1
|
Xu W, Sun TY, Di Y, Hao X, Wu YD. A comprehensive understanding of the mechanism of the biomimetic total synthesis of brevianamide A. Org Biomol Chem 2024; 22:8189-8197. [PMID: 39292510 DOI: 10.1039/d4ob00915k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Recently, several studies on the chemical synthesis of brevianamide A (BA) were reported. In particular, a highly efficient and remarkably selective synthetic strategy was reported by Lawrence's group. However, a unified mechanistic understanding of these results is still lacking. We have carried out a DFT study and proposed a unified mechanism to understand these experimental results. Starting from intermediate 2, the most favorable reaction sequence is a fast tautomerization, followed by a σ-migration of the base moiety, and a final inverse-electron demanding Diels-Alder reaction, resulting in the formation of the BA product stereoselectively. This reaction mechanism can also be applied to understand the biosynthesis of BA that involves enzymatic catalysis.
Collapse
Affiliation(s)
- Wenqiang Xu
- State Key Laboratory of Chemical Oncogenomics, Lab of Computational Chemistry and Drug Design, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Tian-Yu Sun
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yingtong Di
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Xiaojiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Yun-Dong Wu
- State Key Laboratory of Chemical Oncogenomics, Lab of Computational Chemistry and Drug Design, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Nandy M, Das A, Niyogi S, Khatua A, Jana D, Bisai A. Total Synthesis of (+)-Brevianamides A and B. Org Lett 2024. [PMID: 39388370 DOI: 10.1021/acs.orglett.4c03026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
(+)-Brevianamides A (1a) and B (1b) are distinguished by their unique bicyclo[2.2.2]diazaoctane structure and have captured the interest of synthetic chemists due to their fascinating array of biological activities. The biosynthetic proposal of these classes of alkaloids led to the discovery of a number of interesting strategies. We present a biomimetic synthesis of these alkaloids starting from naturally occurring 4-hydroxy-l-proline and L-tryptophan. Gratifyingly, we emulate an alternative biosynthetic process through a unique elimination-isomerization sequence triggered by a dual-base system to generate the key aza-diene required for the Diels-Alder reaction to craft the bicyclo[2.2.2]diazaoctane structure.
Collapse
Affiliation(s)
- Monosij Nandy
- Department of Chemical Sciences, IISER Kolkata, Mohanpur Campus, Kalyani, Nadia 741 246, West Bengal, India
| | - Apurba Das
- Department of Chemical Sciences, IISER Kolkata, Mohanpur Campus, Kalyani, Nadia 741 246, West Bengal, India
| | - Sovan Niyogi
- Department of Chemical Sciences, IISER Kolkata, Mohanpur Campus, Kalyani, Nadia 741 246, West Bengal, India
| | - Arindam Khatua
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Debgopal Jana
- Department of Chemical Sciences, IISER Kolkata, Mohanpur Campus, Kalyani, Nadia 741 246, West Bengal, India
| | - Alakesh Bisai
- Department of Chemical Sciences, IISER Kolkata, Mohanpur Campus, Kalyani, Nadia 741 246, West Bengal, India
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
3
|
Wei SQ, Li ZH, Wang SH, Chen H, Wang XY, Gu YZ, Zhang Y, Wang H, Ding TM, Zhang SY, Tu YQ. Asymmetric Intramolecular Amination Catalyzed with Cp*Ir-SPDO via Nitrene Transfer for Synthesis of Spiro-Quaternary Indolinone. J Am Chem Soc 2024; 146:18841-18847. [PMID: 38975938 DOI: 10.1021/jacs.4c05560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
An asymmetric intramolecular spiro-amination to high steric hindering α-C-H bond of 1,3-dicarbonyl via nitrene transfer using inactive aryl azides has been carried out by developing a novel Cp*Ir(III)-SPDO (spiro-pyrrolidine oxazoline) catalyst, thereby enabling the first successful construction of structurally rigid spiro-quaternary indolinone cores with moderate to high yields and excellent enantioselectivities. DFT computations support the presence of double bridging H-F bonds between [SbF6]- and both the ligand and substrate, which favors the plane-differentiation of the enol π-bond for nitrenoid attacking. These findings open up numerous opportunities for the development of new asymmetric nitrene transfer systems.
Collapse
Affiliation(s)
- Shi-Qiang Wei
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Zi-Hao Li
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Shuang-Hu Wang
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Hua Chen
- College of Pharmaceutical Science and Collaborative Innovation Cent of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiao-Yu Wang
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Yun-Zhou Gu
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Ye Zhang
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Cent of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tong-Mei Ding
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Shu-Yu Zhang
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Yong-Qiang Tu
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Godfrey RC, Jones HE, Green NJ, Lawrence AL. Unified total synthesis of the brevianamide alkaloids enabled by chemical investigations into their biosynthesis. Chem Sci 2022; 13:1313-1322. [PMID: 35222915 PMCID: PMC8809396 DOI: 10.1039/d1sc05801k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/27/2021] [Indexed: 01/08/2023] Open
Abstract
The bicyclo[2.2.2]diazaoctane alkaloids are a vast group of natural products which have been the focus of attention from the scientific community for several decades. This interest stems from their broad range of biological activities, their diverse biosynthetic origins, and their topologically complex structures, which combined make them enticing targets for chemical synthesis. In this article, full details of our synthetic studies into the chemical feasibility of a proposed network of biosynthetic pathways towards the brevianamide family of bicyclo[2.2.2]diazaoctane alkaloids are disclosed. Insights into issues of reactivity and selectivity in the biosynthesis of these structures have aided the development of a unified biomimetic synthetic strategy, which has resulted in the total synthesis of all known bicyclo[2.2.2]diazaoctane brevianamides and the anticipation of an as-yet-undiscovered congener.
Collapse
Affiliation(s)
- Robert C Godfrey
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Helen E Jones
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Nicholas J Green
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Andrew L Lawrence
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
5
|
Godfrey RC, Green NJ, Nichol GS, Lawrence AL. Total synthesis of brevianamide A. Nat Chem 2020; 12:615-619. [DOI: 10.1038/s41557-020-0442-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 02/19/2020] [Indexed: 11/09/2022]
|
6
|
Wang X, Han YF, Ouyang XH, Song RJ, Li JH. The photoredox alkylarylation of styrenes with alkyl N-hydroxyphthalimide esters and arenes involving C-H functionalization. Chem Commun (Camb) 2019; 55:14637-14640. [PMID: 31746852 DOI: 10.1039/c9cc07494e] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The In(OTf)3-promoted three-component photoredox alkylarylation of styrenes with alkyl NHP esters and arenes to access alkylated arene derivatives through C-C bond cleavage and C-H functionalization is reported. By utilizing visible-light photoredox catalysis, alkyl N-hydroxyphthalimide esters serving as alkyl carbon-centered radicals and a wide range of arenes (e.g., indoles, pyrrole, and electron-rich arenes) as nucleophiles were used to enable the introduction of various alkyl groups and aryl groups across the C[double bond, length as m-dash]C bonds with excellent selectivity and functional group tolerance.
Collapse
Affiliation(s)
- Xia Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Ya-Fei Han
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|