562) and human cervical carcinoma (HeLa) cell lines. Among the screened compounds. 4a, 4b and 5a were active against human erythroleukemia (K562) cell line, while 4a and 5a were active against cervical carcinoma (HeLa) cell line. In agreement with the DNA cytometry studies, the tested compounds have achieved significant cell-cycle perturbation with higher accumulation of cells in G2/M phase and induced apoptosis. Using confocal microscopy, we found that with 4a and 5a treatment of HeLa cells, actin filaments disappeared, and granular actin was distributed diffusely in the cytoplasm in 76–91% of cells. We discovered that HeLa cells after treatment with compounds 4a and 5a significantly reduced the number of cells with filopodium-like membrane protrusions (from 63 % in control cells to 29% after treatment) and a decrease in cell motility.
Collapse
Affiliation(s)
- Diana K. Latypova
- Saint-Petersburg National Research Academic University of the Russian Academy of Sciences, 194021 Saint-Petersburg, Russia; (D.K.L.); (S.V.S.)
| | - Stanislav V. Shmakov
- Saint-Petersburg National Research Academic University of the Russian Academy of Sciences, 194021 Saint-Petersburg, Russia; (D.K.L.); (S.V.S.)
| | - Sofya A. Pechkovskaya
- Institute of Cytology, Russian Academy of Sciences, 194064 Saint-Petersburg, Russia;
| | - Alexander S. Filatov
- Department of Chemistry, Saint-Petersburg State University, 199034 Saint Petersburg, Russia; (A.S.F.); (A.V.S.)
| | - Alexander V. Stepakov
- Department of Chemistry, Saint-Petersburg State University, 199034 Saint Petersburg, Russia; (A.S.F.); (A.V.S.)
- Department of Organic Chemistry, Saint Petersburg State Institute of Technology, 190013 Saint-Petersburg, Russia
| | - Nickolay A. Knyazev
- Institute of Cytology, Russian Academy of Sciences, 194064 Saint-Petersburg, Russia;
- Saint-Petersburg Clinical Scientific and Practical Center for Specialized Types of Medical Care (Oncological), 197758 Saint-Petersburg, Russia
- Correspondence: (N.A.K.); (V.M.B.)
| | - Vitali M. Boitsov
- Saint-Petersburg National Research Academic University of the Russian Academy of Sciences, 194021 Saint-Petersburg, Russia; (D.K.L.); (S.V.S.)
- Correspondence: (N.A.K.); (V.M.B.)
| |
Collapse
|
23
|
Toumi A, Boudriga S, Hamden K, Daoud I, Askri M, Soldera A, Lohier JF, Strohmann C, Brieger L, Knorr M. Diversity-Oriented Synthesis of Spiropyrrolo[1,2- a]isoquinoline Derivatives via Diastereoselective and Regiodivergent Three-Component 1,3-Dipolar Cycloaddition Reactions: In Vitro and in Vivo Evaluation of the Antidiabetic Activity of Rhodanine Analogues. J Org Chem 2021; 86:13420-13445. [PMID: 34546053 DOI: 10.1021/acs.joc.1c01544] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient diastereoselective route is developed to get access to novel spiropyrrolo[1,2-a]isoquinoline-oxindole skeletons by a one-pot three-component [3 + 2] cycloaddition reaction of (Z)-5-arylidene-1,3-thiazolidine-2,4-diones, isatin derivatives, and 1,2,3,4-tetrahydroisoquinoline (THIQ). Interestingly, the regioselectivity of the reaction is both temperature- and solvent-dependent, allowing the synthesis of two regioisomeric endo-dispiropyrrolo[2,1-a]isoquinolineoxindoles in excellent yield. Unprecedentedly, each isomeric dispiropyrrolo[2,1-a]isoquinolineoxindole endured retro-1,3-dipolar cycloaddition/recycloaddition reactions under thermal or catalytic conditions to regenerate the corresponding regioisomeric counterpart. In addition, DFT calculations were performed at the M062X/6-31++g(d,p) level of theory to unravel the origin of the reversal of regioselectivity and endo-stereoselectivity of the title 1,3-dipolar cycloaddition reactions. Upon treatment of Isatin, THIQ with (Z)-4-arylidene-5-thioxo-thiazolidin-2-ones as dipolarophiles, unusual rhodanine analogues were formed, along with smaller amounts of a dispirooxindole-piperazine. The structure and the relative configuration of these N-heterocycles were unambiguously assigned by spectroscopic techniques and confirmed by four single-crystal structures. In vitro and in vivo studies reveal that the novel rhodanine derivatives exert antidiabetic activity. The binding affinity with the active site of the enzyme α-amylase was studied by molecular docking. Furthermore, the bioavailability assessed through virtual ADME parameters (Absorption, Distribution, Metabolism, Elimination pharmacokinetics) and the excellent fit with the Lipinski and Veber rules predict good drug-likeness properties for a bromo-substituted 2-sulfanylidene-1,3-thiazolidin-4-one.
Collapse
Affiliation(s)
- Amani Toumi
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Department of Chemistry, Faculty of Science of Monastir, 5000 Monastir, Tunisia
| | - Sarra Boudriga
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Department of Chemistry, Faculty of Science of Monastir, 5000 Monastir, Tunisia
| | - Khaled Hamden
- Laboratory of Bioresources: Integrative Biology and Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, 5000 Monastir, Tunisia
| | - Ismail Daoud
- University of Mohamed Khider, Department of Matter Sciences, BP 145 RP, (07000) Biskra, Algeria.,Laboratory of Natural and bio-actives Substances, Tlemcen University - Faculty of Science, P.O. Box 119, Tlemcen, Algeria
| | - Moheddine Askri
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Department of Chemistry, Faculty of Science of Monastir, 5000 Monastir, Tunisia
| | - Armand Soldera
- Department of Chemistry, Laboratory of Physical Chemistry of Matter, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Jean-Francois Lohier
- Laboratory of Molecular and Thio-organic Chemistry, UMR CNRS 6507, INC3M, FR 3038, ENSICAEN and University of Caen Basse-Normandie, 14050 Caen, France
| | - Carsten Strohmann
- Technische Universität Dortmund, Anorganische Chemie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Lukas Brieger
- Technische Universität Dortmund, Anorganische Chemie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Michael Knorr
- Institut UTINAM - UMR CNRS 6213, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| |
Collapse
|
24
|
Lodhi R, Prakash M, Samanta S. Diastereoselective desymmetrization reactions of prochiral para-quinamines with cyclopropenes generated in situ: access to fused hydroindol-5-one scaffolds. Org Biomol Chem 2021; 19:7129-7133. [PMID: 34369544 DOI: 10.1039/d1ob01322j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interesting desymmetric [3 + 2] annulation reactions between p-quinamines as prochiral N-donors and 2-aroyl-1-chlorocyclopropanecarboxylates facilitated by a base are reported. This successive double Michael reaction delivered a unique class of cyclopropane-fused hydoindol-5-one frameworks, each having four contiguous stereogenic centers, with three of them being fully substituted. Moreover, this method was found to provide acceptable chemical yields with promising diastereoselectivities (dr of up to ≤95 : 5) and to work with a variety of substrates. Importantly, a polycyclic tacrine analogue used to treat Alzheimer's disease was synthesized using our developed method.
Collapse
Affiliation(s)
- Rajni Lodhi
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, 453552, India.
| | | | | |
Collapse
|
25
|
Knyazev NA, Shmakov SV, Pechkovskaya SA, Filatov AS, Stepakov AV, Boitsov VM, Filatova NA. Identification of Spiro-Fused [3-azabicyclo[3.1.0]hexane]oxindoles as Potential Antitumor Agents: Initial In Vitro Evaluation of Anti-Proliferative Effect and Actin Cytoskeleton Transformation in 3T3 and 3T3-SV40 Fibroblast. Int J Mol Sci 2021; 22:8264. [PMID: 34361029 PMCID: PMC8347490 DOI: 10.3390/ijms22158264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Novel heterocyclic compounds containing 3-spiro[3-azabicyclo[3.1.0]hexane]oxindole framework (4a, 4b and 4c) have been studied as potential antitumor agents. The in silico ADMET (adsorption, distribution, metabolism, excretion and toxicity) analysis was performed on 4a-c compounds with promising antiproliferative activity, previously synthetized and screened against human erythroleukemic cell line K562 tumor cell line. Cytotoxicity of 4a-c against murine fibroblast 3T3 and SV-40 transformed murine fibroblast 3T3-SV40 cell lines were evaluated. The 4a and 4c compounds were cytotoxic against 3T3-SV40 cells in comparison with those of 3T3. In agreement with the DNA cytometry studies, the tested compounds have achieved significant cell-cycle perturbation with higher accumulation of cells in G0/G1 phase. Using confocal microscopy, we found that with 4a and 4c treatment of 3T3 cells, actin filaments disappeared, and granular actin was distributed diffusely in the cytoplasm in 82-97% of cells. The number of 3T3-SV40 cells with stress fibers increased to 7-30% against 2% in control. We discovered that transformed 3T3-SV40 cells after treatment with compounds 4a and 4c significantly reduced the number of cells with filopodium-like membrane protrusions (from 86 % in control cells to 6-18% after treatment), which indirectly suggests a decrease in cell motility. We can conclude that the studied compounds 4a and 4c have a cytostatic effect, which can lead to a decrease in the number of filopodium-like membrane protrusions.
Collapse
Affiliation(s)
- Nickolay A. Knyazev
- Saint-Petersburg Clinical Scientific and Practical Center for Specialized Types of Medical Care (Oncological), 197758 Saint Petersburg, Russia
- Institute of Cytology, Russian Academy of Sciences, 194064 Saint Petersburg, Russia; (S.A.P.); (N.A.F.)
| | - Stanislav V. Shmakov
- Saint Petersburg National Research Academic University of the Russian Academy of Sciences, 194021 Saint Petersburg, Russia;
| | - Sofya A. Pechkovskaya
- Institute of Cytology, Russian Academy of Sciences, 194064 Saint Petersburg, Russia; (S.A.P.); (N.A.F.)
| | - Alexander S. Filatov
- Department of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (A.S.F.); (A.V.S.)
| | - Alexander V. Stepakov
- Department of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (A.S.F.); (A.V.S.)
| | - Vitali M. Boitsov
- Saint Petersburg National Research Academic University of the Russian Academy of Sciences, 194021 Saint Petersburg, Russia;
- Scientific and Research Centre, Pavlov First Saint Petersburg State Medical University, 197022 Saint Petersburg, Russia
| | - Natalia A. Filatova
- Institute of Cytology, Russian Academy of Sciences, 194064 Saint Petersburg, Russia; (S.A.P.); (N.A.F.)
| |
Collapse
|
26
|
Quantum chemical study of intramolecular rearrangements in 3-allyl-3-methyl-1,2-diphenylcyclopropene. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Palomba M, De Monte E, Mambrini A, Bagnoli L, Santi C, Marini F. A three-component [3 + 2]-cycloaddition/elimination cascade for the synthesis of spirooxindole-pyrrolizines. Org Biomol Chem 2021; 19:667-676. [PMID: 33399163 DOI: 10.1039/d0ob02321c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A three-component synthesis of novel spirooxindole-tetrahydropyrrolizines from secondary α-aminoacids, isatins and vinyl selenones has been disclosed. Products were formed in good yields and high diastereoselectivity by 1,3-dipolar cycloaddition of in situ generated azomethine ylides followed by spontaneous elimination of benzeneseleninic acid. Good regioselectivities with aryl substituted vinyl selenones were observed. The method showed good functional group tolerance, providing a direct approach to biologically relevant spirooxindoles under mild reaction conditions.
Collapse
Affiliation(s)
- Martina Palomba
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1 - 06123 Perugia, Italy.
| | - Emanuela De Monte
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1 - 06123 Perugia, Italy.
| | - Andrea Mambrini
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1 - 06123 Perugia, Italy.
| | - Luana Bagnoli
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1 - 06123 Perugia, Italy.
| | - Claudio Santi
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1 - 06123 Perugia, Italy.
| | - Francesca Marini
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1 - 06123 Perugia, Italy.
| |
Collapse
|
28
|
Xu H, Han T, Luo X, Deng W. Construction of
3‐Azabicyclo
[3.1.0]hexane Backbone by the Reaction of Allenes with Allylamines
via
Tandem Michael Addition and
Copper‐Mediated
Oxidative Carbanion Cyclization. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hui Xu
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Teng Han
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Xiaoyan Luo
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Wei‐Ping Deng
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
29
|
Duffy C, Roe WE, Harkin AM, McNamee R, Knipe PC. Enantioselective organocatalytic formal [3+2]-cycloaddition of isatin-derived ketimines with benzylidenemalononitriles and benzylidineindanones. NEW J CHEM 2021. [DOI: 10.1039/d1nj04002b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Electron-deficient alkenes undergo organocatalysed formal [3+2]-cycloaddition with isatin-derived imines, generating complex spirocyclic products with high yield and stereoselectivity.
Collapse
Affiliation(s)
- Conor Duffy
- School of Chemistry and Chemical Engineering, Queen's University, Belfast David Keir Building, Belfast, BT9 5AG, UK
| | - William E. Roe
- School of Chemistry and Chemical Engineering, Queen's University, Belfast David Keir Building, Belfast, BT9 5AG, UK
| | - Aislinn M. Harkin
- School of Chemistry and Chemical Engineering, Queen's University, Belfast David Keir Building, Belfast, BT9 5AG, UK
| | - Ryan McNamee
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Peter C. Knipe
- School of Chemistry and Chemical Engineering, Queen's University, Belfast David Keir Building, Belfast, BT9 5AG, UK
| |
Collapse
|
30
|
Abstract
This review summaries recent synthetic developments towards spirocyclic oxindoles and applications as valuable medicinal and synthetic targets.
Collapse
Affiliation(s)
- Alexander J. Boddy
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| | - James A. Bull
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| |
Collapse
|
31
|
Sathi V, Thomas NV, Deepthi A. Stereoselective synthesis of dispiro heterocycles by [3 + 2] cycloaddition of azomethine ylides with a thiazolo[3,2- a]indole derivative. Org Biomol Chem 2020; 18:7822-7826. [PMID: 32986053 DOI: 10.1039/d0ob01559h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A green one pot three component [3 + 2] cycloaddition of a thiazolo[3,2-a]indole derivative (generated by the reaction of thieno[2,3-b]indole-2,3-dione and dimethyl acetylenedicarboxylate) with isatin derived azomethine ylides is reported here. An eco-friendly acetyl choline iodide-ethylene glycol (ACI/EG)-mediated deep eutectic solvent system was adopted for the reaction. Spiropyrrolidine oxindoles incorporating multiple stereocenters were obtained in a highly diastereoselective manner in excellent yields.
Collapse
Affiliation(s)
- Vidya Sathi
- Department of Chemistry, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala State, India.
| | | | | |
Collapse
|
32
|
Efforts towards Rh(II)-catalyzed N-alkoxyazomethine ylide generation: Disparate reactivities of O-tethered α-diazo keto and -β-ketoester oximes. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Izmest'ev AN, Gazieva GA, Karnoukhova VA, Kravchenko AN. Diastereodivergent synthesis of dispiroheterocyclic structures comprising pyrrolidinyloxindole and imidazothiazolotriazine moieties. Org Biomol Chem 2020; 18:6905-6911. [PMID: 32856678 DOI: 10.1039/d0ob01628d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Highly diastereoselective methods for the synthesis of two different diastereomers of polynuclear dispiroheterocyclic compounds with five chiral centers comprising pyrrolidinyloxindole and imidazothiazolotriazine moieties (dispiro[imidazo[4,5-e]thiazolo[2,3-c]-1,2,4-triazine-7,3'-pyrrolidine-2',3''-indoles]) have been developed on the basis of a dipolar cycloaddition of azomethine ylides to benzylidene derivatives of imidazothiazolotriazines and an alkali-induced rearrangement of the thiazolotriazine fragment. The different sequence of the cycloaddition and rearrangement stages allows us to perform the targeted synthesis of two diastereomerically pure products from the same starting compounds.
Collapse
Affiliation(s)
- Alexei N Izmest'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp., 47, Moscow 119991, Russian Federation.
| | | | | | | |
Collapse
|
34
|
Prasad Raiguru B, Nayak S, Ranjan Mishra D, Das T, Mohapatra S, Priyadarsini Mishra N. Synthetic Applications of Cyclopropene and Cyclopropenone: Recent Progress and Developments. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000193] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Sabita Nayak
- Department of ChemistryRavenshaw University Cuttack Odisha India
| | | | - Tapaswini Das
- Department of ChemistryRavenshaw University Cuttack Odisha India
| | | | | |
Collapse
|
35
|
Kumaran S, Saritha R, Gurumurthy P, Parthasarathy K. Synthesis of Fused Spiropyrrolidine Oxindoles Through 1,3-Dipolar Cycloaddition of Azomethine Ylides Prepared from Isatins and α-Amino Acids with Heterobicyclic Alkenes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Subramani Kumaran
- Department of Organic Chemistry; University of Madras; Guindy Campus -600025 Chennai India
| | - Rajendhiran Saritha
- Department of Organic Chemistry; University of Madras; Guindy Campus -600025 Chennai India
| | - Palanivelu Gurumurthy
- Department of Organic Chemistry; University of Madras; Guindy Campus -600025 Chennai India
| | | |
Collapse
|
36
|
Prabhakaran P, Rajakumar P. Regio- and stereoselective synthesis of spiropyrrolidine-oxindole and bis-spiropyrrolizidine-oxindole grafted macrocycles through [3 + 2] cycloaddition of azomethine ylides. RSC Adv 2020; 10:10263-10276. [PMID: 35498613 PMCID: PMC9050375 DOI: 10.1039/c9ra10463a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
A convenient and efficient method for the regioselective macrocyclization of triazole bridged spiropyrrolidine-oxindole, and bis-spiropyrrolizidine-oxindole derivatives was accomplished through intra and self-intermolecular [3 + 2] cycloaddition of azomethine ylides. The chalcone isatin precursors 9a-i required for the click reaction were obtained from the reaction of N-alkylazidoisatin 4 and propargyloxy chalcone 8a-i which in turn were obtained by the aldol condensation of propargyloxy salicylaldehyde 6 and substituted methyl ketones 7a-i. The regio- and stereochemical outcome of the cycloadducts were assigned based on 2D NMR and confirmed by single crystal XRD analysis. High efficiency, mild reaction conditions, high regio- and stereoselectivity, atom economy and operational simplicity are the exemplary advantages of the employed macrocyclization procedure.
Collapse
Affiliation(s)
- Perumal Prabhakaran
- Department of Organic Chemistry, University of Madras Guindy Campus Chennai-600 025 Tamil Nadu India
| | - Perumal Rajakumar
- Department of Organic Chemistry, University of Madras Guindy Campus Chennai-600 025 Tamil Nadu India
| |
Collapse
|
37
|
Zhou LM, Qu RY, Yang GF. An overview of spirooxindole as a promising scaffold for novel drug discovery. Expert Opin Drug Discov 2020; 15:603-625. [PMID: 32106717 DOI: 10.1080/17460441.2020.1733526] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction: Spirooxindole, a unique and versatile scaffold, has been widely studied in some fields such as pharmaceutical chemistry and synthetic chemistry. Especially in the application of medicine, quite a few compounds featuring spirooxindole motif have displayed excellent and broad pharmacological activities. Many identified candidate molecules have been used in clinical trials, showing promising prospects.Areas covered: This article offers an overview of different applications and developments of spirooxindoles (including the related natural products and their derivatives) in the process of drug innovation, including such as in anticancer, antimicrobial, anti-inflammatory, analgesic, antioxidant, antimalarial, and antiviral activities. Furthermore, the crucial structure-activity relationships, molecular mechanisms, pharmacokinetic properties, and main synthetic methods of spirooxindoles-based derivatives are also reviewed.Expert opinion: Recent progress in the biological activity profiles of spirooxindole derivatives have demonstrated their significant position in present-day drug discovery. Furthermore, we believe that the multidirectional development of novel drugs containing this core scaffold will continue to be the research hotspot in medicinal chemistry in the future.
Collapse
Affiliation(s)
- Li-Ming Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| |
Collapse
|
38
|
Abstract
As readily accessible strained carbocycles, cyclopropenes show a diverse range of reactivities, and a lot of novel and useful transformations have been developed.
Collapse
Affiliation(s)
- Penghua Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Xiaoyu Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
39
|
Muriel B, Gagnebin A, Waser J. Synthesis of bicyclo[3.1.0]hexanes by (3 + 2) annulation of cyclopropenes with aminocyclopropanes. Chem Sci 2019; 10:10716-10722. [PMID: 32110351 PMCID: PMC7006509 DOI: 10.1039/c9sc03790j] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
We report the convergent synthesis of bicyclo[3.1.0]hexanes possessing an all-carbon quaternary center via a (3 + 2) annulation of cyclopropenes with cyclopropylanilines. Using an organic or an iridium photoredox catalyst and blue LED irradiation, good yields were obtained for a broad range of cyclopropene and cyclopropylaniline derivatives. The reaction was highly diastereoselective when using difluorocyclopropenes together with a removable substituent on the cyclopropylaniline, giving access to important building blocks for medicinal chemistry. With efficient methods existing for the synthesis of both reaction partners, our method grants a fast access to highly valuable bicyclic scaffolds with three contiguous stereocenters.
Collapse
Affiliation(s)
- Bastian Muriel
- Laboratory of Catalysis and Organic Synthesis , Institut des Sciences et Ingénierie Chimique , Ecole Polytechnique Fédérale de Lausanne , Lausanne , Ch-1015 , Switzerland .
| | - Alec Gagnebin
- Laboratory of Catalysis and Organic Synthesis , Institut des Sciences et Ingénierie Chimique , Ecole Polytechnique Fédérale de Lausanne , Lausanne , Ch-1015 , Switzerland .
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis , Institut des Sciences et Ingénierie Chimique , Ecole Polytechnique Fédérale de Lausanne , Lausanne , Ch-1015 , Switzerland .
| |
Collapse
|
40
|
Rao MP, Gunaga SS, Zuegg J, Pamarthi R, Ganesh M. Highly regio- and diastereoselective [3 + 2]-cycloadditions involving indolediones and α,β-disubstituted nitroethylenes. Org Biomol Chem 2019; 17:9390-9402. [PMID: 31631197 DOI: 10.1039/c9ob01429b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A highly diastereoselective [3 + 2]-cycloaddition strategy involving multiple oxindoles and several α,β-disubstituted nitroethylenes is developed to access tetra-substituted α-spiropyrrolidine frameworks. A variety of α-amino acids were employed for the first time in order to generate azomethine ylides under thermal conditions, affording regioisomers 13 and 14 merely by changing the α-substituents (R = H and substituted carbons) of the α-amino acids. The reaction tolerates various sterically demanding, electron-rich and electron-deficient aryl and nitrogen substituents on glycines, oxindoles and nitroethylenes. The operational simplicity, such as the use of a metal-free and non-inert environment, the utilization of non-halogenated solvents and the ease of isolation, adhering to the principles of green chemistry, makes this process attractive for scale-up opportunities. The reaction delivers good yields (80-94%) and diastereoselectivities (up to 98 : 2) in favor of (cis,cis)-spirooxindoles, with opposite regioselectivity compared to β-nitrostyrenes under identical conditions. Two spiropyrrolidine cycloadducts with unprotected amides exhibited significant activity against Gram-positive MRSA.
Collapse
Affiliation(s)
- Madhuri P Rao
- Department of Chemistry, B.M.S College of Engineering, Bull Temple Road, Bengaluru 560019, India.
| | | | | | | | | |
Collapse
|
41
|
3-Nitro-2H-chromenes in [3+2] cycloaddition reaction with azomethine ylides derived from N-unsubstituted α-amino acids and isatins: regio- and stereoselective synthesis of spirochromeno[3,4-c]pyrrolidines. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02490-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Gupta S, Khurana JM. Catalyst‐Free One‐Pot Regioselective Synthesis of Spiropyrrolizines Using 1,3‐Dipolar Cycloaddition Reaction. ChemistrySelect 2019. [DOI: 10.1002/slct.201901531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shruti Gupta
- Department of ChemistryUniversity of Delhi New Delhi - 110007 India
| | | |
Collapse
|
43
|
Filatov AS, Wang S, Khoroshilova OV, Lozovskiy SV, Larina AG, Boitsov VM, Stepakov AV. Stereo- and Regioselective 1,3-Dipolar Cycloaddition of the Stable Ninhydrin-Derived Azomethine Ylide to Cyclopropenes: Trapping of Unstable Cyclopropene Dipolarophiles. J Org Chem 2019; 84:7017-7036. [PMID: 31066276 DOI: 10.1021/acs.joc.9b00753] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A stereo- and regioselective 1,3-dipolar cycloaddition of the stable ninhydrin-derived azomethine ylide [2-(3,4-dihydro-2 H-pyrrolium-1-yl)-1-oxo-1 H-inden-3-olate, DHPO] to differently substituted cyclopropenes has been established. As a result, an efficient synthetic protocol was developed for the preparation of biologically relevant spiro[cyclopropa[ a]pyrrolizine-2,2'-indene] derivatives. DHPO has proved to be an effective trap for such highly reactive and unstable substrates as parent cyclopropene, 1-methylcyclopropene, 1-phenylcyclopropene, and 1-halo-2-phenylcyclopropenes. It has also been found that 3-nitro-1,2-diphenylcyclopropene undergoes a nucleophilic substitution reaction in alcohols and thiols to afford 3-alkoxy- and 3-arylthio-substituted 1,2-diphenylcyclopropenes, which can be captured as corresponding 1,3-dipolar cycloadducts in the presence of DHPO. These new approaches provide a straightforward strategy for the synthesis of functionally substituted cyclopropa[ a]pyrrolizine derivatives. The factors governing regio- and stereoselectivity have been revealed by means of quantum mechanical calculations (M11 density functional theory), including previously unreported Nylide- Hcyclopropene second-orbital interactions. The outcome of this work contributes to the study of 1,3-dipolar cycloaddition, as well as enriches chemistry of cyclopropenes and methods for the construction of polycyclic compounds with cyclopropane fragments.
Collapse
Affiliation(s)
- Alexander S Filatov
- Institute of Chemistry , Saint Petersburg State University , Universitetsky pr. 26 , 198504 St. Petersburg , Russian Federation
| | - Siqi Wang
- Institute of Chemistry , Saint Petersburg State University , Universitetsky pr. 26 , 198504 St. Petersburg , Russian Federation
| | - Olesya V Khoroshilova
- Institute of Chemistry , Saint Petersburg State University , Universitetsky pr. 26 , 198504 St. Petersburg , Russian Federation
| | - Stanislav V Lozovskiy
- Institute of Chemistry , Saint Petersburg State University , Universitetsky pr. 26 , 198504 St. Petersburg , Russian Federation
| | - Anna G Larina
- Institute of Chemistry , Saint Petersburg State University , Universitetsky pr. 26 , 198504 St. Petersburg , Russian Federation
| | - Vitali M Boitsov
- Saint Petersburg Academic University , ul. Khlopina 8/3 , 194021 St. Petersburg , Russian Federation.,Pavlov First Saint Petersburg State Medical University , ul. L'va Tolstogo 6/8 , 197022 St. Petersburg , Russian Federation
| | - Alexander V Stepakov
- Institute of Chemistry , Saint Petersburg State University , Universitetsky pr. 26 , 198504 St. Petersburg , Russian Federation.,Saint Petersburg State Institute of Technology , Moskovskii pr. 26 , 190013 St. Petersburg , Russian Federation
| |
Collapse
|
44
|
Liang D, Huo B, Dong Y, Wang Y, Dong Y, Wang B, Ma Y. Copper-Catalyzed Alkylarylation of Unactivated Alkenes: Synthesis of 3-Alkyl Indolines from N-Allyl Anilines and Alkanes. Chem Asian J 2019; 14:1932-1936. [PMID: 31046195 DOI: 10.1002/asia.201900176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/26/2019] [Indexed: 01/14/2023]
Abstract
A rare example of C(sp3 )-H functionalization of simple alkanes with unactivated alkenes is presented. In the presence of a copper salt and di-tert-butyl peroxide (DTBP), N-allyl anilines underwent exo-selective alkylation/cyclization cascade with unactivated alkenic bonds as radical acceptors and simple alkanes as radical precursors, providing a direct access to 3-alkyl indolines. The present protocol features simple operation, broad substrate scope and great exo selectivity.
Collapse
Affiliation(s)
- Deqiang Liang
- Department of Chemistry, Kunming University, 2 Puxin Road, Kunming, Yunnan Province, 650214, China
| | - Bojie Huo
- Department of Chemistry, Kunming University, 2 Puxin Road, Kunming, Yunnan Province, 650214, China
| | - Yongrui Dong
- Department of Chemistry, Kunming University, 2 Puxin Road, Kunming, Yunnan Province, 650214, China
| | - Yan Wang
- Department of Chemistry, Kunming University, 2 Puxin Road, Kunming, Yunnan Province, 650214, China
| | - Ying Dong
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong Province, 250014, China
| | - Baoling Wang
- Yunnan Engineering Technology Research Center for Plastic Films, Kunming, Yunnan Province, 650214, China
| | - Yinhai Ma
- Department of Chemistry, Kunming University, 2 Puxin Road, Kunming, Yunnan Province, 650214, China
| |
Collapse
|
45
|
Synthesis of cyanoalkyl indolines through cyanoalkylarylation of N-allyl anilines with alkyl nitriles under metal-free and neutral conditions. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Han C, Wu W, Chen Z, Pu S. Rhodium‐Catalyzed [5+1]‐Cycloaddition Reactions to Spiro‐Benzo[
e
][1,3]Oxazineindoline Imines. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Cuifen Han
- Key Laboratory of Functional Small Organic Molecules Ministry of Education, and College of Chemistry & Chemical EngineeringJiangxi Normal University 99 Ziyang Road, Nanchang Jiangxi 330022 P. R. China
| | - Wenjin Wu
- Key Laboratory of Functional Small Organic Molecules Ministry of Education, and College of Chemistry & Chemical EngineeringJiangxi Normal University 99 Ziyang Road, Nanchang Jiangxi 330022 P. R. China
| | - Zhiyuan Chen
- Key Laboratory of Functional Small Organic Molecules Ministry of Education, and College of Chemistry & Chemical EngineeringJiangxi Normal University 99 Ziyang Road, Nanchang Jiangxi 330022 P. R. China
- Jiangxi Key Laboratory of Organic ChemistryJiangxi Science and Technology Normal University 605 Fenglin Road, Nanchang Jiangxi 330013 P. R. China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic ChemistryJiangxi Science and Technology Normal University 605 Fenglin Road, Nanchang Jiangxi 330013 P. R. China
| |
Collapse
|
47
|
Huang W, Li X, Song X, Luo Q, Li Y, Dong Y, Liang D, Wang B. Benzylarylation of N-Allyl Anilines: Synthesis of Benzylated Indolines. J Org Chem 2019; 84:6072-6083. [PMID: 31021621 DOI: 10.1021/acs.joc.9b00237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An unprecedented benzylic C-H functionalization of methyl arenes across unactivated alkenes is presented. In the presence of MnCl2·4H2O and di- tert-butyl peroxide, N-allyl anilines underwent benzylation/cyclization cascade to give benzylated indolines, which are a previously unmet synthetic goal. This protocol features simple operation, broad substrate scope, and great exo selectivity.
Collapse
Affiliation(s)
- Wenzhong Huang
- Department of Chemistry , Kunming University , Kunming 650214 , China
| | - Xiulan Li
- Department of Chemistry , Kunming University , Kunming 650214 , China
| | - Xuemei Song
- Department of Chemistry , Kunming University , Kunming 650214 , China
| | - Qing Luo
- Department of Chemistry , Kunming University , Kunming 650214 , China
| | - Yanping Li
- Department of Chemistry , Kunming University , Kunming 650214 , China
| | - Ying Dong
- College of Chemistry, Chemical Engineering and Materials Science , Shandong Normal University , Jinan 250014 , China
| | - Deqiang Liang
- Department of Chemistry , Kunming University , Kunming 650214 , China.,Yunnan Engineering Technology Research Center for Plastic Films , Kunming 650214 , China
| | - Baoling Wang
- Department of Chemistry , Kunming University , Kunming 650214 , China.,Yunnan Engineering Technology Research Center for Plastic Films , Kunming 650214 , China
| |
Collapse
|
48
|
Wang X, Zhao X, Li X, Huo B, Dong Y, Liang D, Ma Y. Brønsted acid-catalyzed radical C H functionalization of acetone with N-allyl anilines to give 3-(3-oxobutyl)indolines. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Vivekanand T, Vachan BS, Karuppasamy M, Muthukrishnan I, Maheswari CU, Nagarajan S, Bhuvanesh N, Sridharan V. Diastereoselective ABB' Three-Component Synthesis of Highly Functionalized Spirooxindoles Bearing Five Consecutive Asymmetric Carbons. J Org Chem 2019; 84:4009-4016. [PMID: 30869516 DOI: 10.1021/acs.joc.8b03270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthesis of spirooxindoles bearing tetrahydro-4 H-cyclopenta[ b]furan framework was established starting from isatin-derived aldehydes and 2 equiv of 1,3-dicarbonyl compounds involving a piperidine-catalyzed ABB' three-component domino process. This reaction was highly diastereoselective affording a single diastereomer of spirooxindoles with five consecutive asymmetric carbons including spiro and tetrasubstituted carbon centers. In addition, this waste-free (-2H2O) reaction showed high atom economy and step economy by creating four new bonds, including three C-C bonds and one C-O bond, and two rings (one carbo- and one heterocyclic) in a single operation. The mechanism of this three-component domino process involved sequential Knoevenagel condensation-Michael addition-intramolecular oxa-Michael addition-intramolecular aldol reactions.
Collapse
Affiliation(s)
- Thavaraj Vivekanand
- Department of Chemistry, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur 613401 , Tamil Nadu , India
| | - B S Vachan
- Department of Chemistry, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur 613401 , Tamil Nadu , India
| | - Muthu Karuppasamy
- Department of Chemistry, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur 613401 , Tamil Nadu , India
| | - Isravel Muthukrishnan
- Department of Chemistry, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur 613401 , Tamil Nadu , India
| | - C Uma Maheswari
- Department of Chemistry, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur 613401 , Tamil Nadu , India
| | - Subbiah Nagarajan
- Department of Chemistry , National Institute of Technology , Warangal 506004 , Telangana , India
| | - Nattamai Bhuvanesh
- Department of Chemistry , Texas A & M University , College Station , Texas 77843 , United States
| | - Vellaisamy Sridharan
- Department of Chemistry, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur 613401 , Tamil Nadu , India.,Department of Chemistry and Chemical Sciences , Central University of Jammu , Rahya-Suchani (Bagla) , Samba-District, Jammu 181143 , J&K , India
| |
Collapse
|
50
|
Angyal A, Demjén A, Harmat V, Wölfling J, Puskás LG, Kanizsai I. 1,3-Dipolar Cycloaddition of Isatin-Derived Azomethine Ylides with 2H-Azirines: Stereoselective Synthesis of 1,3-Diazaspiro[bicyclo[3.1.0]hexane]oxindoles. J Org Chem 2019; 84:4273-4281. [DOI: 10.1021/acs.joc.9b00242] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anikó Angyal
- AVIDIN Ltd., Alsó kikötő
sor 11/D, Szeged H-6726, Hungary
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - András Demjén
- AVIDIN Ltd., Alsó kikötő
sor 11/D, Szeged H-6726, Hungary
| | - Veronika Harmat
- Laboratory of Structural Chemistry and Biology, and MTA-ELTE Protein Modeling Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány P. sétány 1/A, H-1117 Budapest, Hungary
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | | | - Iván Kanizsai
- AVIDIN Ltd., Alsó kikötő
sor 11/D, Szeged H-6726, Hungary
| |
Collapse
|