1
|
Yang H, Pan Y, Tian Y, Yu K, Bai Y, Jiang Y, Zhang H, Deng G, Yang X. Intramolecular cyclization of N-aryl amides for the synthesis of 3-amino oxindoles. Chem Commun (Camb) 2024; 60:14125-14128. [PMID: 39530152 DOI: 10.1039/d4cc05259e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A mild and efficient strategy to synthesize pharmaceutically important 3-amino oxindoles from readily available N-aryl amides has been developed. This unique reaction proceeds via the intramolecular cyclization of 2-azaallyl anions with N-aryl amides to afford 3-amino substituted oxindoles. This novel method avoids the direct usage of transition metal catalysts and additional oxidants. Furthermore, the anti-pulmonary fibrosis activity evaluation showed that 3-amino oxindole 2f significantly inhibited collagen deposition, which can ameliorate pulmonary fibrosis by reducing excessive extracellular matrix (ECM) deposition.
Collapse
Affiliation(s)
- Haitao Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China.
| | - Yu Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China.
| | - Yijing Tian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China.
| | - Kaili Yu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China.
| | - Yifeng Bai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China.
| | - Yonggang Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China.
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China.
| | - Guogang Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China.
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China.
| |
Collapse
|
2
|
Bora K, Newar UD, Maurya RA. One-Pot, Five-Component Condensation Reaction of Isatin, Secondary Amines, Malononitrile, Alcohols, and Molecular Oxygen to Access 3-Functionalized 2-Oxindoles. J Org Chem 2023; 88:14216-14221. [PMID: 37675843 DOI: 10.1021/acs.joc.3c01510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
An efficient five-component condensation reaction of isatin, malononitrile, secondary amines, alcohols, and molecular oxygen was discovered. The reaction was performed in a one-pot fashion, and it does not require any metal catalyst. It gives straightforward access to structurally diverse 2-oxo-3-aminoindoline-3-carboxylates in moderate yields (70-88%). The scope of the reaction was successfully demonstrated by synthesizing a series of 3-functionalized 2-oxindoles by varying the isatin, amine, and alcohol components.
Collapse
Affiliation(s)
- Kaushik Bora
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Uma Devi Newar
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ram Awatar Maurya
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Yang H, Zhang Y, Chen W, Shi H, Huo L, Li J, Li H, Xie X, She X. Scalable Total Syntheses of (±)-Catellatolactams A and B. Org Lett 2023; 25:1003-1007. [PMID: 36748956 DOI: 10.1021/acs.orglett.3c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The first total syntheses of (±)-catellatolactams A and B, two novel ansamacrolactams, are described in 5 and 8 steps, respectively. The strategy relies on an amidation reaction to couple the acylated Meldrum's acid and an aryl amine, a regioselective C-H insertion to construct the γ-lactam moiety, and an RCM reaction to forge the macrocycles with E-olefin. This concise and scalable synthesis provided over 200 mg of the target molecules.
Collapse
Affiliation(s)
- Hesi Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Yan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Wei Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Hongliang Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Liang Huo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Jia Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Huilin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Xingang Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| |
Collapse
|
4
|
Majhi J, Granados A, Matsuo B, Ciccone V, Dhungana RK, Sharique M, Molander GA. Practical, scalable, and transition metal-free visible light-induced heteroarylation route to substituted oxindoles. Chem Sci 2023; 14:897-902. [PMID: 36755706 PMCID: PMC9890556 DOI: 10.1039/d2sc05918e] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
The synthetic application of (hetero)aryl radicals in organic synthesis has been known since the last century. However, their applicability has significantly suffered from ineffective generation protocols. Herein, we present a visible-light-induced transition metal-free (hetero)aryl radical generation from readily available (hetero)aryl halides for the synthesis of 3,3'-disubstituted oxindoles. This transformation is amenable to a wide range of (hetero)aryl halides as well as several easily accessible acrylamides, and it is also scalable to multigram synthesis. Finally, the versatility of the oxindole products is demonstrated through their conversion to a variety of useful intermediates applicable to target-directed synthesis.
Collapse
Affiliation(s)
- Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Albert Granados
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Bianca Matsuo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Vittorio Ciccone
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Roshan K Dhungana
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Mohammed Sharique
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
5
|
Shen H, Du Y, Kan J, Su W. Synthesis of 3-substituted 2-oxindoles from secondary α-bromo-propionanilides via palladium-catalyzed intramolecular cyclization. Org Biomol Chem 2022; 20:3589-3597. [PMID: 35420109 DOI: 10.1039/d2ob00480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In contrast to aromatic halides, coupling reactions involving oxidative addition of alkyl halides, especially secondary or tertiary halides, to transition metals tend to be more challenging. Herein a palladium-catalyzed intramolecular cyclization of α-bromo-propionanilides has been developed, delivering a series of 3-substituted 2-oxindoles in high yields. The method features easy to prepare starting materials, broad substrate scope and excellent functional group tolerance. A detailed mechanistic investigation has been performed.
Collapse
Affiliation(s)
- Hui Shen
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| | - Yu Du
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| | - Jian Kan
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| | - Weiping Su
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| |
Collapse
|
6
|
Mazodze CM, Petersen WF. Silver-catalysed double decarboxylative addition-cyclisation-elimination cascade sequence for the synthesis of quinolin-2-ones. Org Biomol Chem 2022; 20:3469-3474. [PMID: 35420621 DOI: 10.1039/d2ob00521b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An atom-efficient silver-catalysed double carboxylative strategy for the one-step synthesis of quinolin-2-ones via an addition-cyclisation-elimination cascade sequence of oxamic acids to acrylic acids, mediated either thermally or photochemically, is reported. The reaction was applicable to the synthesis of a broad range of quinolin-2-ones and featured a double-disconnection approach that constructed the quinolin-2-one core via the formal and direct addition of a C(sp2)-H/C(sp2)-H olefin moiety to a phenylformamide precursor.
Collapse
Affiliation(s)
- C Munashe Mazodze
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa.
| | - Wade F Petersen
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa.
| |
Collapse
|
7
|
Radhoff N, Studer A. Oxindole synthesis via polar-radical crossover of ketene-derived amide enolates in a formal [3 + 2] cycloaddition. Chem Sci 2022; 13:3875-3879. [PMID: 35432887 PMCID: PMC8966637 DOI: 10.1039/d1sc07134c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/08/2022] [Indexed: 12/27/2022] Open
Abstract
Herein we introduce a simple, efficient and transition-metal free method for the preparation of valuable and sterically hindered 3,3-disubstituted oxindoles via polar-radical crossover of ketene derived amide enolates. Various easily accessible N-alkyl and N-arylanilines are added to disubstituted ketenes and the resulting amide enolates undergo upon single electron transfer oxidation a homolytic aromatic substitution (HAS) to provide 3,3-disubstituted oxindoles in good to excellent yields. A variety of substituted anilines and a 3-amino pyridine engage in this oxidative formal [3 + 2] cycloaddition and cyclic ketenes provide spirooxindoles. Both substrates and reagents are readily available and tolerance to functional groups is broad.
Collapse
Affiliation(s)
- Niklas Radhoff
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
8
|
Tong Z, Peng X, Tang Z, Yang W, Deng W, Yin SF, Kambe N, Qiu R. DTBP-mediated cross-dehydrogenative coupling of 3-aryl benzofuran-2(3 H)-ones with toluenes/phenols for all-carbon quaternary centers. RSC Adv 2022; 12:35215-35220. [DOI: 10.1039/d2ra06231c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
We have developed a transition-metal free protocol for efficient cross-dehydrogenative coupling of 3-aryl benzofuran-2(3H)-ones and toluenes/phenols using DTBP as an oxidant.
Collapse
Affiliation(s)
- Zhou Tong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xinju Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zhi Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Weijun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Wei Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Nobuaki Kambe
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
9
|
Perspective: Reflections on a career in synthetic organic chemistry, 1970 to 2020. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Jadhav PM, Rode AB, Kótai L, Pawar RP, Tekale SU. Revisiting applications of molecular iodine in organic synthesis. NEW J CHEM 2021. [DOI: 10.1039/d1nj02560k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Molecular iodine contributes significantly to organic transformations in synthetic organic chemistry. It works effectively due to its mild Lewis acidic character, ability as an oxidizing agent, good moisture stability, and easy availability.
Collapse
Affiliation(s)
- Popat M. Jadhav
- Department of Chemistry, Deogiri College, Aurangabad 431 005, Maharashtra, India
| | - Ambadas B. Rode
- Regional Centre for Biotechnology, Faridabad-121 001, Haryana (NCR Delhi), India
| | - László Kótai
- Research Centre for Natural Sciences, ELKH, H-1117, Budapest, Hungary
| | - Rajendra P. Pawar
- Department of Chemistry, Shiv Chhatrapati College, Aurangabad 431005, Maharashtra, India
| | - Sunil U. Tekale
- Department of Chemistry, Deogiri College, Aurangabad 431 005, Maharashtra, India
| |
Collapse
|
11
|
Zhao J, Song X, Li D, Zhao J, Qu J, Zhou Y. Intramolecular Dehydrogenative Coupling Approach to 2‐Oxindoles Using Fe(OAc)
2
/NaI/Na
2
S
2
O
8. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Junyan Zhao
- State Key Laboratory of Fine Chemicals Department of Pharmaceutical Sciences School of Chemical Engineering Dalian University of Technology 116024 Dalian P.R. China
| | - Xun Song
- State Key Laboratory of Fine Chemicals Department of Pharmaceutical Sciences School of Chemical Engineering Dalian University of Technology 116024 Dalian P.R. China
| | - Dong Li
- State Key Laboratory of Fine Chemicals Department of Pharmaceutical Sciences School of Chemical Engineering Dalian University of Technology 116024 Dalian P.R. China
| | - Jinfeng Zhao
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 116024 Dalian P.R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 116024 Dalian P.R. China
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals Department of Pharmaceutical Sciences School of Chemical Engineering Dalian University of Technology 116024 Dalian P.R. China
| |
Collapse
|
12
|
Batra A, Singh KN. Recent Developments in Transition Metal‐Free Cross‐Dehydrogenative Coupling Reactions for C–C Bond Formation. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000785] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Aanchal Batra
- PG Department of Chemistry Mehr Chand Mahajan DAV College for Women Sec 36/A 160036 Chandigarh India
| | - Kamal Nain Singh
- Department of Chemistry and Centre of Advanced studies in Chemistry Panjab University 160014 Chandigarh India
| |
Collapse
|
13
|
Ratushnyy M, Kvasovs N, Sarkar S, Gevorgyan V. Visible‐Light‐Induced Palladium‐Catalyzed Generation of Aryl Radicals from Aryl Triflates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Maxim Ratushnyy
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| | - Nikita Kvasovs
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| | - Sumon Sarkar
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| | - Vladimir Gevorgyan
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| |
Collapse
|
14
|
Ratushnyy M, Kvasovs N, Sarkar S, Gevorgyan V. Visible-Light-Induced Palladium-Catalyzed Generation of Aryl Radicals from Aryl Triflates. Angew Chem Int Ed Engl 2020; 59:10316-10320. [PMID: 32155303 PMCID: PMC7446712 DOI: 10.1002/anie.201915962] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 12/31/2022]
Abstract
A mild visible-light-induced Pd-catalyzed intramolecular C-H arylation of amides is reported. The method operates by cleavage of a C(sp2 )-O bond, leading to hybrid aryl Pd-radical intermediates. The following 1,5-hydrogen atom translocation, intramolecular cyclization, and rearomatization steps lead to valuable oxindole and isoindoline-1-one motifs. Notably, this method provides access to products with readily enolizable functional groups that are incompatible with traditional Pd-catalyzed conditions.
Collapse
Affiliation(s)
- Maxim Ratushnyy
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| | - Nikita Kvasovs
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| | - Sumon Sarkar
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| | - Vladimir Gevorgyan
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| |
Collapse
|
15
|
Chen X, Li Z. Catalyst‐free straightforward synthesis of 3‐cyano‐3‐arylamino‐2‐oxindoles through hydrocyanation with benzoyl cyanide. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiao Chen
- College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou China
| | - Zheng Li
- College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou China
| |
Collapse
|
16
|
Tang Z, Liu Z, Tong Z, Xu Z, Au CT, Qiu R, Kambe N. Cu-Catalyzed Cross-Dehydrogenative Coupling of Heteroaryl C(sp2)–H and Tertiary C(sp3)–H Bonds for the Construction of All-Carbon Triaryl Quaternary Centers. Org Lett 2019; 21:5152-5156. [DOI: 10.1021/acs.orglett.9b01755] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhi Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Zhili Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Zhou Tong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Zhihui Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Chak-Tong Au
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
- College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, P.R. China
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Nobuaki Kambe
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
17
|
Chen Z, Liang H, Chen R, Chen L, Tang X, Yan M, Zhang X. Cross‐Dehydrogenative C−O Coupling of Oximes with Acetonitrile, Ketones and Esters. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhen‐Yu Chen
- The Institute of Drug Synthesis and Pharmaceutical Process, School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Hua‐Ju Liang
- The Institute of Drug Synthesis and Pharmaceutical Process, School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Ri‐Xing Chen
- School of Pharmaceutical ScienceGuangzhou University of Chinese Medicine Guangzhou 510006 People's Republic of China
| | - Lei Chen
- The Institute of Drug Synthesis and Pharmaceutical Process, School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Xiang‐Zheng Tang
- The Institute of Drug Synthesis and Pharmaceutical Process, School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Ming Yan
- The Institute of Drug Synthesis and Pharmaceutical Process, School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Xue‐Jing Zhang
- The Institute of Drug Synthesis and Pharmaceutical Process, School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| |
Collapse
|
18
|
Application of copper(II)-mediated radical cross-dehydrogenative coupling to prepare spirocyclic oxindoles and to a formal total synthesis of Satavaptan. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Wu ZJ, Li SR, Long H, Xu HC. Electrochemical dehydrogenative cyclization of 1,3-dicarbonyl compounds. Chem Commun (Camb) 2018; 54:4601-4604. [PMID: 29670957 DOI: 10.1039/c8cc02472c] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intramolecular C(sp3)-H/C(sp2)-H cross-coupling of 1,3-dicarbonyl compounds has been achieved through Cp2Fe-catalyzed electrochemical oxidation. The key to the success of these dehydrogenative cyclization reactions is the selective activation of the acidic α-C-H bond of the 1,3-dicarbonyl moiety to generate a carbon-centered radical.
Collapse
Affiliation(s)
- Zheng-Jian Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Innovative Collaboration Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Shi-Rui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Innovative Collaboration Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Hao Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Innovative Collaboration Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Innovative Collaboration Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| |
Collapse
|
20
|
Zhou Y, Li D, Tang S, Sun H, Huang J, Zhu Q. PhI(OAc)2-mediated dearomative C–N coupling: facile construction of the spiro[indoline-3,2′-pyrrolidine] skeleton. Org Biomol Chem 2018; 16:2039-2042. [DOI: 10.1039/c8ob00343b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A facile construction of the spiro[indole-3,2′-pyrrolidine] skeleton, through diacetoxyiodobenzene (PIDA) mediated C–N bond-forming dearomatization of C3 sulfonamide linked indole derivatives, has been developed.
Collapse
Affiliation(s)
- Yali Zhou
- State Key Laboratory of Respiratory Disease
- Guangzhou Institutes of Biomedicine and Health
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Guangzhou 510530
| | - Dengke Li
- State Key Laboratory of Respiratory Disease
- Guangzhou Institutes of Biomedicine and Health
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Guangzhou 510530
| | - Shi Tang
- State Key Laboratory of Respiratory Disease
- Guangzhou Institutes of Biomedicine and Health
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Guangzhou 510530
| | - Hongwei Sun
- State Key Laboratory of Respiratory Disease
- Guangzhou Institutes of Biomedicine and Health
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Guangzhou 510530
| | - Jinbo Huang
- State Key Laboratory of Respiratory Disease
- Guangzhou Institutes of Biomedicine and Health
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Guangzhou 510530
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease
- Guangzhou Institutes of Biomedicine and Health
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Guangzhou 510530
| |
Collapse
|