1
|
Yang QH, Shi M, Wei Y. A New Method of Constructing Methyleneindene and Quinoline Frameworks from Methylenecyclopropanes. Chem Asian J 2024; 19:e202400411. [PMID: 38719729 DOI: 10.1002/asia.202400411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/07/2024] [Indexed: 07/22/2024]
Abstract
In this paper, we have established an operationally convenient protocol for the rapid construction of polysubstituted methyleneindene and quinoline derivatives under mild conditions. This new synthetic method is achieved through the conversion of acetyl-substituted methylenecyclopropanes with TsOH ⋅ H2O and ortho-amino-substituted methylenecyclopropanes with aromatic aldehyde and TsOH ⋅ H2O, respectively. A variety of transformations of the obtained products was demonstrated. The plausible reaction mechanisms were also proposed.
Collapse
Affiliation(s)
- Qu-Hang Yang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Lu, Shanghai, 200032, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Lu, Shanghai, 200032, China
| |
Collapse
|
2
|
Li LP, Han JQ, Yang F, Wu X, Xie JH, Zhou QL. Total Synthesis of the Alleged Structure of (+)-Fimbricalyxoid A. Org Lett 2022; 24:3477-3481. [PMID: 35522037 DOI: 10.1021/acs.orglett.2c01076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An enantioselective total synthesis of the alleged structure of (+)-fimbricalyxoid A is reported. The synthetic strategy features a pyridine-N-oxidate-mediated SN2' reaction to introduce an oxygen functionality at position C3 of the A-ring and a sequential three-step process via the cleavage of the C-O bonds and hemiketalization to form the 3,20-oxybridge. With this strategy, the target molecule was synthesized in 19% overall yield and 12 steps from our previously synthesized cis-fused octahydrophenanthrene (+)-6.
Collapse
Affiliation(s)
- Lin-Ping Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia-Qi Han
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fan Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiong Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jian-Hua Xie
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300070, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300070, China
| |
Collapse
|
3
|
Przypis L, Ahmad T, Misztal K, Honisz D, Radicchi E, Mosconi E, Domagala W, De Angelis F, Wojciechowski K. Designing New Indene-Fullerene Derivatives as Electron-Transporting Materials for Flexible Perovskite Solar Cells. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:27344-27353. [PMID: 35116086 PMCID: PMC8802170 DOI: 10.1021/acs.jpcc.1c07189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/22/2021] [Indexed: 06/14/2023]
Abstract
The synthesis and characterization of a family of indene-C60 adducts obtained via Diels-Alder cycloaddition [4 + 2] are reported. The new C60 derivatives include indenes with a variety of functional groups. These adducts show lowest unoccupied molecular orbital energy levels to be at the right position to consider these compounds as electron-transporting materials for planar heterojunction perovskite solar cells. Selected derivatives were applied into inverted (p-i-n configuration) perovskite device architectures, fabricated on flexible polymer substrates, with large active areas (1 cm2). The highest power conversion efficiency, reaching 13.61%, was obtained for the 6'-acetamido-1',4'-dihydro-naphtho[2',3':1,2][5,6]fullerene-C60 (NHAc-ICMA). Spectroscopic characterization was applied to visualize possible passivation effects of the perovskite's surface induced by these adducts.
Collapse
Affiliation(s)
- Lukasz Przypis
- Saule
Research Institute, Wroclaw
Technology Park, 11 Dunska Street, Sigma Building, 54-130 Wrocław, Poland
- Department
of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Bolesława Krzywoustego 4, 44-100 Gliwice, Poland
| | - Taimoor Ahmad
- Saule
Technologies Ltd., Wroclaw
Technology Park, 11 Dunska Street, Sigma Building, 54-130 Wrocław, Poland
- Department
of Electronics Engineering, University of
Rome “Tor Vergata”, Via del Politecnico 1, 00133 Rome, Italy
| | - Kasjan Misztal
- Saule
Research Institute, Wroclaw
Technology Park, 11 Dunska Street, Sigma Building, 54-130 Wrocław, Poland
| | - Damian Honisz
- Department
of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Marcina Strzody 9, 44-100 Gliwice, Poland
| | - Eros Radicchi
- Computational
Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta”
(CNR-SCITEC), Via Elce
di Sotto 8, 06123 Perugia, Italy
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Edoardo Mosconi
- Computational
Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta”
(CNR-SCITEC), Via Elce
di Sotto 8, 06123 Perugia, Italy
| | - Wojciech Domagala
- Department
of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Marcina Strzody 9, 44-100 Gliwice, Poland
| | - Filippo De Angelis
- Computational
Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta”
(CNR-SCITEC), Via Elce
di Sotto 8, 06123 Perugia, Italy
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- CompuNet,
Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Department
of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University,
P.O. Box 1664, 31952 Al Khobar, Kingdom of Saudi Arabia
| | - Konrad Wojciechowski
- Saule
Research Institute, Wroclaw
Technology Park, 11 Dunska Street, Sigma Building, 54-130 Wrocław, Poland
- Saule
Technologies Ltd., Wroclaw
Technology Park, 11 Dunska Street, Sigma Building, 54-130 Wrocław, Poland
| |
Collapse
|
4
|
Yamazaki S, Katayama K, Wang Z, Mikata Y, Morimoto T, Ogawa A. Sequential Knoevenagel Condensation/Cyclization for the Synthesis of Indene and Benzofulvene Derivatives. ACS OMEGA 2021; 6:28441-28454. [PMID: 34723041 PMCID: PMC8552470 DOI: 10.1021/acsomega.1c05283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Sequential Knoevenagel condensation/cyclization leading to indene and benzofulvene derivatives has been developed. The reaction of 2-(1-phenylvinyl)benzaldehyde with malonates gave benzylidene malonates, cyclized indenes, and dehydrogenated benzofulvenes. The product selectivity depends on the reaction conditions. The reaction with piperidine, AcOH in benzene at 80 °C for 1.5 h gave a benzylidene malonate in 75% yield as a major product. The reactions with piperidine, AcOH in benzene at 80 °C for 17 h and with TiCl4-pyridine at room temperature gave an indene derivative in 56 and 79% yields, respectively, as a major product. The reaction with TiCl4-Et3N gave a benzofulvene in 40% yield selectively. Indene was transformed to a benzofulvene derivative using the reagents TiCl4-Et3N and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The reaction of variously substituted aryl derivatives with dimethyl malonate gave indene and benzofulvene derivatives. The reactions of 2-(1-phenylvinyl)benzaldehyde with Meldrum's acid or malononitrile also gave cyclized compounds in the suitable sequential or stepwise conditions. Furthermore, the reaction of 2-arylbenzaldehydes has been investigated. The limitation and scope have been described. The reaction mechanism of the cyclization steps has been examined by DFT calculations.
Collapse
Affiliation(s)
- Shoko Yamazaki
- Department
of Chemistry, Nara University of Education, Takabatake-cho, Nara 630-8528, Japan
| | - Kohtaro Katayama
- Department
of Chemistry, Nara University of Education, Takabatake-cho, Nara 630-8528, Japan
| | - Zhichao Wang
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yuji Mikata
- KYOUSEI
Science Center, Nara Women’s University, Nara 630-8506, Japan
| | - Tsumoru Morimoto
- Graduate
School of Materials Science, Nara Institute
of Science and Technology (NAIST), Takayama, Ikoma, Nara 630-0192, Japan
| | - Akiya Ogawa
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Nakaku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
5
|
Bera S, Kabadwal LM, Banerjee D. Recent advances in transition metal-catalyzed (1, n) annulation using (de)-hydrogenative coupling with alcohols. Chem Commun (Camb) 2021; 57:9807-9819. [PMID: 34486592 DOI: 10.1039/d1cc03404a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
(1,n) annulation reactions using (de)-hydrogenative coupling with alcohols or diols represent a straightforward technique for the synthesis of cyclic moieties. Utilization of such renewable resources for chemical transformations in a one-pot manner is the main focus, which avoids generation of stoichiometric waste. Application of such (1,n) annulation approaches drives the catalysis research in a more sustainable way and generates dihydrogen and water as by-products. This feature article highlights the recent (from 2015 to March 2021) progress in the synthesis of stereo-selective cycloalkanes and cycloalkenes, saturated and unsaturated N-heterocycles (cyclic amine, imide, lactam, tetrahydro β-carboline, quinazoline, quinazolinone, 1,3,5-triazines etc.) and other N-heterocycles with the formation of multiple bonds in a one pot operation. Mechanistic studies, new catalytic approaches, and synthetic applications including drug synthesis and post-drug derivatization, scope, and limitations are discussed.
Collapse
Affiliation(s)
- Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Lalit Mohan Kabadwal
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
6
|
Zhu TT, Tao YT, Sun Y, Wang X, Zhang XW, Chai JL, Han J, Zhao XL, Chen XD. Lanthanide complexes based on an anthraquinone derivative ligand and applications as photocatalysts for visible-light driving photooxidation reactions. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Kajetanowicz A, Grela K. Nitro and Other Electron Withdrawing Group Activated Ruthenium Catalysts for Olefin Metathesis Reactions. Angew Chem Int Ed Engl 2021; 60:13738-13756. [PMID: 32808704 PMCID: PMC8246989 DOI: 10.1002/anie.202008150] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 01/05/2023]
Abstract
Advanced applications of the Nobel Prize winning olefin metathesis reaction require user-friendly and highly universal catalysts. From many successful metathesis catalysts, which belong to the two distinct classes of Schrock and Grubbs-type catalysts, the subclass of chelating-benzylidene ruthenium complexes (so-called Hoveyda-Grubbs catalysts) additionally activated by electron-withdrawing groups (EWGs) provides a highly tunable platform. In the Review, the origin of the EWG-activation concept and selected applications of the resulting catalysts in target-oriented synthesis, medicinal chemistry, as well as in the preparation of fine-chemicals and in materials chemistry is discussed. Based on the examples, some suggestions for end-users regarding minimization of catalyst loading, selectivity control, and general optimization of the olefin metathesis reaction are provided.
Collapse
Affiliation(s)
- Anna Kajetanowicz
- Laboratory of Organometallic SynthesisFaculty of ChemistryBiological and Chemical Research CentreUniversity of WarsawŻwirki i Wigury 10102-089WarsawPoland
| | - Karol Grela
- Laboratory of Organometallic SynthesisFaculty of ChemistryBiological and Chemical Research CentreUniversity of WarsawŻwirki i Wigury 10102-089WarsawPoland
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| |
Collapse
|
8
|
Kajetanowicz A, Grela K. Durch Nitro‐ und andere elektronenziehende Gruppen aktivierte Ruthenium‐Katalysatoren für die Olefinmetathese. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202008150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Anna Kajetanowicz
- Labor für Organometall-Synthese Fakultät für Chemie Biological and Chemical Research Centre Universität Warschau Żwirki i Wigury 101 02-089 Warschau Polen
| | - Karol Grela
- Labor für Organometall-Synthese Fakultät für Chemie Biological and Chemical Research Centre Universität Warschau Żwirki i Wigury 101 02-089 Warschau Polen
- Institut für Organische Chemie Polish Academy of Sciences Kasprzaka 44/52 01-224 Warschau Polen
| |
Collapse
|
9
|
Gallhof M, Kell L, Brasholz M. Ligand Substitution of Ru
II
–Alkylidenes to Ru(bpy)
3
2+
: Sequential Olefin Metathesis/Photoredox Catalysis. Chemistry 2020; 26:1772-1775. [PMID: 31851394 PMCID: PMC7028069 DOI: 10.1002/chem.201905694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Indexed: 01/12/2023]
Abstract
Ruthenium(II) alkylidene complexes such as the Grubbs’ 1st and 2nd generation catalysts undergo a ligand substitution with 2,2′‐bipyridine, which readily leads to the common photoredox catalyst Ru(bpy)32+. The application of this catalyst transformation in sequential olefin metathesis/photoredox catalysis is demonstrated by way of ring‐closing metathesis (RCM)/photoredox ATRA reactions.
Collapse
Affiliation(s)
- Malte Gallhof
- Institute of Chemistry-Organic ChemistryUniversity of Rostock Albert-Einstein-Str. 3A 18059 Rostock Germany
| | - Lukas Kell
- Institute of Chemistry-Organic ChemistryUniversity of Rostock Albert-Einstein-Str. 3A 18059 Rostock Germany
| | - Malte Brasholz
- Institute of Chemistry-Organic ChemistryUniversity of Rostock Albert-Einstein-Str. 3A 18059 Rostock Germany
| |
Collapse
|
10
|
Bettoni L, Gaillard S, Renaud JL. A phosphine-free iron complex-catalyzed synthesis of cycloalkanes via the borrowing hydrogen strategy. Chem Commun (Camb) 2020; 56:12909-12912. [PMID: 32996937 DOI: 10.1039/d0cc05840h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herein we report a diaminocyclopentadienone iron tricarbonyl complex catalyzed synthesis of substituted cyclopentane, cyclohexane and cycloheptane compounds using the borrowing hydrogen strategy in the presence of various substituted primary and secondary 1,n diols as alkylating reagents. Deuterium labeling experiments confirm that the diols were the hydride source in this cascade process.
Collapse
Affiliation(s)
- Léo Bettoni
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 Boulevard du Maréchal Juin, 14000 Caen, France.
| | - Sylvain Gaillard
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 Boulevard du Maréchal Juin, 14000 Caen, France.
| | - Jean-Luc Renaud
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 Boulevard du Maréchal Juin, 14000 Caen, France.
| |
Collapse
|
11
|
Affiliation(s)
- Antonia Rinaldi
- Dipartimento di Chimica "U. Schiff"; Università degli Studi di Firenze; Via della Lastruccia 13 50019 Sesto F.no Italy
| | - Dina Scarpi
- Dipartimento di Chimica "U. Schiff"; Università degli Studi di Firenze; Via della Lastruccia 13 50019 Sesto F.no Italy
| | - Ernesto G. Occhiato
- Dipartimento di Chimica "U. Schiff"; Università degli Studi di Firenze; Via della Lastruccia 13 50019 Sesto F.no Italy
| |
Collapse
|
12
|
Kaithal A, Gracia LL, Camp C, Quadrelli EA, Leitner W. Direct Synthesis of Cycloalkanes from Diols and Secondary Alcohols or Ketones Using a Homogeneous Manganese Catalyst. J Am Chem Soc 2019; 141:17487-17492. [DOI: 10.1021/jacs.9b08832] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Akash Kaithal
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Lisa-Lou Gracia
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Clément Camp
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Elsje Alessandra Quadrelli
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim a.d. Ruhr, Germany
| |
Collapse
|
13
|
Mahesh SK, Nanubolu JB, Sudhakar G. Tandem Addition/Electrocyclization/Benzylation of Alkyl Aryl-1,3-dienes and Aromatic Aldehydes: Access to Highly Substituted Indenes. J Org Chem 2019; 84:7815-7828. [DOI: 10.1021/acs.joc.9b00679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Rinaldi A, Langé V, Gómez-Bengoa E, Zanella G, Scarpi D, Occhiato EG. Synthesis of Indenes by Tandem Gold(I)-Catalyzed Claisen Rearrangement/Hydroarylation Reaction of Propargyl Vinyl Ethers. J Org Chem 2019; 84:6298-6311. [DOI: 10.1021/acs.joc.9b00646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Antonia Rinaldi
- Dipartimento di Chimica “U. Schiff”, Università degli Studi di Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
| | - Vittoria Langé
- Dipartimento di Chimica “U. Schiff”, Università degli Studi di Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
| | - Enrique Gómez-Bengoa
- Departamento de Química Orgánica I, Universidad del País Vasco/UPV-EHU, Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Giovanna Zanella
- Departamento de Química Orgánica I, Universidad del País Vasco/UPV-EHU, Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Dina Scarpi
- Dipartimento di Chimica “U. Schiff”, Università degli Studi di Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
| | - Ernesto G. Occhiato
- Dipartimento di Chimica “U. Schiff”, Università degli Studi di Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
15
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Kotha S, Meshram M, Chakkapalli C. Synergistic approach to polycycles through Suzuki-Miyaura cross coupling and metathesis as key steps. Beilstein J Org Chem 2018; 14:2468-2481. [PMID: 30344770 PMCID: PMC6176834 DOI: 10.3762/bjoc.14.223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/28/2018] [Indexed: 12/30/2022] Open
Abstract
This account provides an overview of recent work, including our own contribution dealing with Suzuki–Miyaura cross coupling in combination with metathesis (or vice-versa). Several cyclophanes, polycycles, macrocycles, spirocycles, stilbenes, biaryls, and heterocycles have been synthesized by employing a combination of Suzuki cross-coupling and metathesis. Various popular reactions such as Diels–Alder reaction, Claisen rearrangement, cross-metathesis, and cross-enyne metathesis are used. The synergistic combination of these powerful reactions is found to be useful for the construction of complex targets and fulfill synthetic brevity.
Collapse
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400 076, India
| | - Milind Meshram
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400 076, India
| | | |
Collapse
|
17
|
Huang Z, Noble BB, Corrigan N, Chu Y, Satoh K, Thomas DS, Hawker CJ, Moad G, Kamigaito M, Coote ML, Boyer C, Xu J. Discrete and Stereospecific Oligomers Prepared by Sequential and Alternating Single Unit Monomer Insertion. J Am Chem Soc 2018; 140:13392-13406. [DOI: 10.1021/jacs.8b08386] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zixuan Huang
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Benjamin B. Noble
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Yingying Chu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Kotaro Satoh
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Donald S. Thomas
- Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, UNSW, Sydney, NSW 2052, Australia
| | - Craig J. Hawker
- Materials Research Laboratory and Departments of Materials, Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Graeme Moad
- CSIRO, Manufacturing Bag 10, Clayton South, VIC 3169, Australia
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Michelle L. Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
18
|
Niharika P, Satyanarayana G. [Pd]-Catalyzed Intermolecular Coupling and Acid Mediated Intramolecular Cyclodehydration: One-Pot Synthesis of Indenes. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Pedireddi Niharika
- Department of Chemistry; Indian Institute of Technology, Hyderabad; Kandi 502 285 Sangareddy Telangana India
| | - Gedu Satyanarayana
- Department of Chemistry; Indian Institute of Technology, Hyderabad; Kandi 502 285 Sangareddy Telangana India
| |
Collapse
|
19
|
Kotha S, Aswar VR, Singhal G. Synthesis of tricyclic units of indole alkaloids: Application of Fischer indolization and olefin metathesis. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.09.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Wang X, Xiong W, Huang Y, Zhu J, Hu Q, Wu W, Jiang H. Palladium-Catalyzed Synthesis of 1H-Indenes and Phthalimides via Isocyanide Insertion. Org Lett 2017; 19:5818-5821. [DOI: 10.1021/acs.orglett.7b02771] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xu Wang
- Key
Laboratory of Functional Molecular Engineering of Guangdong Province,
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenfang Xiong
- Key
Laboratory of Functional Molecular Engineering of Guangdong Province,
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yubing Huang
- Key
Laboratory of Functional Molecular Engineering of Guangdong Province,
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiayi Zhu
- Key
Laboratory of Functional Molecular Engineering of Guangdong Province,
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qiong Hu
- Key
Laboratory of Functional Molecular Engineering of Guangdong Province,
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- Key
Laboratory of Functional Molecular Engineering of Guangdong Province,
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key
Laboratory of Functional Molecular Engineering of Guangdong Province,
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
21
|
Miura T, Nakahashi J, Zhou W, Shiratori Y, Stewart SG, Murakami M. Enantioselective Synthesis of anti-1,2-Oxaborinan-3-enes from Aldehydes and 1,1-Di(boryl)alk-3-enes Using Ruthenium and Chiral Phosphoric Acid Catalysts. J Am Chem Soc 2017; 139:10903-10908. [PMID: 28708391 DOI: 10.1021/jacs.7b06408] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A cationic ruthenium(II) complex catalyzes double-bond transposition of 1,1-di(boryl)alk-3-enes to generate in situ 1,1-di(boryl)alk-2-enes, which then undergo chiral phosphoric acid catalyzed allylation of aldehydes producing homoallylic alcohols with a (Z)-vinylboronate moiety. 1,2-Anti stereochemistry is installed in an enantioselective manner. The (Z)-geometry forged in the products allows their isolation in a form of 1,2-oxaborinan-3-enes, upon which further synthetic transformations are operated.
Collapse
Affiliation(s)
- Tomoya Miura
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University , Katsura, Kyoto 615-8510, Japan
| | - Junki Nakahashi
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University , Katsura, Kyoto 615-8510, Japan
| | - Wang Zhou
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University , Katsura, Kyoto 615-8510, Japan
| | - Yota Shiratori
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University , Katsura, Kyoto 615-8510, Japan
| | - Scott G Stewart
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University , Katsura, Kyoto 615-8510, Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University , Katsura, Kyoto 615-8510, Japan
| |
Collapse
|