1
|
Campos PRO, Alberto EE. Pnictogen and Chalcogen Salts as Alkylating Agents. CHEM REC 2024; 24:e202400139. [PMID: 39548904 DOI: 10.1002/tcr.202400139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/19/2024] [Indexed: 11/18/2024]
Abstract
Alkylation reactions and their products are considered crucial in various contexts. Synthetically, the alkylation of a nucleophile is usually promoted using hazardous alkyl halides. Here, we aim to highlight the potential of pnictogen (ammonium or phosphonium) and chalcogen salts (sulfonium, selenonium, and telluronium) to function as alkylating agents. These compounds can be considered as non-volatile electrophilic alkyl reservoirs. We will center our discussion on the strategies developed in recent years to expand the synthetic utility of these salts in terms of transferable alkyl groups, substrate scope, and product selectivity.
Collapse
Affiliation(s)
- Philipe Raphael O Campos
- Department of Chemistry, Universidade Federal de Minas Gerais (UFMG), 31.270-901, Belo Horizonte, MG, Brazil
| | - Eduardo E Alberto
- Department of Chemistry, Universidade Federal de Minas Gerais (UFMG), 31.270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
Das B, Sahoo AK, Alam M, Panda SJ, Purohit CS, Doddi A. Bipyridyl Functionalized NHC-Sulfenyl, Selenenyl Cations; Potential Species for Alkylation Reactions and Ligands in Copper(I) Catalysis. Chempluschem 2024:e202400623. [PMID: 39558705 DOI: 10.1002/cplu.202400623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Reactions of bipyridyl-functionalized imidazole-thiones and selones with MeX (X=I, OTf) afforded sulfenyl and selenenyl cations [(NNC)EMe]X (2/3, E=S, Se). Further reactions of these main-group cations with [Cu(CH3CN)4]BF4, Cu(OTf) furnished dicationic [{Cu(μ-I)(NNC)EMe}2][Y]2 (5/6, Y=BF4, OTf) and tricationic copper(I) complexes [Cu{(NNC)EMe}2](OTf)2BF4 (7 a/7 b) when employed [(NNC)EMe]I and [(NNC)EMe]OTf respectively. All these cationic complexes were characterized by various spectroscopic techniques, including X-ray diffraction analysis. The solid-state structures revealed novel bonding modes of the cations. The cationic nature of new complexes was analyzed by the 77Se NMR spectroscopy, which indicated different electronic environments around the selenium centers. The cations [(NNC)EMe]X (X= I, OTf), and (NNC)SMe bearing copper complex [{Cu(μ-I)(NNC)EMe}2][Y]2 proved as potential candidates for alkylation of various Lewis bases and as molecular catalyst in aldehyde-alkyne-amine coupling reactions, respectively. The latter catalytic reactions yielded a range of three-component products in good to excellent yields with low catalyst loading under solvent-free conditions, which demonstrate the potential utility of group-16 cations as ancillary ligands in homogeneous catalysis.
Collapse
Affiliation(s)
- Bhagyashree Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Industrial Training Institute (ITI), Engineering School Road, Ganjam, Odisha, 760010, India
| | - Amiya Kumar Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Industrial Training Institute (ITI), Engineering School Road, Ganjam, Odisha, 760010, India
| | - Maksood Alam
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Industrial Training Institute (ITI), Engineering School Road, Ganjam, Odisha, 760010, India
| | - Subhra Jyoti Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
| | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
| | - Adinarayana Doddi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Industrial Training Institute (ITI), Engineering School Road, Ganjam, Odisha, 760010, India
| |
Collapse
|
3
|
Nobre PC, Cordeiro P, Chipoline IC, Menezes V, Santos KVS, Ángel AYB, Alberto EE, Nascimento V. Telluride-Based Pillar[5]arene: A Recyclable Catalyst for Alkylation Reactions in Aqueous Solution. J Org Chem 2024; 89:12982-12988. [PMID: 39233358 PMCID: PMC11421007 DOI: 10.1021/acs.joc.4c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The syntheses of previously unknown sulfide- and telluride-pillar[n]arenes are reported here. These macrocycles, among others, were tested as catalysts for alkylation reactions in aqueous solutions. Telluride-pillar[5]arene (P[5]-TePh) showed the best performance, emulating the behavior of the methyltransferase enzyme cofactor S-adenosyl-l-methionine. Using 1.0 mol % of P[5]-TePh, benzyl bromides reacted with NaCN/NaN3 in water, yielding organic nitriles/azides. The catalyst was recycled and efficiently reused for up to six cycles. 1H NMR experiments indicate a possible interaction between the substrate and P[5]-TePh's cavity.
Collapse
Affiliation(s)
- Patrick C Nobre
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Pâmella Cordeiro
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Ingrid C Chipoline
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Victor Menezes
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Kaila V S Santos
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Alix Y Bastidas Ángel
- Departamento de Química, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Eduardo E Alberto
- Departamento de Química, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Vanessa Nascimento
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| |
Collapse
|
4
|
Dutta B, Dutta N, Dutta A, Gogoi M, Mehra S, Kumar A, Deori K, Sarma D. [DDQM][HSO 4]/TBHP as a Multifunctional Catalyst for the Metal Free Tandem Oxidative Synthesis of 2-Phenylquinazolin-4(3 H)-ones. J Org Chem 2023; 88:14748-14752. [PMID: 35959933 DOI: 10.1021/acs.joc.2c00908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A bifunctional ionic liquid (IL) [DDQM][HSO4] has been designed and explored as a three-way catalyst for the synthesis of 2-phenylquinazolin-4(3H)-ones from anthranilamide and benzyl alcohol in 3.5 min incorporating microwave irradiation. Photochemically the reaction proceeds for 4 h at room temperature and thermally for 8 h at 120 °C. Further IL-assisted metal, solvent, and base free in situ oxidation of benzyl alcohols to aldehydes shows its task specificity. The multifunctionality of the IL was reestablished with the synthesis of two Wnt pathway antagonists.
Collapse
Affiliation(s)
- Bidyutjyoti Dutta
- Department of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Nilakshi Dutta
- Department of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Apurba Dutta
- Department of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Montu Gogoi
- Department of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Sanjay Mehra
- AcSIR, Salt and Marine Chemicals Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Arvind Kumar
- AcSIR, Salt and Marine Chemicals Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Kalyanjyoti Deori
- Department of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Diganta Sarma
- Department of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India
| |
Collapse
|
5
|
Cataldo VA, Taimoory SM, Mohammadzadeh S, Guterman R, Trant J. A Solid Alkylation: Highly Recyclable, Flow Chemistry‐Ready, Resin‐Supported Thioimidazoliums Alkylate Sulfur‐Centered Nucleophile. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vincenzo Alessandro Cataldo
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung Colloid Chemistry Am Muhlenberg 1 Potsdam GERMANY
| | | | | | - Ryan Guterman
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung Colloid Chemistry Potsdam GERMANY
| | - John Trant
- University of Windsor Chemistry and Biochemistry 401 Sunset Ave. N9B 3P4 Windsor CANADA
| |
Collapse
|
6
|
Ardon-Munoz LG, Bolliger JL. Oxidative Cyclization of 4‐(2‐Mercaptophenyl)‐substituted 4H‐1,2,4‐Triazolium Species to Tricyclic Benzothiazolium Salts. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Jeanne Lucille Bolliger
- Oklahoma State University The College of Arts and Sciences Chemistry 107 Physical Sciences 74078 Stillwater UNITED STATES
| |
Collapse
|
7
|
Liu C, Chen B, Shi W, Huang W, Qian H. Ionic Liquids for Enhanced Drug Delivery: Recent Progress and Prevailing Challenges. Mol Pharm 2022; 19:1033-1046. [PMID: 35274963 DOI: 10.1021/acs.molpharmaceut.1c00960] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ionic liquids (ILs) are a class of nonmolecular compounds composed only of ions. Compared with traditional organic solvents, ILs have the advantages of wide chemical space, diverse and flexible structures, negligible vapor pressure, and high thermal stability, which make them widely used in many fields of modern science, such as chemical synthesis and catalytic decomposition, electrochemistry, biomass conversion, and biotransformation biotechnology. Because of their special characteristics, ILs have been favored in the pharmaceutical field recently, especially for the development of efficient drug delivery systems. So far, ILs have been successfully designed to promote the dissolution of poorly soluble drugs and the destruction of physiological barriers, such as the tight junction between the stratum corneum and the intestinal epithelium. In addition, ILs can also be combined with other drug strategies to stabilize the structure of small molecules. This Review mainly introduces the application of ILs in drug delivery, emphasizes the potential mechanism of ILs, and presents the key research directions of ILs in the future.
Collapse
Affiliation(s)
- Chunxia Liu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Bin Chen
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| |
Collapse
|
8
|
Martins NS, Ángel AYB, Anghinoni JM, Lenardão EJ, Barcellos T, Alberto EE. From Stoichiometric Reagents to Catalytic Partners: Selenonium Salts as Alkylating Agents for Nucleophilic Displacement Reactions in Water. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202100797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nayara Silva Martins
- Grupo de Síntese e Catálise Orgânica – GSCO Departamento de Química Universidade Federal de Minas Gerais – UFMG 31.270-901 Belo Horizonte, MG Brazil
| | - Alix Y. Bastidas Ángel
- Grupo de Síntese e Catálise Orgânica – GSCO Departamento de Química Universidade Federal de Minas Gerais – UFMG 31.270-901 Belo Horizonte, MG Brazil
| | - João M. Anghinoni
- Laboratório de Síntese Orgânica Limpa – LASOL CCQFA Universidade Federal de Pelotas – UFPel P.O. box 354 96010-900 Pelotas, RS Brazil
| | - Eder J. Lenardão
- Laboratório de Síntese Orgânica Limpa – LASOL CCQFA Universidade Federal de Pelotas – UFPel P.O. box 354 96010-900 Pelotas, RS Brazil
| | - Thiago Barcellos
- Laboratory of Biotechnology of Natural and Synthetic Products Universidade de Caxias do Sul 95070-560 Caxias do Sul, RS Brazil
| | - Eduardo E. Alberto
- Grupo de Síntese e Catálise Orgânica – GSCO Departamento de Química Universidade Federal de Minas Gerais – UFMG 31.270-901 Belo Horizonte, MG Brazil
| |
Collapse
|
9
|
Sharma RK, Ghosh P. Lanthanide-Doped Luminescent Nanophosphors via Ionic Liquids. Front Chem 2021; 9:715531. [PMID: 34513795 PMCID: PMC8432941 DOI: 10.3389/fchem.2021.715531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022] Open
Abstract
Lanthanide (Ln3+) ion(s)-doped or rare-earth ion(s)-doped nanomaterials have been considered a very important class of nanophosphors for various photonic and biophotonic applications. Unlike semiconductors and organic-based luminescent particles, the optical properties of Ln3+-doped nanophosphors are independent of the size of the nanoparticles. However, by varying the crystal phase, morphology, and lattice strain of the host materials along with making core-shell structure, the relaxation dynamics of dopant Ln3+ ions can be effectively tuned. Interestingly, a judicious choice of dopant ions leads to unparallel photophysical dynamics, such as quantum cutting, upconversion, and energy transfer. Recently, ionic liquids (ILs) have drawn tremendous attention in the field of nanomaterials synthesis due to their unique properties like negligible vapor pressure, nonflammability, and, most importantly, tunability; thus, they are often called "green" and "designer" solvents. This review article provides a critical overview of the latest developments in the ILs-assisted synthesis of rare-earth-doped nanomaterials and their subsequent photonic/biophotonic applications, such as energy-efficient lighting and solar cell applications, photodynamic therapy, and in vivo and in vitro bioimaging. This article will emphasize how luminescence dynamics of dopant rare-earth ions can be tuned by changing the basic properties of the host materials like crystal phase, morphology, and lattice strain, which can be eventually tuned by various properties of ILs such as cation/anion combination, alkyl chain length, and viscosity. Last but not least, different aspects of ILs like their ability to act as templating agents, solvents, and reaction partners and sometimes their "three-in-one" use in nanomaterials synthesis are highlighted along with various photoluminescence mechanisms of Ln3+ ion like up- and downconversion (UC and DC).
Collapse
Affiliation(s)
- Rahul Kumar Sharma
- Department of Chemistry, Government Shyam Sundar Agrawal PG College, Jabalpur, India
| | - Pushpal Ghosh
- Department of Chemistry, School of Chemical Sciences and Technology, Dr. Hari Singh Gour University (A Central University), Sagar, India
| |
Collapse
|
10
|
Di Matteo P, Bortolami M, Feroci M, Scarano V, Petrucci R. Electrochemical Transformations of Methylxanthines in Non‐Aqueous Medium. ChemElectroChem 2021. [DOI: 10.1002/celc.202100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Paola Di Matteo
- Department of Chemical Engineering Materials Environment Sapienza University of Rome Via Eudossiana 18 00184 Rome Italy
| | - Martina Bortolami
- Department of Basic and Applied Sciences for Engineering Sapienza University of Rome Via del Castro Laurenziano 7 00161 Rome Italy
| | - Marta Feroci
- Department of Basic and Applied Sciences for Engineering Sapienza University of Rome Via del Castro Laurenziano 7 00161 Rome Italy
| | - Vincenzo Scarano
- Department of Basic and Applied Sciences for Engineering Sapienza University of Rome Via del Castro Laurenziano 7 00161 Rome Italy
| | - Rita Petrucci
- Department of Basic and Applied Sciences for Engineering Sapienza University of Rome Via del Castro Laurenziano 7 00161 Rome Italy
| |
Collapse
|
11
|
Taimoory SM, Cataldo VA, Schäfer A, Trant JF, Guterman R. Not-So-Innocent Anions Determine the Mechanism of Cationic Alkylators. Chemistry 2021; 27:3440-3448. [PMID: 33137244 PMCID: PMC7898791 DOI: 10.1002/chem.202004208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/23/2020] [Indexed: 12/15/2022]
Abstract
Alkylating reagents based on thioimidazolium ionic liquids were synthesized and the influence of the anion on the alkylation reaction mechanism explored in detail using both experimental and computational methods. Thioimidazolium cations transfer alkyl substituents to nucleophiles, however the reaction rate was highly dependent on anion identity, demonstrating that the anion is not innocent in the mechanism. Detailed analysis of the computationally-derived potential energy surfaces associated with possible mechanisms indicated that this dependence arises from a combination of anion induced electronic, steric and coordinating effects, with highly nucleophilic anions catalyzing a 2-step process while highly non-nucleophilic, delocalized anions favor a 1-step reaction. This work also confirms the presence of ion-pairs and aggregates in solution thus supporting anion-induced control over the reaction rate and mechanism. These findings provide new insight into an old reaction allowing for better design of cationic alkylators in synthesis, gene expression, polymer science, and protein chemistry applications.
Collapse
Affiliation(s)
- S Maryamdokht Taimoory
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., ON, N9B 3P4, Windsor, Canada.,Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, MI, 48109, USA
| | - Vincenzo Alessandro Cataldo
- Colloid Chemistry Department, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1 OT Golm, 14476, Potsdam, Germany
| | - Andreas Schäfer
- Institut für Chemie und Biochemie-Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., ON, N9B 3P4, Windsor, Canada
| | - Ryan Guterman
- Colloid Chemistry Department, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1 OT Golm, 14476, Potsdam, Germany
| |
Collapse
|
12
|
Lim D, Wen X, Seebeck FP. Selenoimidazolium Salts as Supramolecular Reagents for Protein Alkylation. Chembiochem 2020; 21:3515-3520. [DOI: 10.1002/cbic.202000557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 12/15/2022]
Affiliation(s)
- David Lim
- Department of Chemistry University of Basel Mattenstrasse 24a Basel 4002 Switzerland
| | - Xiaojin Wen
- Department of Chemistry University of Basel Mattenstrasse 24a Basel 4002 Switzerland
| | - Florian P. Seebeck
- Department of Chemistry University of Basel Mattenstrasse 24a Basel 4002 Switzerland
| |
Collapse
|
13
|
Gelbrich T, Lampl M, Laus G, Kahlenberg V, Huppertz H, Schottenberger H. Synthesis and crystal structures of two 1,3-di(alk-yloxy)-2-(methyl-sulfan-yl)imidazolium tetra-fluorido-borates. Acta Crystallogr E Crystallogr Commun 2020; 76:552-556. [PMID: 32280502 PMCID: PMC7133041 DOI: 10.1107/s2056989020003643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/11/2020] [Indexed: 11/16/2022]
Abstract
Two salts were prepared by methyl-ation of the respective imidazoline-2-thione at the sulfur atom, using Meerwein's salt (tri-methyl-oxonium tetra-fluorido-borate) in CH2Cl2. 1,3-Dimeth-oxy-2-(methyl-sulfan-yl)imidazolium tetra-fluorido-borate (1), C6H11N2O2S+·BF4 -, displays a syn conformation of its two meth-oxy groups relative to each other whereas the two benz-yloxy groups present in 1,3-dibenz-yloxy-2-(methyl-sulfan-yl)imidazolium tetra-fluorido-borate (2), C18H19N2O2S+·BF4 -, adopt an anti conformation. In the mol-ecules of 1 and 2, the methyl-sulfanyl group is rotated out of the plane of the respective heterocyclic ring. In both crystal structures, inter-molecular inter-actions are dominated by C-H⋯F-B contacts, leading to three-dimensional networks. The tetra-fluorido-borate counter-ion of 2 is disordered over three orientations (occupancy ratio 0.42:0.34:0.24), which are related by rotation about one of the B-F bonds.
Collapse
Affiliation(s)
- Thomas Gelbrich
- University of Innsbruck, Institute of Pharmacy, Innrain 52, 6020 Innsbruck, Austria
| | - Martin Lampl
- University of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80-82, 6020 Innsbruck, Austria
| | - Gerhard Laus
- University of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80-82, 6020 Innsbruck, Austria
| | - Volker Kahlenberg
- University of Innsbruck, Institute of Mineralogy and Petrography, Innrain 52, 6020 Innsbruck, Austria
| | - Hubert Huppertz
- University of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80-82, 6020 Innsbruck, Austria
| | - Herwig Schottenberger
- University of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
14
|
Nerdinger S, Fliri L, Partl G, Wurst K, Gelbrich T, Schottenberger H. Expedient Routes to 1,2,4-Triazolinium Salts. HETEROCYCLES 2020. [DOI: 10.3987/com-19-s(f)49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Mezzetta A, Poderelli L, D'Andrea F, Pomelli CS, Chiappe C, Guazzelli L. Unexpected Intrinsic Lability of Thiol-Functionalized Carboxylate Imidazolium Ionic Liquids. Molecules 2019; 24:E3571. [PMID: 31623295 PMCID: PMC6804084 DOI: 10.3390/molecules24193571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 11/16/2022] Open
Abstract
New thiol-functionalized carboxylate ionic liquids (ILs), varying both for the cation and for the anion structures, have been prepared as new potential redox switching systems by reacting either 3-mercapto propionic acid (3-MPA) or N-acetyl-cysteine (NAC) with commercially available methyl carbonate ILs. Different ratios of thiol/disulfide ILs were obtained depending both on the acid employed in the neutralization reaction and on the reaction conditions used. Surprisingly, the imidazolium ILs displayed limited thermal stability which resulted in the formation of an imidazole 2-thione and a new sulfide ionic liquid. Conversely, the formation of the imidazole 2-thione was not observed when phosphonium disulfide ILs were heated, thus confirming the involvement of the imidazolium ring in an unexpected side reaction. An insight into the mechanism of the decomposition has been provided by means of DFT calculations.
Collapse
Affiliation(s)
- Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy.
| | - Lorenzo Poderelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy.
| | - Felicia D'Andrea
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy.
| | | | - Cinzia Chiappe
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy.
| | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy.
| |
Collapse
|
16
|
Lampl M, Schlapp-Hackl I, Wurst K, Gelbrich T, Kopacka H, Müller T, Kreutz C, Naier B, Partl GJ, Kahlenberg V, Amer H, Bacher M, Rosenau T, Huppertz H, Schottenberger H. Synthetic and structural studies on pentafluorobenzylated imidazole systems. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2018.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Pandolfi F, Mattiello L, Zane D, Feroci M. Electrochemical behaviour of 9-methylcaffeinium iodide and in situ electrochemical synthesis of hymeniacidin. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|