1
|
Huang W, Wen K, Laughlin ST, Escorihuela J. Unveiling the reactivity of 2 H-(thio)pyran-2-(thi)ones in cycloaddition reactions with strained alkynes through density functional theory studies. Org Biomol Chem 2024; 22:8285-8292. [PMID: 39302140 DOI: 10.1039/d4ob01263a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Over the past two decades, click chemistry transformations have revolutionized chemical and biological sciences. Among the different strain-promoted cycloadditions, the inverse electron demand Diels-Alder reaction (IEDDA) has been established as a benchmark reaction. We have theoretically investigated the IEDDA reaction of endo-bicyclo[6.1.0]nonyne (endo-BCN) with 2H-pyran-2-one, 2H-thiopyran-2-one, 2H-pyran-2-thione and 2H-thiopyran-2-thione. These 2H-(thio)pyran-2-(thi)ones have displayed different reactivity towards endo-BCN. Density functional theory (DFT) calculations show, in agreement with experiments, that endo-BCN reacts significantly faster with 2H-thiopyran-2-one compared to other 2H-(thio)pyran-2-(thi)one derivatives because of the lower distortion energy. Experimentally determined second-order rate constants for the reaction of a 2H-pyran-2-thione with different strained derivatives, including a 1-methylcyclopropene derivative and several cycloalkynes (exo-BCN, (1R,8S)-bicyclo[6.1.0]non-4-yne-9,9-diyl)dimethanol, dibenzocycylooctyne and a light activatable silacycloheptyne, were used to validate the computational investigations and shed light on this reaction.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11790, USA.
| | - Kangqiao Wen
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11790, USA.
| | - Scott T Laughlin
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11790, USA.
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Avda. Vicente Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain.
| |
Collapse
|
2
|
Bu YJ, Tijaro-Bulla S, Cui H, Nitz M. Oxidation-Controlled, Strain-Promoted Tellurophene-Alkyne Cycloaddition (OSTAC): A Bioorthogonal Tellurophene-Dependent Conjugation Reaction. J Am Chem Soc 2024; 146:26161-26177. [PMID: 39259935 DOI: 10.1021/jacs.4c07275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Tellurophene-bearing small molecules have emerged as valuable tools for localizing cellular activities in vivo using mass cytometry. To broaden the utility of tellurophenes in chemical biology, we have developed a bioorthogonal reaction to facilitate tagging of tellurophene-bearing conjugates for downstream applications. Using TePhe, a tellurophene-based phenylalanine analogue, labeled recombinant proteins were generated for reaction development. Using these proteins, we demonstrate an oxidation-controlled, strain-promoted tellurophene-alkyne cycloaddition (OSTAC) reaction. Mild oxidation of the tellurophene ring with N-chlorosuccinimide produces a reactive Te(IV) species which undergoes rapid (k > 100 M-1 s-1) cycloaddition with bicyclo[6.1.0]nonyne (BCN) yielding a benzo-fused cyclooctane. Selective labeling of TePhe-containing proteins can be achieved in complex protein mixtures and on fixed cells. OSTAC reactions can be combined with strain-promoted azide alkyne cycloaddition (SPAAC) and copper-catalyzed azide alkyne click (CuAAC) reactions. Demonstrating the versatility of this approach, we observe the expected staining patterns for 5-ethynyl-2'-deoxyuridine (DNA synthesis-CuAAC) and immunohistochemistry targets in combination with TePhe (protein synthesis-OSTAC) in fixed cells. The favorable properties of the OSTAC reaction suggest its broad applicability in chemical biology.
Collapse
Affiliation(s)
- Yong Jia Bu
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | | | - Haissi Cui
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
3
|
Svatunek D. Computational Organic Chemistry: The Frontier for Understanding and Designing Bioorthogonal Cycloadditions. Top Curr Chem (Cham) 2024; 382:17. [PMID: 38727989 PMCID: PMC11087259 DOI: 10.1007/s41061-024-00461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/06/2024] [Indexed: 05/13/2024]
Abstract
Computational organic chemistry has become a valuable tool in the field of bioorthogonal chemistry, offering insights and aiding in the progression of this branch of chemistry. In this review, I present an overview of computational work in this field, including an exploration of both the primary computational analysis methods used and their application in the main areas of bioorthogonal chemistry: (3 + 2) and [4 + 2] cycloadditions. In the context of (3 + 2) cycloadditions, detailed studies of electronic effects have informed the evolution of cycloalkyne/1,3-dipole cycloadditions. Through computational techniques, researchers have found ways to adjust the electronic structure via hyperconjugation to enhance reactions without compromising stability. For [4 + 2] cycloadditions, methods such as distortion/interaction analysis and energy decomposition analysis have been beneficial, leading to the development of bioorthogonal reactants with improved reactivity and the creation of orthogonal reaction pairs. To conclude, I touch upon the emerging fields of cheminformatics and machine learning, which promise to play a role in future reaction discovery and optimization.
Collapse
Affiliation(s)
- Dennis Svatunek
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060, Vienna, Austria.
| |
Collapse
|
4
|
Escorihuela J. A Density Functional Theory Study on the Cobalt-Mediated Intramolecular Pauson–Khand Reaction of Enynes Containing a Vinyl Fluoride Moiety. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0042-1751392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractThe Co2(CO)8-mediated intramolecular Pauson–Khand reaction (PKR) is an effective method for constructing polycyclic structures. Recently, our group reported a series of this type of reaction involving fluorinated enynes that proceed with reasonable reaction rates and yields. However, mechanistic studies involving these fluorinated derivatives in intramolecular PKR are scarce. In this study, density functional theory calculations are used to clarify the mechanism and reactivity of enynes containing a vinyl fluoride moiety for this reaction. In agreement with previous studies, alkene insertion is considered to be the rate-determining step for the overall Pauson–Khand reaction of enynes containing a vinyl fluoride moiety. The effect of the substituent on the Co2(CO)8-mediated intramolecular Pauson–Khand reaction has also been investigated. When introducing heteroatoms as tethering units, the fluorinated enynes exhibited lower reactivity than the malonate homologues, whereas the use of a sulfur-based tether was unsuccessful. This computational study provides detailed information about the PKR mechanism and transition-state structures, and the results are validated with previous experimental results.
Collapse
|
5
|
Escorihuela J, Wolf LM. Computational Study on the Co-Mediated Intramolecular Pauson–Khand Reaction of Fluorinated and Chiral N-Tethered 1,7-Enynes. Organometallics 2022; 41:2525-2534. [PMID: 36185394 PMCID: PMC9516775 DOI: 10.1021/acs.organomet.2c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 11/28/2022]
Abstract
![]()
The Co2(CO)8-mediated intramolecular
Pauson–Khand
reaction is an elegant approach to obtain cyclopentenone derivatives
containing asymmetric centers. In this work, we employed density functional
theory calculations at the M11/6-311+G(d,p) level of theory to investigate
the mechanism and reactivity for the Pauson–Khand reaction
of fluorinated and asymmetric N-tethered 1,7-enynes.
The rate-determining step was found to be the intramolecular alkene
insertion into the carbon–cobalt bond. The stereoselectivity
of the alkene insertion step was rationalized by the different transition
states showing the coordination of the alkene through the Re- and Si-face. The effects of different
fluorine groups and steric effects on both the alkenyl and alkynyl
moieties were also theoretically investigated.
Collapse
Affiliation(s)
- Jorge Escorihuela
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100Burjassot, València, Spain
| | - Lawrence M. Wolf
- Department of Chemistry, University of Massachusetts−Lowell, 1 University Avenue, Lowell, Massachusetts01854, United States
| |
Collapse
|
6
|
García-Aznar P, Escorihuela J. Computational insights into the inverse electron-demand Diels-Alder reaction of norbornenes with 1,2,4,5-tetrazines: norbornene substituents' effects on the reaction rate. Org Biomol Chem 2022; 20:6400-6412. [PMID: 35876298 DOI: 10.1039/d2ob01121b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of the reaction rates and mechanism of click chemistry reactions still remains an interesting challenge in organic chemistry. In this regard, the inverse electron demand Diels-Alder (IEDDA) reaction represents a promising metal-free alternative with enhanced reaction rates compared to other reactions of the click chemistry toolbox. Among the different types of dienophiles used in the IEDDA reactions, norbornenes have been widely used given their high stability and fast reaction rates. The inverse electron-demand Diels Alder reaction of 3,6-dipyridin-2-yl-1,2,4,5-tetrazine with a series of norbornene derivatives was studied with quantum mechanical calculations at the M06-2X/6-311+G(d,p) level of theory. The theoretical predictions were confirmed with the experimental data and analyzed with the use of the distortion/interaction model. The obtained results will help in obtaining a better understanding of the factors that affect the relative cycloaddition rates of norbornenes with tetrazines, which are crucial for selectively tuning their efficacy.
Collapse
Affiliation(s)
- Pablo García-Aznar
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Avda. Vicente Andrés Estellés, s/n, Burjassot 46100, València, Spain.
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Avda. Vicente Andrés Estellés, s/n, Burjassot 46100, València, Spain.
| |
Collapse
|
7
|
De La Cruz LK, Bauer N, Cachuela A, Tam WS, Tripathi R, Yang X, Wang B. Light-Activated CO Donor as a Universal CO Surrogate for Pd-Catalyzed and Light-Mediated Carbonylation. Org Lett 2022; 24:4902-4907. [PMID: 35786951 DOI: 10.1021/acs.orglett.2c01726] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A low-molecular-weight, solid CO surrogate that only requires a low-power LED for activation to release 2 equiv of CO is reported. The surrogate can be universally implemented in various palladium-catalyzed carbonylative transformations. It is also compatible with protocols that employ blue-light to activate conventionally inaccessible substrates such as nonactivated alkyl halides. Furthermore, we demonstrate that the photolabile CO-releasing scaffold can be installed into polymeric materials, thereby creating new materials with CO-releasing capabilities.
Collapse
Affiliation(s)
- Ladie Kimberly De La Cruz
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Nicola Bauer
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Alyssa Cachuela
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Wing Sze Tam
- Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ravi Tripathi
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xiaoxiao Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
8
|
Chiavegatti Neto A, Soares KC, Santos MDS, Aímola TJ, Ferreira AG, Jardim GAM, Tormena CF, Paixão MW, Ferreira MAB. Mechanistic investigation of enolate/stabilized vinylogous carbanion-mediated organocatalytic azide (3 + 2) cycloaddition reactions for the synthesis of 1,2,3-triazoles. Org Biomol Chem 2022; 20:6019-6026. [PMID: 35411906 DOI: 10.1039/d2ob00391k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Herein, we report a fully detailed mechanistic study involving an organocatalyzed 1,3-dipolar cycloaddition via enolate or stabilized vinylogous carbanion intermediates and azide for the synthesis of 1,2,3-triazoles. A detailed investigation of the elementary steps, intermediates, and transition states of the two organocatalyzed metal-free click reactions is supported by DFT calculations and 1H NMR monitoring experiments, providing detailed profiles for both reaction mechanisms. Distortion-interaction activation-strain (DIAS) analysis was also employed to further elucidate the regioselectivity in both reactions.
Collapse
Affiliation(s)
- Attilio Chiavegatti Neto
- Department of Chemistry, Federal University of São Carlos - UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo, Brazil, 13565-905.
| | - Kelly Cintra Soares
- Department of Chemistry, Federal University of São Carlos - UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo, Brazil, 13565-905.
| | - Maiara da Silva Santos
- Department of Chemistry, Federal University of São Carlos - UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo, Brazil, 13565-905.
| | - Túlio Jardini Aímola
- Department of Chemistry, Federal University of São Carlos - UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo, Brazil, 13565-905.
| | - Antonio Gilberto Ferreira
- Department of Chemistry, Federal University of São Carlos - UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo, Brazil, 13565-905.
| | - Guilherme A M Jardim
- Department of Chemistry, Federal University of São Carlos - UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo, Brazil, 13565-905.
| | - Cláudio Francisco Tormena
- Institute of Chemistry, University of Campinas (UNICAMP), PO BOX 6154, Campinas, São Paulo CEP 13083-970, Brazil
| | - Márcio Weber Paixão
- Department of Chemistry, Federal University of São Carlos - UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo, Brazil, 13565-905.
| | - Marco Antonio Barbosa Ferreira
- Department of Chemistry, Federal University of São Carlos - UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo, Brazil, 13565-905.
| |
Collapse
|
9
|
Dones JM, Abularrage NS, Khanal N, Gold B, Raines RT. Acceleration of 1,3-Dipolar Cycloadditions by Integration of Strain and Electronic Tuning. J Am Chem Soc 2021; 143:9489-9497. [PMID: 34151576 DOI: 10.1021/jacs.1c03133] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The 1,3-dipolar cycloaddition between azides and alkynes provides new means to probe and control biological processes. A major challenge is to achieve high reaction rates with stable reagents. The optimization of alkynyl reagents has relied on two strategies: increasing strain and tuning electronics. We report on the integration of these strategies. A computational analysis suggested that a CH → N aryl substitution in dibenzocyclooctyne (DIBO) could be beneficial. In transition states, the nitrogen of 2-azabenzo-benzocyclooctyne (ABC) engages in an n→π* interaction with the C=O of α-azidoacetamides and forms a hydrogen bond with the N-H of α-diazoacetamides. These dipole-specific interactions act cooperatively with electronic activation of the strained π-bond to increase reactivity. We found that ABC does indeed react more quickly with α-azidoacetamides and α-diazoacetamides than its constitutional isomer, dibenzoazacyclooctyne (DIBAC). ABC and DIBAC have comparable chemical stability in a biomimetic solution. Both ABC and DIBO are accessible in three steps by the alkylidene carbene-mediated ring expansion of commercial cycloheptanones. Our findings enhance the accessibility and utility of 1,3-dipolar cycloadditions and encourage further innovation.
Collapse
Affiliation(s)
- Jesús M Dones
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nile S Abularrage
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Namrata Khanal
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Brian Gold
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Abstract
Click chemistry has been established rapidly as one of the most valuable methods for the chemical transformation of complex molecules. Due to the rapid rates, clean conversions to the products, and compatibility of the reagents and reaction conditions even in complex settings, it has found applications in many molecule-oriented disciplines. From the vast landscape of click reactions, approaches have emerged in the past decade centered around oxidative processes to generate in situ highly reactive synthons from dormant functionalities. These approaches have led to some of the fastest click reactions know to date. Here, we review the various methods that can be used for such oxidation-induced "one-pot" click chemistry for the transformation of small molecules, materials, and biomolecules. A comprehensive overview is provided of oxidation conditions that induce a click reaction, and oxidation conditions are orthogonal to other click reactions so that sequential "click-oxidation-click" derivatization of molecules can be performed in one pot. Our review of the relevant literature shows that this strategy is emerging as a powerful approach for the preparation of high-performance materials and the generation of complex biomolecules. As such, we expect that oxidation-induced "one-pot" click chemistry will widen in scope substantially in the forthcoming years.
Collapse
Affiliation(s)
- Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6807 WE Wageningen, The Netherlands
| | - Jordi F Keijzer
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6807 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6807 WE Wageningen, The Netherlands.,School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Floris van Delft
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6807 WE Wageningen, The Netherlands.,Synaffix BV, Industrielaan 63, 5349 AE, Oss, The Netherlands
| |
Collapse
|
11
|
Escorihuela J, Looijen WJE, Wang X, Aquino AJA, Lischka H, Zuilhof H. Cycloaddition of Strained Cyclic Alkenes and Ortho-Quinones: A Distortion/Interaction Analysis. J Org Chem 2020; 85:13557-13566. [PMID: 33105075 PMCID: PMC7656516 DOI: 10.1021/acs.joc.0c01674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The
chemistry of strained unsaturated cyclic compounds has experienced
remarkable growth in recent years via the development of metal–free
click reactions. Among these reactions, the cycloaddition of cyclopropenes
and their analogues to ortho-quinones has been established
as a highly promising click reaction. The present work investigates
the mechanism involved in the cycloaddition of strained dienes to ortho-quinones and structural factors that would influence
this reaction. For this purpose, we use B97D density functional theory
calculations throughout, and for relevant cases, we use spin component–scaled
MP2 calculations and single–point domain-based local pair natural
orbital coupled cluster (DLPNO-CCSD(T)) calculations. The outcomes
are analyzed in detail using the distortion/interaction model, and
suggestions for future experimental work are made.
Collapse
Affiliation(s)
- Jorge Escorihuela
- Departament de Quı́mica Orgànica, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Wilhelmus J E Looijen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Xiao Wang
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, China
| | - Adelia J A Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, China.,Institute for Soil Research, University of Natural Resources and Life Sciences, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria.,Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, China.,Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna, Austria.,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Hu Y, Roberts JM, Kilgore HR, Lani ASM, Raines RT, Schomaker JM. Triple, Mutually Orthogonal Bioorthogonal Pairs through the Design of Electronically Activated Sulfamate-Containing Cycloalkynes. J Am Chem Soc 2020; 142:18826-18835. [PMID: 33085477 PMCID: PMC7891878 DOI: 10.1021/jacs.0c06725] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interest in mutually exclusive pairs of bioorthogonal labeling reagents continues to drive the design of new compounds that are capable of fast and predictable reactions. The ability to easily modify S-, N-, and O-containing cyclooctynes (SNO-OCTs) enables electronic tuning of various SNO-OCTs to influence their cycloaddition rates with Type I-III dipoles. As opposed to optimizations based on just one specific dipole class, the electrophilicity of the alkynes in SNO-OCTs can be manipulated to achieve divergent reactivities and furnish mutually orthogonal dual ligation systems. Significant reaction rate enhancements of a difluorinated SNO-OCT derivative, as compared to the parent scaffold, were noted, with the second-order rate constant in cycloadditions with diazoacetamides exceeding 5.13 M-1 s-1. Computational and experimental studies were employed to inform the design of triple ligation systems that encompass three orthogonal reactivities. Finally, polar SNO-OCTs are rapidly internalized by mammalian cells and remain functional in the cytosol for live-cell labeling, highlighting their potential for diverse in vitro and in vivo applications.
Collapse
Affiliation(s)
- Yun Hu
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Jessica M. Roberts
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Henry R. Kilgore
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Amirah S. Mat Lani
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jennifer M. Schomaker
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
13
|
Yu S, Vermeeren P, van Dommelen K, Bickelhaupt FM, Hamlin TA. Understanding the 1,3-Dipolar Cycloadditions of Allenes. Chemistry 2020; 26:11529-11539. [PMID: 32220086 PMCID: PMC7540365 DOI: 10.1002/chem.202000857] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/25/2020] [Indexed: 02/03/2023]
Abstract
We have quantum chemically studied the reactivity, site-, and regioselectivity of the 1,3-dipolar cycloaddition between methyl azide and various allenes, including the archetypal allene propadiene, heteroallenes, and cyclic allenes, by using density functional theory (DFT). The 1,3-dipolar cycloaddition reactivity of linear (hetero)allenes decreases as the number of heteroatoms in the allene increases, and formation of the 1,5-adduct is, in all cases, favored over the 1,4-adduct. Both effects find their origin in the strength of the primary orbital interactions. The cycloaddition reactivity of cyclic allenes was also investigated, and the increased predistortion of allenes, that results upon cyclization, leads to systematically lower activation barriers not due to the expected variations in the strain energy, but instead from the differences in the interaction energy. The geometric predistortion of cyclic allenes enhances the reactivity compared to linear allenes through a unique mechanism that involves a smaller HOMO-LUMO gap, which manifests as more stabilizing orbital interactions.
Collapse
Affiliation(s)
- Song Yu
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Pascal Vermeeren
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Kevin van Dommelen
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institute for Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| |
Collapse
|
14
|
Escorihuela J, Olvera-Mancilla J, Alexandrova L, del Castillo LF, Compañ V. Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications. Polymers (Basel) 2020; 12:E1861. [PMID: 32825111 PMCID: PMC7564738 DOI: 10.3390/polym12091861] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
The rapid increasing of the population in combination with the emergence of new energy-consuming technologies has risen worldwide total energy consumption towards unprecedent values. Furthermore, fossil fuel reserves are running out very quickly and the polluting greenhouse gases emitted during their utilization need to be reduced. In this scenario, a few alternative energy sources have been proposed and, among these, proton exchange membrane (PEM) fuel cells are promising. Recently, polybenzimidazole-based polymers, featuring high chemical and thermal stability, in combination with fillers that can regulate the proton mobility, have attracted tremendous attention for their roles as PEMs in fuel cells. Recent advances in composite membranes based on polybenzimidazole (PBI) for high temperature PEM fuel cell applications are summarized and highlighted in this review. In addition, the challenges, future trends, and prospects of composite membranes based on PBI for solid electrolytes are also discussed.
Collapse
Affiliation(s)
- Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Jessica Olvera-Mancilla
- Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (J.O.-M.); (L.A.); (L.F.d.C.)
| | - Larissa Alexandrova
- Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (J.O.-M.); (L.A.); (L.F.d.C.)
| | - L. Felipe del Castillo
- Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (J.O.-M.); (L.A.); (L.F.d.C.)
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de València, Camino de Vera. s/n, 46022 Valencia, Spain
| |
Collapse
|
15
|
Lischka H, Shepard R, Müller T, Szalay PG, Pitzer RM, Aquino AJA, Araújo do Nascimento MM, Barbatti M, Belcher LT, Blaudeau JP, Borges I, Brozell SR, Carter EA, Das A, Gidofalvi G, González L, Hase WL, Kedziora G, Kertesz M, Kossoski F, Machado FBC, Matsika S, do Monte SA, Nachtigallová D, Nieman R, Oppel M, Parish CA, Plasser F, Spada RFK, Stahlberg EA, Ventura E, Yarkony DR, Zhang Z. The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry. J Chem Phys 2020; 152:134110. [PMID: 32268762 DOI: 10.1063/1.5144267] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The core part of the program system COLUMBUS allows highly efficient calculations using variational multireference (MR) methods in the framework of configuration interaction with single and double excitations (MR-CISD) and averaged quadratic coupled-cluster calculations (MR-AQCC), based on uncontracted sets of configurations and the graphical unitary group approach (GUGA). The availability of analytic MR-CISD and MR-AQCC energy gradients and analytic nonadiabatic couplings for MR-CISD enables exciting applications including, e.g., investigations of π-conjugated biradicaloid compounds, calculations of multitudes of excited states, development of diabatization procedures, and furnishing the electronic structure information for on-the-fly surface nonadiabatic dynamics. With fully variational uncontracted spin-orbit MRCI, COLUMBUS provides a unique possibility of performing high-level calculations on compounds containing heavy atoms up to lanthanides and actinides. Crucial for carrying out all of these calculations effectively is the availability of an efficient parallel code for the CI step. Configuration spaces of several billion in size now can be treated quite routinely on standard parallel computer clusters. Emerging developments in COLUMBUS, including the all configuration mean energy multiconfiguration self-consistent field method and the graphically contracted function method, promise to allow practically unlimited configuration space dimensions. Spin density based on the GUGA approach, analytic spin-orbit energy gradients, possibilities for local electron correlation MR calculations, development of general interfaces for nonadiabatic dynamics, and MRCI linear vibronic coupling models conclude this overview.
Collapse
Affiliation(s)
- Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Ron Shepard
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Thomas Müller
- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich 52428, Germany
| | - Péter G Szalay
- ELTE Eötvös Loránd University, Institute of Chemistry, Budapest, Hungary
| | - Russell M Pitzer
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Adelia J A Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | - Lachlan T Belcher
- Laser and Optics Research Center, Department of Physics, US Air Force Academy, Colorado 80840, USA
| | | | - Itamar Borges
- Departamento de Química, Instituto Militar de Engenharia, Rio de Janeiro, RJ 22290-270, Brazil
| | - Scott R Brozell
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Emily A Carter
- Office of the Chancellor and Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Box 951405, Los Angeles, California 90095-1405, USA
| | - Anita Das
- Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Gergely Gidofalvi
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258, USA
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - William L Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Gary Kedziora
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Miklos Kertesz
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC 20057-1227, USA
| | | | - Francisco B C Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, Pennsylvania 19122, USA
| | | | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 160610 Prague 6, Czech Republic
| | - Reed Nieman
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Markus Oppel
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Carol A Parish
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, USA
| | - Felix Plasser
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Rene F K Spada
- Departamento de Física, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | - Eric A Stahlberg
- Biomedical Informatics and Data Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Elizete Ventura
- Universidade Federal da Paraíba, 58059-900 João Pessoa, PB, Brazil
| | - David R Yarkony
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA
| | - Zhiyong Zhang
- Stanford Research Computing Center, Stanford University, 255 Panama Street, Stanford, California 94305, USA
| |
Collapse
|
16
|
Svatunek D, Pemberton RP, Mackey JL, Liu P, Houk KN. Concerted [4 + 2] and Stepwise (2 + 2) Cycloadditions of Tetrafluoroethylene with Butadiene: DFT and DLPNO-UCCSD(T) Explorations. J Org Chem 2020; 85:3858-3864. [PMID: 32031811 PMCID: PMC7063576 DOI: 10.1021/acs.joc.0c00222] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Tetrafluoroethylene and butadiene
form the 2 + 2 cycloadduct under
kinetic control, but the Diels–Alder cycloadduct is formed
under thermodynamic control. Borden and Getty showed that the preference
for 2 + 2 cycloaddition is due to the necessity for syn-pyramidalization of the two CF2 groups in the 4 + 2 transition
state. We have explored the full potential energy surface for the
concerted and stepwise reactions of tetrafluoroethylene and butadiene
with density functional theory, DFT (B3LYP and M06-2X), DLPNO-UCCSD(T),
and CASSCF-NEVPT2 methods and with the distortion/interaction–activation
strain model to explain the energetics of different pathways. The
2 + 2 cycloadduct is formed by an anti-transition state followed by
two rotations and a final bond formation transition state. Energetics
are compared to the reaction of maleic anhydride and ethylene.
Collapse
Affiliation(s)
- Dennis Svatunek
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Ryan P Pemberton
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Joel L Mackey
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
17
|
Svatunek D, Houk KN. autoDIAS: a python tool for an automated distortion/interaction activation strain analysis. J Comput Chem 2019; 40:2509-2515. [DOI: 10.1002/jcc.26023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/20/2019] [Accepted: 06/16/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Dennis Svatunek
- Department of Chemistry and BiochemistryUniversity of California Los Angeles California
| | - Kendall N. Houk
- Department of Chemistry and BiochemistryUniversity of California Los Angeles California
| |
Collapse
|
18
|
Hamlin TA, Levandowski BJ, Narsaria AK, Houk KN, Bickelhaupt FM. Structural Distortion of Cycloalkynes Influences Cycloaddition Rates both by Strain and Interaction Energies. Chemistry 2019; 25:6342-6348. [PMID: 30779472 PMCID: PMC6519225 DOI: 10.1002/chem.201900295] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/16/2019] [Indexed: 12/27/2022]
Abstract
The reactivities of 2‐butyne, cycloheptyne, cyclooctyne, and cyclononyne in the 1,3‐dipolar cycloaddition reaction with methyl azide were evaluated through DFT calculations at the M06‐2X/6‐311++G(d)//M06‐2X/6‐31+G(d) level of theory. Computed activation free energies for the cycloadditions of cycloalkynes are 16.5–22.0 kcal mol−1 lower in energy than that of the acyclic 2‐butyne. The strained or predistorted nature of cycloalkynes is often solely used to rationalize this significant rate enhancement. Our distortion/interaction–activation strain analysis has been revealed that the degree of geometrical predistortion of the cycloalkyne ground‐state geometries acts to enhance reactivity compared with that of acyclic alkynes through three distinct mechanisms, not only due to (i) a reduced strain or distortion energy, but also to (ii) a smaller HOMO–LUMO gap, and (iii) an enhanced orbital overlap, which both contribute to more stabilizing orbital interactions.
Collapse
Affiliation(s)
- Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Brian J Levandowski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Ayush K Narsaria
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - F Matthias Bickelhaupt
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands.,Institute for Molecules and Materials (IMM), Radboud University of Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Reyes YIA, Janairo GC, Franco FC. Theoretical insights on the binding of isoniazid to the active site residues of Mycobacterium tuberculosis catalase-peroxidase. Tuberculosis (Edinb) 2019; 114:61-68. [PMID: 30711159 DOI: 10.1016/j.tube.2018.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/29/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
Isoniazid (INH) is known to cause the exclusive lethal action to Mycobacterium tuberculosis (M. tb.) cells because of the pathogen's own catalase-peroxidase (katG) enzyme that converts INH to a very reactive radical. Thus, in order to gain insights on the interaction of INH with the individual active site residues (Res) of katG, this study presents a computational approach via molecular docking and density functional theory (DFT) using augmented models to study the individual INH-Res interactions. Seven amino acid residues directly interacts with INH: Arg104, Asp137, His108, Ile228, Trp107, Tyr229, and Val230. The residues with the highest interaction energies are Arg104 (-39.64 kcal/mol) and Asp137 (-32.85 kcal/mol) mainly due to strong ion-dipole and H-bonding interactions present in the complexes, while the weakest interaction was observed for Ile228 (-13.78 kcal/mol). Molecular electrostatic potential surface revealed complementary regions for dipole interactions and charge distribution analysis further shows that INH generally donates electrons to the residues. The results in this study agrees with the previous experimental findings and provides new insights into the catalase dependent activation of INH and the methods presented may be valuable in the study of biological metabolism of molecules.
Collapse
Affiliation(s)
- Yves Ira A Reyes
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922, Manila, Philippines
| | - Gerardo C Janairo
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922, Manila, Philippines
| | - Francisco C Franco
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922, Manila, Philippines.
| |
Collapse
|
20
|
Hamlin TA, Svatunek D, Yu S, Ridder L, Infante I, Visscher L, Bickelhaupt FM. Elucidating the Trends in Reactivity of Aza-1,3-Dipolar Cycloadditions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800572] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Trevor A. Hamlin
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM); Vrije Universiteit Amsterdam; De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - Dennis Svatunek
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM); Vrije Universiteit Amsterdam; De Boelelaan 1083 1081 HV Amsterdam The Netherlands
- Institute of Applied Synthetic Chemistry; Technische Universität Wien (TU Wien); Getreidemarkt 9 1060 Vienna Austria
| | - Song Yu
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM); Vrije Universiteit Amsterdam; De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - Lars Ridder
- Netherlands eScience Center; Science Park 140 1098 XG Amsterdam The Netherlands
| | - Ivan Infante
- Institute for Molecules and Materials (IMM); Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Lucas Visscher
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM); Vrije Universiteit Amsterdam; De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM); Vrije Universiteit Amsterdam; De Boelelaan 1083 1081 HV Amsterdam The Netherlands
- Institute for Molecules and Materials (IMM); Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
21
|
Gahtory D, Sen R, Kuzmyn AR, Escorihuela J, Zuilhof H. Strain-Promoted Cycloaddition of Cyclopropenes with o-Quinones: A Rapid Click Reaction. Angew Chem Int Ed Engl 2018; 57:10118-10122. [PMID: 29542846 PMCID: PMC6099469 DOI: 10.1002/anie.201800937] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Indexed: 02/06/2023]
Abstract
Novel click reactions are of continued interest in fields as diverse as bio-conjugation, polymer science and surface chemistry. Qualification as a proper "click" reaction requires stringent criteria, including fast kinetics and high conversion, to be met. Herein, we report a novel strain-promoted cycloaddition between cyclopropenes and o-quinones in solution and on a surface. We demonstrate the "click character" of the reaction in solution and on surfaces for both monolayer and polymer brush functionalization.
Collapse
Affiliation(s)
- Digvijay Gahtory
- Laboratory of Organic ChemistryWageningen University and ResearchStippeneng 46708WEWageningenThe Netherlands
| | - Rickdeb Sen
- Laboratory of Organic ChemistryWageningen University and ResearchStippeneng 46708WEWageningenThe Netherlands
| | - Andriy R. Kuzmyn
- Laboratory of Organic ChemistryWageningen University and ResearchStippeneng 46708WEWageningenThe Netherlands
| | - Jorge Escorihuela
- Departamento de Química OrgánicaFacultad de QuímicaUniversidad de ValenciaAvda. Vicente Andrés Estellés s.n.46100-BurjassotValenciaSpain
| | - Han Zuilhof
- Laboratory of Organic ChemistryWageningen University and ResearchStippeneng 46708WEWageningenThe Netherlands
- School of Pharmaceutical Sciences and TechnologyTianjin University92 Weijin RoadTianjinP.R. China
- Department of Chemical and Materials EngineeringKing Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
22
|
Lischka H, Nachtigallová D, Aquino AJA, Szalay PG, Plasser F, Machado FBC, Barbatti M. Multireference Approaches for Excited States of Molecules. Chem Rev 2018; 118:7293-7361. [DOI: 10.1021/acs.chemrev.8b00244] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Adélia J. A. Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Laboratory of Theoretical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Felix Plasser
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Department of Chemistry, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | | |
Collapse
|
23
|
Gahtory D, Sen R, Kuzmyn AR, Escorihuela J, Zuilhof H. Strain-Promoted Cycloaddition of Cyclopropenes with o
-Quinones: A Rapid Click Reaction. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Digvijay Gahtory
- Laboratory of Organic Chemistry; Wageningen University and Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Rickdeb Sen
- Laboratory of Organic Chemistry; Wageningen University and Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Andriy R. Kuzmyn
- Laboratory of Organic Chemistry; Wageningen University and Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Jorge Escorihuela
- Departamento de Química Orgánica; Facultad de Química; Universidad de Valencia; Avda. Vicente Andrés Estellés s.n. 46100-Burjassot Valencia Spain
| | - Han Zuilhof
- Laboratory of Organic Chemistry; Wageningen University and Research; Stippeneng 4 6708 WE Wageningen The Netherlands
- School of Pharmaceutical Sciences and Technology; Tianjin University; 92 Weijin Road Tianjin P.R. China
- Department of Chemical and Materials Engineering; King Abdulaziz University; Jeddah Saudi Arabia
| |
Collapse
|