1
|
Kuri T, Mizukami Y, Shimogaki M, Fujita M. Oxetane Intermediate during a Direct Aldol Reaction: Stereoselective [5 + 1] Annulation Affording Tetralines. Org Lett 2020; 22:7613-7616. [PMID: 32969668 DOI: 10.1021/acs.orglett.0c02816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An oxetane intermediate during a direct aldol reaction was trapped with an internal aryl group to yield trans-tetraline products. The contribution of the oxetane intermediate was confirmed by 18O-isotope labeling experiments.
Collapse
Affiliation(s)
- Takeshi Kuri
- Graduate School of Material Science, University of Hyogo, Kohto, Kamigori, Hyogo 678-1297, Japan
| | - Yoshihiko Mizukami
- Graduate School of Material Science, University of Hyogo, Kohto, Kamigori, Hyogo 678-1297, Japan
| | - Mio Shimogaki
- Graduate School of Material Science, University of Hyogo, Kohto, Kamigori, Hyogo 678-1297, Japan
| | - Morifumi Fujita
- Graduate School of Material Science, University of Hyogo, Kohto, Kamigori, Hyogo 678-1297, Japan
| |
Collapse
|
2
|
Deng Q, Xia W, Hussain MI, Zhang X, Hu W, Xiong Y. Synthesis of Polycyclic Cyclohexadienone through Alkoxy-Oxylactonization and Dearomatization of 3'-Hydroxy-[1,1'-biphenyl]-2-carboxylic Acids Promoted by Hypervalent Iodine. J Org Chem 2020; 85:3125-3133. [PMID: 31942790 DOI: 10.1021/acs.joc.9b03012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Alkox-oxylactonization and dearomatization of 3'-hydroxy-[1,1'-biphenyl]-2-carboxylic acid simultaneously promoted by hypervalent iodine have been developed using stoichiometric PhI(OAc)2 or a catalytic amount of chiral aryl-λ3-iodane generated in situ. This reaction provides a concise method to synthesize diverse polycyclic cyclohexadienones as potential inhibitors of DNA polymerase under mild reaction conditions.
Collapse
Affiliation(s)
- Qingfu Deng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Wen Xia
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | | | - Xiaohui Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Wen Hu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yan Xiong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Abstract
Asymmetric organocatalytic oxidations have been witnessed to an impressive development in the last years thanks to the establishment of important chiral hypervalent iodines(III/V). Many different approaches involving both stoichiometric and catalytic versions have provided a fundamental advance in this area within asymmetric synthesis. The easily handing, nontoxic, mild, environmentally friendly (green oxidants), and high stability that are features of these reagents have been applied to many reactions and also have allowed exploring further unprecedented enantioselective transformations. The intention of the present review is thus to highlight as a whole the many approaches utilized up to date to prepare chiral iodines(III/V), as well as their reactivity in a comprehensive manner.
Collapse
Affiliation(s)
- Alejandro Parra
- Facultad de Ciencias, Departamento de Química Orgánica, Institute for Advance Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid , 28049 Madrid , Spain
| |
Collapse
|
4
|
Lee JH, Choi S, Hong KB. Alkene Difunctionalization Using Hypervalent Iodine Reagents: Progress and Developments in the Past Ten Years. Molecules 2019; 24:molecules24142634. [PMID: 31331092 PMCID: PMC6680546 DOI: 10.3390/molecules24142634] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 11/16/2022] Open
Abstract
Hypervalent iodine reagents are of considerable relevance in organic chemistry as they can provide a complementary reaction strategy to the use of traditional transition metal chemistry. Over the past two decades, there have been an increasing number of applications including stoichiometric oxidation and catalytic asymmetric variations. This review outlines the main advances in the past 10 years in regard to alkene heterofunctionalization chemistry using achiral and chiral hypervalent iodine reagents and catalysts.
Collapse
Affiliation(s)
- Ji Hoon Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu 701-310, Korea
| | - Sungwook Choi
- Department of New Drug Discovery and Development, Chungnam National University, Daejon 305-764, Korea.
| | - Ki Bum Hong
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu 701-310, Korea.
| |
Collapse
|
5
|
Asymmetric syntheses and applications of planar chiral hypervalent iodine(V) reagents with crown ether backbones. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
6
|
Farshadfar K, Chipman A, Yates BF, Ariafard A. DFT Mechanistic Investigation into BF3-Catalyzed Alcohol Oxidation by a Hypervalent Iodine(III) Compound. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01599] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kaveh Farshadfar
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran
| | - Antony Chipman
- School of Physical Science (Chemistry), University of Tasmania, Private Bag
75, Hobart, TAS 7001, Australia
| | - Brian F. Yates
- School of Physical Science (Chemistry), University of Tasmania, Private Bag
75, Hobart, TAS 7001, Australia
| | - Alireza Ariafard
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran
- School of Physical Science (Chemistry), University of Tasmania, Private Bag
75, Hobart, TAS 7001, Australia
| |
Collapse
|
7
|
Hyatt IFD, Dave L, David N, Kaur K, Medard M, Mowdawalla C. Hypervalent iodine reactions utilized in carbon–carbon bond formations. Org Biomol Chem 2019; 17:7822-7848. [DOI: 10.1039/c9ob01267b] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This review covers recent developments of hypervalent iodine chemistry in dearomatizations, radicals, hypervalent iodine-guided electrophilic substitution, arylations, photoredox, and more.
Collapse
Affiliation(s)
| | - Loma Dave
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| | - Navindra David
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| | - Kirandeep Kaur
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| | - Marly Medard
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| | - Cyrus Mowdawalla
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| |
Collapse
|
8
|
Zhou B, Haj MK, Jacobsen EN, Houk KN, Xue XS. Mechanism and Origins of Chemo- and Stereoselectivities of Aryl Iodide-Catalyzed Asymmetric Difluorinations of β-Substituted Styrenes. J Am Chem Soc 2018; 140:15206-15218. [PMID: 30350956 PMCID: PMC6261351 DOI: 10.1021/jacs.8b05935] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mechanism of the aryl iodide-catalyzed asymmetric migratory geminal difluorination of β-substituted styrenes ( Banik et al. Science 2016, 353, 51 ) has been explored with density functional theory computations. The computed mechanism consists of (a) activation of iodoarene difluoride (ArIF2), (b) enantiodetermining 1,2-fluoroiodination, (c) bridging phenonium ion formation via SN2 reductive displacement, and (d) regioselective fluoride addition. According to the computational model, the ArIF2 intermediate is stabilized through halogen-π interactions between the electron-deficient iodine(III) center and the benzylic substituents at the catalyst stereogenic centers. Interactions with the catalyst ester carbonyl groups (I(III)+···O) are not observed in the unactivated complex, but do occur upon activation of ArIF2 through hydrogen-bonding interactions with external Brønsted acid (HF). The 1,2-fluoroiodination occurs via alkene complexation to the electrophilic, cationic I(III) center followed by C-F bond formation anti to the forming C-I bond. The bound olefin and the C-I bond of catalyst adopt a spiro arrangement in the favored transition structures but a nearly periplanar arrangement in the disfavored transition structures. Multiple attractive non-covalent interactions, including slipped π···π stacking, C-H···O, and C-H···π interactions, are found to underlie the high asymmetric induction. The chemoselectivity for 1,1-difluorination versus 1,2-difluorination is controlled mainly by (1) the steric effect of the substituent on the olefinic double bond and (2) the nucleophilicity of the carbonyl oxygen of substrate.
Collapse
Affiliation(s)
- Biying Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Moriana K Haj
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - K N Houk
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - Xiao-Song Xue
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| |
Collapse
|
9
|
Matsunami A, Takizawa K, Sugano S, Yano Y, Sato H, Takeuchi R. Synthesis of Chiral Homoallylic Nitriles by Iridium-Catalyzed Allylation of Cyanoacetates. J Org Chem 2018; 83:12239-12246. [DOI: 10.1021/acs.joc.8b01632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Asuka Matsunami
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Kazuki Takizawa
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Shogo Sugano
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Yusuke Yano
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Hiroaki Sato
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Ryo Takeuchi
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
10
|
Li X, Chen P, Liu G. Recent advances in hypervalent iodine(III)-catalyzed functionalization of alkenes. Beilstein J Org Chem 2018; 14:1813-1825. [PMID: 30112085 PMCID: PMC6071704 DOI: 10.3762/bjoc.14.154] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/22/2018] [Indexed: 12/24/2022] Open
Abstract
Hypervalent iodine(III) reagents have been well-developed and widely utilized in functionalization of alkenes, however, generally either stoichiometric amounts of iodine(III) reagents are required or stoichiometric oxidants such as mCPBA are employed to in situ generate iodine(III) species. In this review, recent developments of hypervalent iodine(III)-catalyzed functionalization of alkenes and asymmetric reactions using a chiral iodoarene are summarized.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
11
|
Fujita M, Miura K, Sugimura T. Enantioselective dioxytosylation of styrenes using lactate-based chiral hypervalent iodine(III). Beilstein J Org Chem 2018; 14:659-663. [PMID: 29623128 PMCID: PMC5870148 DOI: 10.3762/bjoc.14.53] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/06/2018] [Indexed: 01/31/2023] Open
Abstract
A series of optically active hypervalent iodine(III) reagents prepared from the corresponding (R)-2-(2-iodophenoxy)propanoate derivative was employed for the asymmetric dioxytosylation of styrene and its derivatives. The electrophilic addition of the hypervalent iodine(III) compound toward styrene proceeded with high enantioface selectivity to give 1-aryl-1,2-di(tosyloxy)ethane with an enantiomeric excess of 70-96% of the (S)-isomer.
Collapse
Affiliation(s)
- Morifumi Fujita
- Graduate School of Material Science, University of Hyogo, Kohto, Kamigori, Hyogo 678-1297, Japan
| | - Koki Miura
- Graduate School of Material Science, University of Hyogo, Kohto, Kamigori, Hyogo 678-1297, Japan
| | - Takashi Sugimura
- Graduate School of Material Science, University of Hyogo, Kohto, Kamigori, Hyogo 678-1297, Japan
| |
Collapse
|
12
|
Porter MR, Shaker RM, Calcanas C, Topczewski JJ. Stereoselective Dynamic Cyclization of Allylic Azides: Synthesis of Tetralins, Chromanes, and Tetrahydroquinolines. J Am Chem Soc 2018; 140:1211-1214. [PMID: 29303567 PMCID: PMC5989720 DOI: 10.1021/jacs.7b11299] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This report describes the stereoselective synthesis of 3-azido-tetralins, -chromanes, and -tetrahydroquinolines via a tandem allylic azide rearrangement/Friedel-Crafts alkylation. Exposure of allylic azides with a pendant trichloroacetimidate to catalytic quantities of AgSbF6 proved optimal for this transformation. This cascade successfully differentiates the equilibrating azide isomers, providing products in excellent yield and selectivity (>25 examples, up to 94% yield and >25:1 dr). In many cases, the reactive isomer is only a trace fraction of the equilibrium mixture, keenly illustrating the dynamic nature of these systems. We demonstrate the utility of this process via a synthesis of hasubanan.
Collapse
Affiliation(s)
- Matthew R. Porter
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Rami M. Shaker
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Cristian Calcanas
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Joseph J. Topczewski
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
|