1
|
Damico A, Shrestha G, Das A, Stine KJ, Demchenko AV. SFox imidates as versatile glycosyl donors for chemical glycosylation. Org Biomol Chem 2024; 22:5214-5223. [PMID: 38867654 PMCID: PMC11583801 DOI: 10.1039/d4ob00679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Described herein is a continuation of our studies dedicated to the development of novel classes of leaving groups based on O- and S-imidates. The main focus of the study presented herein is the synthesis of novel 3,3-difluoro-3H-indol-2-ylthio (SFox) imidates and their application as glycosyl donors in chemical glycosylation. Being thioimidates, these compounds are more stable than O-imidates albeit much more reactive than conventional alkyl/arylthio glycosides. This study demonstrates that SFox imidates can be activated either with soft thiophilic reagents (N-iodosuccinimide or transition metal salts), typical for the activation of thioglycosides or thioimidates, or hard electrophilic reagents (protic or Lewis acids) common for the activation of O-imidates. Expectedly, complete β-selectivity was obtained from SFox donors equipped with 2-O-benzoyl group. Surprisingly, complete α-selectivity was obtained from 2-O-benzylated SFox imidates in all investigated cases.
Collapse
Affiliation(s)
- Alessandra Damico
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St Louis, Missouri, 63103, USA.
| | - Ganesh Shrestha
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, Missouri 63121, USA
| | - Anupama Das
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St Louis, Missouri, 63103, USA.
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, Missouri 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St Louis, Missouri, 63103, USA.
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, Missouri 63121, USA
| |
Collapse
|
2
|
Demchenko AV, De Meo C. The 4K reaction. Carbohydr Res 2024; 538:109102. [PMID: 38569333 DOI: 10.1016/j.carres.2024.109102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
The classical Koenigs-Knorr glycosidation of bromides or chlorides promoted with Ag2O or Ag2CO3 works only with reactive substrates (ideally both donor and acceptor). This reaction was found to be practically ineffective with unreactive donors such as per-O-benzoylated mannosyl bromide. Recently, it was discovered that the addition of catalytic (Lewis) acids to a silver salt-promoted reaction has a dramatic effect on the reaction rate and yield. A tentative mechanism for this cooperatively-catalyzed glycosylation reaction has been proposed, and the improved understanding of the reaction led to more efficient protocols and broader applications to a variety of glycosidic linkages. Since Ag2O-mediated activation was introduced by German chemists Koenigs and Knorr, and "cooperatively catalyzed" is Kooperativ Katalysiert in German, we refer to this new reaction as "the 4K reaction."
Collapse
Affiliation(s)
- Alexei V Demchenko
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, United States.
| | - Cristina De Meo
- Department of Chemistry, Southern Illinois University Edwardsville, 1 Hairpin Dr., Edwardsville, IL, 62025, United States
| |
Collapse
|
3
|
Dave BP, Shah YB, Maheshwari KG, Mansuri KA, Prajapati BS, Postwala HI, Chorawala MR. Pathophysiological Aspects and Therapeutic Armamentarium of Alzheimer's Disease: Recent Trends and Future Development. Cell Mol Neurobiol 2023; 43:3847-3884. [PMID: 37725199 DOI: 10.1007/s10571-023-01408-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Alzheimer's disease (AD) is the primary cause of dementia and is characterized by the death of brain cells due to the accumulation of insoluble amyloid plaques, hyperphosphorylation of tau protein, and the formation of neurofibrillary tangles within the cells. AD is also associated with other pathologies such as neuroinflammation, dysfunction of synaptic connections and circuits, disorders in mitochondrial function and energy production, epigenetic changes, and abnormalities in the vascular system. Despite extensive research conducted over the last hundred years, little is established about what causes AD or how to effectively treat it. Given the severity of the disease and the increasing number of affected individuals, there is a critical need to discover effective medications for AD. The US Food and Drug Administration (FDA) has approved several new drug molecules for AD management since 2003, but these drugs only provide temporary relief of symptoms and do not address the underlying causes of the disease. Currently, available medications focus on correcting the neurotransmitter disruption observed in AD, including cholinesterase inhibitors and an antagonist of the N-methyl-D-aspartate (NMDA) receptor, which temporarily alleviates the signs of dementia but does not prevent or reverse the course of AD. Research towards disease-modifying AD treatments is currently underway, including gene therapy, lipid nanoparticles, and dendrimer-based therapy. These innovative approaches aim to target the underlying pathological processes of AD rather than just managing the symptoms. This review discusses the novel aspects of pathogenesis involved in the causation of AD of AD and in recent developments in the therapeutic armamentarium for the treatment of AD such as gene therapy, lipid nanoparticles, and dendrimer-based therapy, and many more.
Collapse
Affiliation(s)
- Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Yesha B Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Kunal G Maheshwari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Kaif A Mansuri
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Bhadrawati S Prajapati
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Humzah I Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
4
|
Morelli L, Compostella F, Panza L, Imperio D. Unusual promoters and leaving groups in glycosylation reactions: The evolution of carbohydrate synthesis. Carbohydr Res 2022; 519:108625. [DOI: 10.1016/j.carres.2022.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
|
5
|
Singh Y, Geringer SA, Demchenko AV. Synthesis and Glycosidation of Anomeric Halides: Evolution from Early Studies to Modern Methods of the 21st Century. Chem Rev 2022; 122:11701-11758. [PMID: 35675037 PMCID: PMC9417321 DOI: 10.1021/acs.chemrev.2c00029] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in synthetic carbohydrate chemistry have dramatically improved access to common glycans. However, many novel methods still fail to adequately address challenges associated with chemical glycosylation and glycan synthesis. Since a challenge of glycosylation has remained, scientists have been frequently returning to the traditional glycosyl donors. This review is dedicated to glycosyl halides that have played crucial roles in shaping the field of glycosciences and continue to pave the way toward our understanding of chemical glycosylation.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Scott A Geringer
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
6
|
Escopy S, Singh Y, Stine KJ, Demchenko AV. HPLC-Based Automated Synthesis of Glycans in Solution. Chemistry 2022; 28:e202201180. [PMID: 35513346 PMCID: PMC9403992 DOI: 10.1002/chem.202201180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 11/09/2022]
Abstract
As the 21st century unfolds with rapid changes, new challenges in research and development emerge. These new challenges prompted us to repurpose our HPLC-A platform that was previously used in solid phase glycan synthesis to a solution phase batch synthesis described herein. The modular character of HPLC allows for implementing new attachments. To enable sequential synthesis of multiple oligosaccharides with the single press of a button, we supplemented our system with a four-way split valve and an automated fraction collector. This enabled the operator to load all reagents and all reactants in the autosampler, press the button to start the repetitive automation sequence, leave the lab, and upon return find products of multiple reactions ready for purification, analysis, and subsequent application.
Collapse
Affiliation(s)
- Samira Escopy
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| |
Collapse
|
7
|
Shrestha G, Panza M, Singh Y, Stine K, Demchenko AV. N‐Alkylated analogues of indolylthio glycosides as glycosyl donors with enhanced activation profile. European J Org Chem 2022; 2022. [PMID: 36339352 PMCID: PMC9635513 DOI: 10.1002/ejoc.202200300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While studying indolylthio glycosides, previously we determined their activation profile that required large excess of activators. This drawback was partially addressed in the present study of N-alkylated SInR derivatives. The activation process was studied by NMR and the increased understanding of the mechanism led to a discovery of different activation pathways taking place with SIn versus SInR derivatives. Also investigated was orthogonality of the SInR leaving groups versus thioglycosides and selective activation of thioimidates over SInR glycosides.
Collapse
Affiliation(s)
- Ganesh Shrestha
- UMSL: University of Missouri-St Louis Chemistry and biochemistry UNITED STATES
| | - Matteo Panza
- UMSL: University of Missouri-St Louis Chemistry and biochemistry UNITED STATES
| | - Yashapal Singh
- UMSL: University of Missouri-St Louis Chemistry and biochemistry UNITED STATES
| | - Keith Stine
- UMSL: University of Missouri-St Louis Chemistry and biochemistry UNITED STATES
| | - Alexei V. Demchenko
- Saint Louis University Chemistry 3501 Laclede Ave 63103 St. Louis UNITED STATES
| |
Collapse
|
8
|
Das A, Jayaraman N. Carbon tetrachloride-free allylic halogenation-mediated glycosylations of allyl glycosides. Org Biomol Chem 2021; 19:9318-9325. [PMID: 34664608 DOI: 10.1039/d1ob01298c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The allylic bromination of allyl glycosides is conducted using NBS/AIBN reagents in (EtO)2CO and PhCF3 solutions, without using CCl4 as a solvent. The activated mixed halo-allyl glycosides led to glycosylations, mediated by a triflate, in a latent-active manner, with the allyl glycosides acting as donors and acceptors. Systematic glycosylation studies are performed with different triflate promoters, non-glycosyl acceptors and various allyl glycosyl donors. One-pot allylic halogenations and subsequent glycosylations are developed in PhCF3 solutions. This newer glycosylation method is utilized to obtain xylo-pyranoside di- and trisaccharides.
Collapse
Affiliation(s)
- Anupama Das
- Department of Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | | |
Collapse
|
9
|
Chen J, Tang Y, Yu B. A Mild Glycosylation Protocol with Glycosyl 1‐Methylimidazole‐2‐carboxylates as Donors. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jianpeng Chen
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Yu Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
10
|
Steber HB, Singh Y, Demchenko AV. Bismuth(iii) triflate as a novel and efficient activator for glycosyl halides. Org Biomol Chem 2021; 19:3220-3233. [PMID: 33885577 PMCID: PMC8112625 DOI: 10.1039/d1ob00093d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Presented herein is the discovery that bismuth(iii) trifluoromethanesulfonate (Bi(OTf)3) is an effective catalyst for the activation of glycosyl bromides and glycosyl chlorides. The key objective for the development of this methodology is to employ only one promoter in the lowest possible amount and to avoid using any additive/co-catalyst/acid scavenger except molecular sieves. Bi(OTf)3 works well in promoting the glycosidation of differentially protected glucosyl, galactosyl, and mannosyl halides with many classes of glycosyl acceptors. Most reactions complete within 1 h in the presence of only 35% of green and light-stable Bi(OTf)3 catalyst.
Collapse
Affiliation(s)
- Hayley B Steber
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, Missouri 63121, USA.
| | | | | |
Collapse
|
11
|
Escopy S, Singh Y, Stine KJ, Demchenko AV. A Streamlined Regenerative Glycosylation Reaction: Direct, Acid-Free Activation of Thioglycosides. Chemistry 2021; 27:354-361. [PMID: 32804435 DOI: 10.1002/chem.202003479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 01/12/2023]
Abstract
Our group has previously reported that 3,3-difluoroxindole (HOFox) is able to mediate glycosylations via intermediacy of OFox imidates. Thioglycoside precursors were first converted into the corresponding glycosyl bromides that were then converted into the OFox imidates in the presence of Ag2 O followed by the activation with catalytic Lewis acid in a regenerative fashion. Reported herein is a direct conversion of thioglycosides via the regenerative approach that bypasses the intermediacy of bromides and eliminates the need for heavy-metal-based promoters. The direct regenerative activation of thioglycosides is achieved under neutral reaction conditions using only 1 equiv. NIS and catalytic HOFox without the acidic additives.
Collapse
Affiliation(s)
- Samira Escopy
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| |
Collapse
|
12
|
Kong Y, Wang F, Wang J, Liu C, Zhou Y, Xu Z, Zhang C, Sun B, Guan Y. Pathological Mechanisms Linking Diabetes Mellitus and Alzheimer's Disease: the Receptor for Advanced Glycation End Products (RAGE). Front Aging Neurosci 2020; 12:217. [PMID: 32774301 PMCID: PMC7388912 DOI: 10.3389/fnagi.2020.00217] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes and Alzheimer’s disease (AD) place a significant burden on health care systems in the world and its aging populations. These diseases have long been regarded as separate entities; however, advanced glycation end products (AGEs) and the receptors for AGEs (RAGE) may be a link between diabetes and AD. In our study, mice injected with AGEs through stereotaxic surgery showed significant AD-like features: behavior showed decreased memory; immunofluorescence showed increased phosphorylated tau and APP. These results suggest links between diabetes and AD. Patients with diabetes are at a higher risk of developing AD, and the possible underlying molecular components of this association are now beginning to emerge.
Collapse
Affiliation(s)
- Yanyan Kong
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fushuai Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Cuiping Liu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yinping Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhengqin Xu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Geringer SA, Singh Y, Hoard DJ, Demchenko AV. A Highly Efficient Glycosidation of Glycosyl Chlorides by Using Cooperative Silver(I) Oxide-Triflic Acid Catalysis. Chemistry 2020; 26:8053-8063. [PMID: 32145116 PMCID: PMC7695998 DOI: 10.1002/chem.201905576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 01/22/2023]
Abstract
Following our discovery that silver(I) oxide-promoted glycosylation with glycosyl bromides can be greatly accelerated in the presence of catalytic TMSOTf or TfOH, we report herein a new discovery that glycosyl chlorides are even more effective glycosyl donors under these reaction conditions. The developed reaction conditions work well with a variety of glycosyl chlorides. Both benzoylated and benzylated chlorides have been successfully glycosidated, and these reaction conditions proved to be effective in coupling substrates containing nitrogen and sulfur atoms. Another convenient feature of this glycosylation is that the progress of the reaction can be monitored visually; its completion can be judged by the disappearance of the characteristic dark color of Ag2 O.
Collapse
Affiliation(s)
- Scott A. Geringer
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Daniel J. Hoard
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| |
Collapse
|
14
|
Yu F, Dickson JL, Loka RS, Xu H, Schaugaard RN, Schlegel HB, Luo L, Nguyen HM. Diastereoselective sp 3 C-O Bond Formation via Visible Light-Induced, Copper-Catalyzed Cross-Couplings of Glycosyl Bromides with Aliphatic Alcohols. ACS Catal 2020; 10:5990-6001. [PMID: 34168901 DOI: 10.1021/acscatal.0c01470] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Copper-catalyzed cross-coupling reactions have become one of the most powerful methods for generating carbon-heteroatom bonds, an important framework of many organic molecules. However, copper-catalyzed C(sp3)-O cross-coupling of alkyl halides with alkyl alcohols remains elusive because of the sluggish nature of oxidative addition to copper. To address this challenge, we have developed a catalytic copper system, which overcomes the copper oxidative addition barrier with the aid of visible light and effectively facilitates the cross-couplings of glycosyl bromides with aliphatic alcohols to afford C(sp3)-O bonds with high levels of diastereoselectivity. Importantly, this catalytic system leads to a mild and efficient method for stereoselective construction of α-1,2-cis glycosides, which are of paramount importance, but challenging. In general, stereochemical outcomes in α-1,2-cis glycosidic C-O bond-forming processes are unpredictable and dependent on the steric and electronic nature of protecting groups bound to carbohydrate coupling partners. Currently, the most reliable approaches rely on the use of a chiral auxiliary or hydrogen-bond directing group at the C2- and C4-position of carbohydrate electrophiles to control α-1,2-cis selectivity. In our approach, earth-abundant copper not only acts as a photocatalyst and a bond-forming catalyst, but also enforces the stereocontrolled formation of anomeric C-O bonds. This cross-coupling protocol enables highly diastereoselective access to a wide variety of α-1,2-cis-glycosides and biologically relevant α-glycan oligosaccharides. Our work provides a foundation for developing new methods for the stereoselective construction of natural and unnatural anomeric carbon(sp3)-heteroatom bonds.
Collapse
Affiliation(s)
- Fei Yu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Jalen L. Dickson
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Ravi S. Loka
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hengfu Xu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Richard N. Schaugaard
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H. Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hien M. Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
15
|
Bachmann T, Rychlik M. Chemical glucosylation of pyridoxine. Carbohydr Res 2020; 489:107929. [DOI: 10.1016/j.carres.2020.107929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 11/28/2022]
|
16
|
Singh Y, Demchenko AV. Defining the Scope of the Acid-Catalyzed Glycosidation of Glycosyl Bromides. Chemistry 2020; 26:1042-1051. [PMID: 31614042 PMCID: PMC7675295 DOI: 10.1002/chem.201904185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/14/2019] [Indexed: 01/24/2023]
Abstract
Following the recent discovery that traditional silver(I) oxide-promoted glycosidations of glycosyl bromides (Koenigs-Knorr reaction) can be greatly accelerated in the presence of catalytic TMSOTf, reported herein is a dedicated study of all major aspects of this reaction. A thorough investigation of numerous silver salts and careful refinement of the reaction conditions led to an improved mechanistic understanding. This, in turn, led to a significant reduction in the amount of silver salt required for these glycosylations. The progress of this reaction can be monitored by naked eye, and the completion of the reaction can be judged by the disappearance of characteristic dark color of Ag2 O. Further evidence on higher reactivity of benzoylated α-bromides in comparison to that of their benzylated counterparts has been acquired.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| |
Collapse
|
17
|
Zhuo MH, Wilbur DJ, Kwan EE, Bennett CS. Matching Glycosyl Donor Reactivity to Sulfonate Leaving Group Ability Permits S N2 Glycosylations. J Am Chem Soc 2019; 141:16743-16754. [PMID: 31550879 PMCID: PMC6814073 DOI: 10.1021/jacs.9b07022] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here we demonstrate that highly β-selective glycosylation reactions can be achieved when the electronics of a sulfonyl chloride activator and the reactivity of a glycosyl donor hemiacetal are matched. While these reactions are compatible with the acid- and base-sensitive protecting groups that are commonly used in oligosaccharide synthesis, these protecting groups are not relied upon to control selectivity. Instead, β-selectivity arises from the stereoinversion of an α-glycosyl arylsulfonate in an SN2-like mechanism. Our mechanistic proposal is supported by NMR studies, kinetic isotope effect (KIE) measurements, and DFT calculations.
Collapse
Affiliation(s)
- Ming-Hua Zhuo
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| | - David J Wilbur
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| | - Eugene E Kwan
- Merck & Co. Inc. , 33 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Clay S Bennett
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| |
Collapse
|
18
|
Panza M, Civera M, Yasomanee JP, Belvisi L, Demchenko AV. Bromine-Promoted Glycosidation of Conformationally Superarmed Thioglycosides. Chemistry 2019; 25:11831-11836. [PMID: 31286579 DOI: 10.1002/chem.201901969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/03/2019] [Indexed: 01/24/2023]
Abstract
Presented herein is a study of the conformation and reactivity of highly reactive thioglycoside donors. The structural studies have been conducted using NMR spectroscopy and computational methods. The reactivity of these donors has been investigated in bromine-promoted glycosylations of aliphatic and sugar alcohols. Swift reaction times, high yields, and respectable 1,2-cis stereoselectivity were observed in a majority of these glycosylations.
Collapse
Affiliation(s)
- Matteo Panza
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Monica Civera
- Department of Chemistry, University of Milan, 20133, Milan, Italy
| | - Jagodige P Yasomanee
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Laura Belvisi
- Department of Chemistry, University of Milan, 20133, Milan, Italy
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| |
Collapse
|
19
|
Meng S, Bhetuwal BR, Acharya PP, Zhu J. Facile Synthesis of Sugar Lactols via Bromine-Mediated Oxidation of Thioglycosides. J Carbohydr Chem 2019; 38:109-126. [PMID: 31396001 DOI: 10.1080/07328303.2019.1581889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Synthesis of a variety of sugar lactols (hemiacetals) has been accomplished in moderate to excellent yields by using bromine-mediated oxidation of thioglycosides. It was found that acetonitrile is the optimal solvent for this oxidation reaction. This approach involving bromine as oxidant is superior to that using N-bromosuccimide (NBS) which produces byproduct succinimide often difficult to separate from the lactol products.
Collapse
Affiliation(s)
- Shuai Meng
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Bishwa Raj Bhetuwal
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Padam P Acharya
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
20
|
Abstract
Because of their pivotal biological functions, attention to sugars and glycobiology has grown rapidly in recent decades, leading to increased demand for homogeneous oligosaccharides. The stereoselective preparation of oligosaccharides by chemical means remains challenging and continues to be a vivid research area for organic chemists. In the past decade, new approaches and reinvestigated traditional methods have transformed the field. These developments include novel catalyses, various types of glycosylation modulators and the use of photochemical energy to facilitate glycosylation. This Minireview presents a brief overview of the latest trends in chemical glycosylation, with emphasis on the stereoselective synthetic protocols developed in the past decade.
Collapse
Affiliation(s)
- Jesse Ling
- Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA 02155, USA
| | - Clay S Bennett
- Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA 02155, USA
| |
Collapse
|
21
|
Yu F, Li J, DeMent PM, Tu YJ, Schlegel HB, Nguyen HM. Phenanthroline-Catalyzed Stereoretentive Glycosylations. Angew Chem Int Ed Engl 2019; 58:6957-6961. [PMID: 30920099 DOI: 10.1002/anie.201901346] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/07/2019] [Indexed: 11/08/2022]
Abstract
Carbohydrates are essential moieties of many bioactive molecules in nature. However, efforts to elucidate their modes of action are often impeded by limitations in synthetic access to well-defined oligosaccharides. Most of the current methods rely on the design of specialized coupling partners to control selectivity during the formation of glycosidic bonds. Reported herein is the use of a commercially available phenanthroline to catalyze stereoretentive glycosylation with glycosyl bromides. The method provides efficient access to α-1,2-cis glycosides. This protocol has been performed for the large-scale synthesis of an octasaccharide adjuvant. Density-functional theory calculations, together with kinetic studies, suggest that the reaction proceeds by a double SN 2 mechanism.
Collapse
Affiliation(s)
- Fei Yu
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Jiayi Li
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Paul M DeMent
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Yi-Jung Tu
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
22
|
Yu F, Li J, DeMent PM, Tu Y, Schlegel HB, Nguyen HM. Phenanthroline‐Catalyzed Stereoretentive Glycosylations. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Fei Yu
- Department of ChemistryWayne State University Detroit MI 48202 USA
| | - Jiayi Li
- Department of ChemistryWayne State University Detroit MI 48202 USA
| | - Paul M. DeMent
- Department of ChemistryWayne State University Detroit MI 48202 USA
| | - Yi‐Jung Tu
- Department of ChemistryWayne State University Detroit MI 48202 USA
| | | | - Hien M. Nguyen
- Department of ChemistryWayne State University Detroit MI 48202 USA
| |
Collapse
|
23
|
Singh Y, Demchenko AV. Koenigs-Knorr Glycosylation Reaction Catalyzed by Trimethylsilyl Trifluoromethanesulfonate. Chemistry 2019; 25:1461-1465. [PMID: 30407673 PMCID: PMC6522226 DOI: 10.1002/chem.201805527] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Indexed: 11/06/2022]
Abstract
The discovery that traditional silver(I)-oxide-promoted glycosidations of glycosyl bromides (Koenigs-Knorr reaction) can be greatly accelerated in the presence of catalytic trimethylsilyl trifluoromethanesulfonate (TMSOTf) is reported. The reaction conditions are very mild that allowed for maintaining a practically neutral pH and, at the same time, providing high rates and excellent glycosylation yields. In addition, unusual reactivity trends among a series of differentially protected glycosyl bromides were documented. In particular, benzoylated α-bromides were much more reactive than their benzylated counterparts under these conditions.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis
| | | |
Collapse
|
24
|
Bradshaw GA, Colgan AC, Allen NP, Pongener I, Boland MB, Ortin Y, McGarrigle EM. Stereoselective organocatalyzed glycosylations - thiouracil, thioureas and monothiophthalimide act as Brønsted acid catalysts at low loadings. Chem Sci 2019; 10:508-514. [PMID: 30713648 PMCID: PMC6334493 DOI: 10.1039/c8sc02788a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/15/2018] [Indexed: 01/21/2023] Open
Abstract
Thiouracil catalyzes stereoselective glycosylations with galactals in loadings as low as 0.1 mol%. It is proposed that in these glycosylations thiouracil, monothiophthalimide, and the previously reported catalyst, Schreiner's thiourea, do not operate via a double H-bonding mechanism but rather by Brønsted acid/base catalysis. In addition to the synthesis of 2-deoxyglycosides and glycoconjugates, we report the first organocatalytic synthesis of 1,1'-linked trehalose-type sugars.
Collapse
Affiliation(s)
- G A Bradshaw
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - A C Colgan
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - N P Allen
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - I Pongener
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - M B Boland
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - Y Ortin
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - E M McGarrigle
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| |
Collapse
|
25
|
Wang T, Singh Y, Stine KJ, Demchenko AV. Investigation of Glycosyl Nitrates as Building Blocks for Chemical Glycosylation. European J Org Chem 2018; 2018:6699-6705. [PMID: 31341403 DOI: 10.1002/ejoc.201801272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glycosyl nitrates are important synthetic intermediates in the synthesis of 2-amino sugars, 1,2-orthoesters or, more recently, 2-OH glucose. However, glycosyl nitrates have never been glycosidated. Presented herein is our first attempt to use glycosyl nitrates as glycosyl donors for O-glycosylation. Lanthanide triflates showed good affinity to activate the nitrate leaving group.
Collapse
Affiliation(s)
- Tinghua Wang
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| |
Collapse
|
26
|
Abstract
Glycosyl chlorides have historically been activated using harsh conditions and/or toxic stoichiometric promoters. More recently, the Ye and the Jacobsen groups showed that glycosyl chlorides can be activated under organocatalytic conditions. However, those reactions are slow, require specialized catalysts and high temperatures, but still provide only moderate yields. Presented herein is a simple method for the activation of glycosyl chlorides using abundant and inexpensive ferric chloride in catalytic amounts. Our preliminary results indicate that both benzylated and benzoylated glycosyl chlorides can be activated with 20 mol% of FeCl3.
Collapse
Affiliation(s)
- Scott A Geringer
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, Missouri 63121, USA.
| | | |
Collapse
|
27
|
Liu M, Li BH, Xiong DC, Ye XS. O-Glycosylation Enabled by N-(Glycosyloxy)acetamides. J Org Chem 2018; 83:8292-8303. [PMID: 29938493 DOI: 10.1021/acs.joc.8b01003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A novel glycosylation protocol has been established by using N-(glycosyloxy)acetamides as glycosyl donors. The N-oxyacetamide leaving group in donors could be rapidly activated in the presence of Cu(OTf)2 or SnCl4 under microwave irradiation. This glycosylation process afforded the coupled products in high yields, and the reaction enjoyed a broad substrate scope, even for disarmed donors and hindered acceptors. The easy availability of the donors, the high stability of N-(glycosyloxy)acetamides, and the small leaving group make this method very practical.
Collapse
Affiliation(s)
- Miao Liu
- National Research Center for Carbohydrate Synthesis , Jiangxi Normal University , Nanchang 330022 , China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Bo-Han Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China.,State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Xin-Shan Ye
- National Research Center for Carbohydrate Synthesis , Jiangxi Normal University , Nanchang 330022 , China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| |
Collapse
|