1
|
Hong P, Wang L, Zhu X, Huang M, Wan Y. Copper-Catalyzed One-Pot Protocol for Reductive N-Arylation of Nitroarenes with (Hetero)aryl Chlorides in Water. Org Lett 2024; 26:10769-10773. [PMID: 39651935 DOI: 10.1021/acs.orglett.4c03753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A novel protocol for the Cu-catalyzed reductive N-arylation of nitroarenes with (hetero)aryl chlorides in water has been realized. Combining N-(9H-carbazol-9-yl)-6-hydroxypicolinamide (L2) with oxalohydrazide is vital to realize the method at 90 °C with a loading of 5 mol % of Cu2O/L2. Various nitroarenes and aryl chlorides have been successfully coupled in good to excellent isolated yields. Further, two diarylamine-containing key intermediates, 3f and 4u, have been smoothly synthesized on a gram scale using this method.
Collapse
Affiliation(s)
- Peng Hong
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Lifang Wang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Xinhai Zhu
- Instrument Analysis & Research Center, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Manna Huang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Yiqian Wan
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
| |
Collapse
|
2
|
Peiman S, Maleki B, Ghani M. Dendrimer templated ionic liquid nanomagnetic for efficient coupling reactions. Sci Rep 2024; 14:25082. [PMID: 39443602 PMCID: PMC11499887 DOI: 10.1038/s41598-024-75629-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
In this research, a logical strategy with a recyclable synthetic perspective of view and a rational design to prepare a nanocatalyst with a dendrimer template containing ionic liquid is presented. Magnetic silica nanoparticles were prepared using the Stober method. Their surface was modified with the help of cyanuric chloride, melamine, and 1-methylimidazole as Linkers. Finally, the nanocatalyst was decorated with affordable copper metal. The dendrimer-templated nanocatalyst was identified by different analyses, such as FT-IR, SEM, TEM, XRD, EDX, TGA, CHN, and ICP-OES. Fe3O4@SiO2@NTMP-IL-Cu was used as a heterogeneous nanocatalyst with good performance and reusable in coupling syntheses. The synthesis of A3-coupling and Ullmann coupling was performed under solvent-free and THF conditions, respectively, with high yields. Reusability and high efficiency of products in the vicinity of this catalyst, the use of cheap and available metal are desirable features of this synthetic catalyst.
Collapse
Affiliation(s)
- Sahar Peiman
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O. Box 47416-95447, Babolsar, Iran
| | - Behrooz Maleki
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O. Box 47416-95447, Babolsar, Iran.
| | - Milad Ghani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
3
|
Mubashra S, Rafiq A, Aslam S, Rasool N, Ahmad M. Recent synthetic strategies for N-arylation of pyrrolidines: a potential template for biologically active molecules. Mol Divers 2024:10.1007/s11030-024-10924-7. [PMID: 39048884 DOI: 10.1007/s11030-024-10924-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
The chemistry of nitrogen-containing heterocyclic compounds has been a multifaceted area of research for an extended period due to their varied therapeutic and biological significance. N-Aryl pyrrolidine formed by condensation of aryl group with nitrogen atom of pyrrolidine is present in a wide array of compounds. Various significant activities shown by N-arylated pyrrolidine include anti-Alzheimer, antihypoxic, anticancer, plant activator, analgesic effect, and hepatitis C inhibitor. This review summarizes different synthetic approaches, e.g., transition-metal catalyzed and transition-metal-free synthesis, decarboxylation reaction, reductive amination, nucleophilic cyclization, Ullmann-Goldberg amidation, Buchwald-Hartwig reaction, Chan-Evans-Lam coupling, addition to benzyne, multistep reaction, green synthesis, rearrangement reaction, and multicomponent reaction, to afford the derivatives of N-aryl pyrrolidine. It encompasses synthetic strategies documented from 2015 to 2023.
Collapse
Affiliation(s)
- Saeeda Mubashra
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ayesha Rafiq
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Nasir Rasool
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| |
Collapse
|
4
|
Gupta A, Gururaja GN. Regioselective Addition of Sulfur and Amine Nucleophiles To Assemble S═C-S, S-N, and Umpolung C-N Bonds: Exploration of the -CBr 3 Group as a Synthetic Equivalent of S═C-S. Org Lett 2024; 26:1874-1879. [PMID: 38411402 DOI: 10.1021/acs.orglett.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The regioselective addition of sulfur and amine nucleophiles to a -CBr3 unit and nitromethyl moiety in a molecule with the installation of a five-diverse bond structure to novel isothiazole-5(2H)-thione is demonstrated. Umpolung of the nitromethyl group leads to a novel scaffold with selective C-N bond formation. Consequently, differentiating reactive centers by sulfur and amine nucleophiles has been proposed to create unique S-N bonds in conjunction with the dithioate (S═C-S-) moiety. This protocol allows for exploration of the -CBr3 moiety as a synthetic equivalent of the dithioate (S═C-S-) unit during the reaction.
Collapse
Affiliation(s)
- Ankush Gupta
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Guddeangadi N Gururaja
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| |
Collapse
|
5
|
Basak SJ, Dash J. Total Synthesis of Racemic Benzomalvin E, a Quinazolinone Isolated from Pencilium sp. FN070315 and Exploration to the Direct Synthesis of ( E)-Benzomalvin B. J Org Chem 2024; 89:3612-3617. [PMID: 38349752 DOI: 10.1021/acs.joc.3c02687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
We present the first total synthesis of (±) benzomalvin E, featuring a quinazolino moiety with a 6-6-6-7-fused tetracyclic skeleton containing three nitrogen atoms. The key transformation involves Cu-catalyzed intramolecular C-N arylation of quinazolinone, leading to a sclerotigenin analogue that undergoes nucleophilic addition with benzaldehyde, enabling the synthesis of (±) benzomalvin E in six linear steps with a 33% overall yield. The (±) benzomalvin E's structure was validated by 2-D NMR and single crystal XRD analysis and was further transformed into (E)-benzomalvin B.
Collapse
Affiliation(s)
- Soumya Jyoti Basak
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
6
|
Rashid MAM, Min S, Namgoong SK, Jeong K. Effect of substituting donors on the hole mobility of hole transporting materials in perovskite solar cells: a DFT study. Phys Chem Chem Phys 2024; 26:1352-1363. [PMID: 38108402 DOI: 10.1039/d3cp04310j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Several hole-transporting materials (HTMs) have been designed by incorporating different types of π-conjugation group such as long chain aliphatic alkenes and condensed aromatic rings of benzene and thiophene and their derivatives on both sides between the planar core and donor of a reference HTM. Various electronic, optical, and dynamic properties have been calculated by using DFT, TDDFT, and Marcus theory. In this study, all the designed HTMs show a lower HOMO energy level and match well with the perovskite absorbers. Inserting condensed rings results in better hole mobility compared to aliphatic double bonds. It is found that the charge transfer integral is the dominant factor which mainly influences the hole mobility in our studied HTMs. Other factors such as hole reorganization energy, hole hopping rate, and centroid distance have a minor effect on hole mobility. Thus, this study is expected to provide guidance for the design and synthesis of new HTMs with increased hole mobility.
Collapse
Affiliation(s)
- Md Al Mamunur Rashid
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Sein Min
- Department of Chemistry, Seoul Women's University, Seoul 01797, South Korea
| | - Sung Keon Namgoong
- Department of Chemistry, Seoul Women's University, Seoul 01797, South Korea
| | - Keunhong Jeong
- Department of Physics and Chemistry, Korea Military Academy, Seoul, 01805, South Korea.
| |
Collapse
|
7
|
Abstract
The interest of scientists in the carbazole core has risen steadily over the last 30 years, particularly over the last decade given its presence in several active pharmaceutical ingredients, functional materials and a wide range of biologically active natural products. The continuous development of more efficient, more (regio-)selective and "greener" methodologies to access the carbazole core is thus imperative. This review compares and evaluates synthetic strategies towards the carbazole core that have been reported since 2013, with a focus on their applicability towards the total synthesis of carbazole-containing natural products.
Collapse
Affiliation(s)
- Lewis A T Allen
- CheMastery, Paper Yard, 11a Quebec Way, London, SE16 7LG, UK
| | - Philipp Natho
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
8
|
Shet H, Gunturu KC, Gharpure SJ, Prasad Kommyreddy S, Gupta KS, Rout SR, Dandela R, Kapdi AR. Cu(II)/PTABS-Promoted, Regioselective S NAr Amination of Polychlorinated Pyrimidines with Mechanistic Understanding. J Org Chem 2023. [PMID: 37486860 DOI: 10.1021/acs.joc.3c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Regioselective amination of polyhalogenated heteroarenes (especially pyrimidines) has extensive synthetic and commercial relevance for drug synthesis applications but is plagued by the lack of effective synthetic strategies. Herein, we report the Cu(II)/PTABS-promoted highly regioselective nucleophilic aromatic substitution (SNAr) of polychlorinated pyrimidines assisted by DFT predictions of the bond dissociation energies of different C-Cl bonds. The unique reactivity of Cu(II)-PTABS has been attributed to the coordination/activation mechanism that has been known to operate in these reactions, but further insights into the catalytic species have also been provided.
Collapse
Affiliation(s)
- Harshita Shet
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| | | | - Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | - Krishna S Gupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Smruti Rekha Rout
- Department of Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar, Odisha 751013, India
| | - Rambabu Dandela
- Department of Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar, Odisha 751013, India
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| |
Collapse
|
9
|
Migliorini F, Monciatti E, Romagnoli G, Parisi ML, Taubert J, Vogt M, Langer R, Petricci E. Switching Mechanistic Pathways by Micellar Catalysis: A Highly Selective Rhodium Catalyst for the Hydroaminomethylation of Olefins with Anilines in Water. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Francesca Migliorini
- Department of Biochemistry, Chemistry and Pharmacy - University of Siena, Via A. Moro, 2, 53100 Siena, Italy
| | - Elisabetta Monciatti
- Department of Biochemistry, Chemistry and Pharmacy - University of Siena, Via A. Moro, 2, 53100 Siena, Italy
| | - Giulia Romagnoli
- Department of Biochemistry, Chemistry and Pharmacy - University of Siena, Via A. Moro, 2, 53100 Siena, Italy
| | - Maria Laura Parisi
- Department of Biochemistry, Chemistry and Pharmacy - University of Siena, Via A. Moro, 2, 53100 Siena, Italy
| | - Julia Taubert
- Naturwissenschaftliche Fakultät II - Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle, Germany
| | - Matthias Vogt
- Naturwissenschaftliche Fakultät II - Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle, Germany
| | - Robert Langer
- Naturwissenschaftliche Fakultät II - Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle, Germany
| | - Elena Petricci
- Department of Biochemistry, Chemistry and Pharmacy - University of Siena, Via A. Moro, 2, 53100 Siena, Italy
| |
Collapse
|
10
|
Schuh T, Kataeva O, Knölker HJ. μ-Oxo-bis[(octacosafluoro- meso-tetraphenylporphyrinato)iron(iii)] - synthesis, crystal structure, and catalytic activity in oxidation reactions. Chem Sci 2023; 14:257-265. [PMID: 36687339 PMCID: PMC9811517 DOI: 10.1039/d2sc06083c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
We describe the synthesis and X-ray crystal structure of μ-oxo-bis[(octacosafluoro-meso-tetraphenylporphyrinato)iron(iii)] [(FeTPPF28)2O]. This novel iron complex is an efficient catalyst for oxidative biaryl coupling reactions of diarylamines and carbazoles. The asymmetric oxidative coupling in the presence of an axially chiral biaryl phosphoric acid as co-catalyst provides the 2,2'-bis(arylamino)-1,1'-biaryl in 96% ee. The Wacker-type oxidation of alkenes to the corresponding ketones with (FeTPPF28)2O as catalyst in the presence of phenylsilane proceeds at room temperature with air as the terminal oxidant. For internal and aliphatic alkenes increased ketone/alcohol product ratios were obtained.
Collapse
Affiliation(s)
- Tristan Schuh
- Fakultät Chemie, Technische Universität DresdenBergstrasse 6601069 DresdenGermanyhttps://tu-dresden.de/mn/chemie/oc/oc2+49 351-463-37030
| | - Olga Kataeva
- Fakultät Chemie, Technische Universität DresdenBergstrasse 6601069 DresdenGermanyhttps://tu-dresden.de/mn/chemie/oc/oc2+49 351-463-37030
| | - Hans-Joachim Knölker
- Fakultät Chemie, Technische Universität DresdenBergstrasse 6601069 DresdenGermanyhttps://tu-dresden.de/mn/chemie/oc/oc2+49 351-463-37030
| |
Collapse
|
11
|
Alsharif MA, Ahmed N, Issa Alahmdi M, Mukhtar S, Parveen H, Obaid RJ, SA Almalki A. Divergent Synthesis of Fused Benzo-xanthene and Oxazine derivatives via Cu-catalyst. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Shi J, Zhang LZ, Pan Y, Feng DQ, Wu GY, Yang K, Sun XQ, Li ZY. Stereoselective Mannich reaction catalyzed by tetrahydroindolo[3,2-b]indole under solvent-free conditions. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Zhu B, Xiong W, Tan X, Wu W, Jiang H. Cu2O-Catalyzed Ullmann-type C N cross-coupling reaction of carbazole and aryl chlorides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Total syntheses of carbazole alkaloid mukoenine A and pyrano[3,2-a]carbazole alkaloid girinimbine. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Saha R, Mondal B, Mukherjee PS. Molecular Cavity for Catalysis and Formation of Metal Nanoparticles for Use in Catalysis. Chem Rev 2022; 122:12244-12307. [PMID: 35438968 DOI: 10.1021/acs.chemrev.1c00811] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The employment of weak intermolecular interactions in supramolecular chemistry offers an alternative approach to project artificial chemical environments like the active sites of enzymes. Discrete molecular architectures with defined shapes and geometries have become a revolutionary field of research in recent years because of their intrinsic porosity and ease of synthesis using dynamic non-covalent/covalent interactions. Several porous molecular cages have been constructed from simple building blocks by self-assembly, which undergoes many self-correction processes to form the final architecture. These supramolecular systems have been developed to demonstrate numerous applications, such as guest stabilization, drug delivery, catalysis, smart materials, and many other related fields. In this respect, catalysis in confined nanospaces using such supramolecular cages has seen significant growth over the years. These porous discrete cages contain suitable apertures for easy intake of substrates and smooth release of products to exhibit exceptional catalytic efficacy. This review highlights recent advancements in catalytic activity influenced by the nanocavities of hydrogen-bonded cages, metal-ligand coordination cages, and dynamic or reversible covalently bonded organic cages in different solvent media. Synthetic strategies for these three types of supramolecular systems are discussed briefly and follow similar and simplistic approaches manifested by simple starting materials and benign conditions. These examples demonstrate the progress of various functionalized molecular cages for specific chemical transformations in aqueous and nonaqueous media. Finally, we discuss the enduring challenges related to porous cage compounds that need to be overcome for further developments in this field of work.
Collapse
Affiliation(s)
- Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India
| | - Bijnaneswar Mondal
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur-495 009, Chhattisgarh, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India
| |
Collapse
|
16
|
Thumpati P, Chakraborti G, Mandal T, Ravichandiran V, Dash J. Cycloaddition of N-sulfonyl and N-sulfamoyl azides with alkynes in aqueous media for the selective synthesis of 1,2,3-triazoles. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 24:911-915. [PMID: 37823060 PMCID: PMC7614909 DOI: 10.1039/d1gc03340a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The cycloaddition of N-sulfonyl and N-sulfamoyl azides with terminal alkynes generally produces amide derivatives via ketenimine intermediates. We herein delineate a Cu(I) catalyzed method using a prolinamide ligand that selectively generate N-sulfonyl and sulfamoyltriazoles in aqueous media by inhibiting the cleavage of the N1-N2 bond of 5-cuprated triazole intermediates. The present method is mild and tolerant to air, moisture and a wide range of functional groups thereby providing an easy access to a variety of triazole products.
Collapse
Affiliation(s)
- Prasanth Thumpati
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
- National Institute of Pharmaceutical Education and Research, Chunilal Bhawan, Maniktala, Kolkata-700054, India
| | - Gargi Chakraborti
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Tirtha Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Velayutham Ravichandiran
- National Institute of Pharmaceutical Education and Research, Chunilal Bhawan, Maniktala, Kolkata-700054, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
17
|
Mandal T, Karmakar S, Kapat A, Dash J. Studies Directed towards the Synthesis of the Acridone Family of Natural Products: Total Synthesis of Acronycines and Atalaphyllidines. ACS OMEGA 2021; 6:27062-27069. [PMID: 34693126 PMCID: PMC8529601 DOI: 10.1021/acsomega.1c03629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 06/13/2023]
Abstract
A modular and flexible three-step synthetic strategy has been developed for the synthesis of acridone natural products of biological significance. The tetracyclic core of acridone derivatives has been achieved efficiently in high yield from commercially available anthranilic acid and phenol derivatives via condensation reaction, followed by regioselective annulation. Acridone alkaloids acronycine and noracronycine are synthesized in improved overall yields in fewer steps than the previously reported approaches. The method has further been used for the synthesis of atalaphyllidine and 5-hydroxynoracronycine in excellent yields for the first time. Moreover, the synthetic utility of the present strategy has been showcased by the synthesis of oxa and thia analogues of acronycine alkaloid.
Collapse
Affiliation(s)
| | | | | | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
18
|
Yashwantrao G, Saha S. Sustainable strategies of C–N bond formation via Ullmann coupling employing earth abundant copper catalyst. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Parmar U, Somvanshi D, Kori S, Desai AA, Dandela R, Maity DK, Kapdi AR. Room-Temperature Amination of Chloroheteroarenes in Water by a Recyclable Copper(II)-Phosphaadamantanium Sulfonate System. J Org Chem 2021; 86:8900-8925. [PMID: 34156851 DOI: 10.1021/acs.joc.1c00845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Buchwald-Hartwig amination of chloroheteroarenes has been a challenging synthetic process, with very few protocols promoting this important transformation at ambient temperature. The current report discusses about an efficient copper-based catalytic system (Cu/PTABS) for the amination of chloroheteroarenes at ambient temperature in water as the sole reaction solvent, a combination that is first to be reported. A wide variety of chloroheteroarenes could be coupled efficiently with primary and secondary amines as well as selected amino acid esters under mild reaction conditions. Catalytic efficiency of the developed protocol also promotes late-stage functionalization of active pharmaceutical ingredients (APIs) such as antibiotics (floxacins) and anticancer drugs. The catalytic system also performs efficiently at a very low concentration of 0.0001 mol % (TON = 980,000) and can be recycled 12 times without any appreciable loss in activity. Theoretical calculations reveal that the π-acceptor ability of the ligand PTABS is the main reason for the appreciably high reactivity of the catalytic system. Preliminary characterization of the catalytic species in the reaction was carried out using UV-VIS and ESR spectroscopy, providing evidence for the Cu(II) oxidation state.
Collapse
Affiliation(s)
- Udaysinh Parmar
- Aether Industries Limited, B-21/7, Hojiwala Industrial Estate, Sachin, Surat 394230, Gujarat, India
| | - Dipesh Somvanshi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai 400019, India
| | - Santosh Kori
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai 400019, India
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Khragpur extension Centre, Mouza Samantpuri, Bhubaneswar 751013, Odisha, India
| | - Aman A Desai
- Aether Industries Limited, B-21/7, Hojiwala Industrial Estate, Sachin, Surat 394230, Gujarat, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Khragpur extension Centre, Mouza Samantpuri, Bhubaneswar 751013, Odisha, India
| | - Dilip K Maity
- Chemical Sciences, Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Chemical Sciences, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai 400019, India
| |
Collapse
|
20
|
Zhao H, Shen P, Sun D, Zhai H, Zhao Y. The Regioselective Functionalization Reaction of Unprotected Carbazoles with Donor-Acceptor Cyclopropanes. J Org Chem 2021; 86:9189-9199. [PMID: 34111921 DOI: 10.1021/acs.joc.1c00494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The regioselective functionalization reaction of unprotected carbazoles with donor-acceptor (D-A) cyclopropanes has been demonstrated for the first time. With Sc(OTf)3 as Lewis acid catalyst, the N-H functionalization of carbazoles takes place through a highly selective nitrogen-initiated nucleophilic ring opening reaction. Significantly, by engaging TfOH as Brønsted acid catalyst, a straightforward C-H functionalization at the 3-position of the unprotected carbazole proceeds via Friedel-Crafts-type addition. This strategy facilitates the diversity-oriented synthesis of carbazole-containing heterocycles and expands the novel application of D-A cyclopropanes.
Collapse
Affiliation(s)
- Hua Zhao
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Shen
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Dongru Sun
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
21
|
Puls F, Linke P, Kataeva O, Knölker HJ. Iron-Catalyzed Wacker-type Oxidation of Olefins at Room Temperature with 1,3-Diketones or Neocuproine as Ligands*. Angew Chem Int Ed Engl 2021; 60:14083-14090. [PMID: 33856090 PMCID: PMC8251641 DOI: 10.1002/anie.202103222] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 11/11/2022]
Abstract
Herein, we describe a convenient and general method for the oxidation of olefins to ketones using either tris(dibenzoylmethanato)iron(III) [Fe(dbm)3 ] or a combination of iron(II) chloride and neocuproine (2,9-dimethyl-1,10-phenanthroline) as catalysts and phenylsilane (PhSiH3 ) as additive. All reactions proceed efficiently at room temperature using air as sole oxidant. This transformation has been applied to a variety of substrates, is operationally simple, proceeds under mild reaction conditions, and shows a high functional-group tolerance. The ketones are formed smoothly in up to 97 % yield and with 100 % regioselectivity, while the corresponding alcohols were observed as by-products. Labeling experiments showed that an incorporated hydrogen atom originates from the phenylsilane. The oxygen atom of the ketone as well as of the alcohol derives from the ambient atmosphere.
Collapse
Affiliation(s)
- Florian Puls
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Philipp Linke
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Olga Kataeva
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan, 420088, Russia
| | - Hans-Joachim Knölker
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| |
Collapse
|
22
|
Puls F, Linke P, Kataeva O, Knölker H. Iron‐Catalyzed Wacker‐type Oxidation of Olefins at Room Temperature with 1,3‐Diketones or Neocuproine as Ligands**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Florian Puls
- Fakultät Chemie und Lebensmittelchemie Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| | - Philipp Linke
- Fakultät Chemie und Lebensmittelchemie Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| | - Olga Kataeva
- A. E. Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center Russian Academy of Sciences Arbuzov Str. 8 Kazan 420088 Russia
| | - Hans‐Joachim Knölker
- Fakultät Chemie und Lebensmittelchemie Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| |
Collapse
|
23
|
Polley A, Varalaxmi K, Nandi A, Jana R. Divergent Total Synthesis of (±)‐Mahanine and Other Carbazole Alkaloids. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Arghya Polley
- Organic and Medicinal Chemistry Division CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) Kolkata 700032 West Bengal (India
| | - Kasarla Varalaxmi
- Organic and Medicinal Chemistry Division CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
- Organic and Medicinal Chemistry Division National Institute of Pharmaceutical Education and Research (NIPER) Kolkata 700054 West Bengal India
| | - Arijit Nandi
- Organic and Medicinal Chemistry Division CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) Kolkata 700032 West Bengal (India
| |
Collapse
|
24
|
|
25
|
Li G, Yang L, Liu J, Zhang W, Cao R, Wang C, Zhang Z, Xiao J, Xue D. Light‐Promoted C–N Coupling of Aryl Halides with Nitroarenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Gang Li
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education and School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Liu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education and School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Jian‐Jun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education and School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education and School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education and School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education and School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Zunting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education and School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool Liverpool L69 7ZD UK
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education and School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| |
Collapse
|
26
|
Light‐Promoted C–N Coupling of Aryl Halides with Nitroarenes. Angew Chem Int Ed Engl 2021; 60:5230-5234. [DOI: 10.1002/anie.202012877] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Indexed: 12/20/2022]
|
27
|
Ding Z, Nie N, Chen T, Meng L, Wang G, Chen Z, Hu J. -Proline N-oxide dihydrazides as an efficient ligand for cross-coupling reactions of aryl iodides and bromides with amines and phenols. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Chakraborti G, Jana R, Mandal T, Datta A, Dash J. Prolinamide plays a key role in promoting copper-catalyzed cycloaddition of azides and alkynes in aqueous media via unprecedented metallacycle intermediates. Org Chem Front 2021. [DOI: 10.1039/d0qo01150a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Room temperature copper-catalyzed cycloaddition of azides and alkynes (CuAAC) proceeds in the presence of a prolinamide ligand in aqueous media via unique metallacycles.
Collapse
Affiliation(s)
- Gargi Chakraborti
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Rajkumar Jana
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Tirtha Mandal
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Ayan Datta
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Jyotirmayee Dash
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
29
|
Cicco L, Dilauro G, Perna FM, Vitale P, Capriati V. Advances in deep eutectic solvents and water: applications in metal- and biocatalyzed processes, in the synthesis of APIs, and other biologically active compounds. Org Biomol Chem 2021; 19:2558-2577. [DOI: 10.1039/d0ob02491k] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review highlights recent advances in metal- and biocatalyzed transformations, in the synthesis of APIs and other biologically active compounds, when employing deep eutectic solvents and water as environmentally responsible solvents.
Collapse
Affiliation(s)
- Luciana Cicco
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | - Giuseppe Dilauro
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | - Filippo Maria Perna
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | - Paola Vitale
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| |
Collapse
|
30
|
Paul S, Joy BP, Sasikala G, Raghuthaman AG, Gudimetla VB. Copper‐NHC Based Ullmann Catalysis in Water for Selective N‐Arylation of 3‐Aminophenols. ChemistrySelect 2020. [DOI: 10.1002/slct.202003455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sudeep Paul
- Department of Chemistry School of Basic and Applied Sciences Central University of Tamil Nadu Thiruvarur 610 005 Tamil Nadu India
| | - Bony P. Joy
- Department of Chemistry School of Basic and Applied Sciences Central University of Tamil Nadu Thiruvarur 610 005 Tamil Nadu India
| | - Geethu Sasikala
- Department of Chemistry School of Basic and Applied Sciences Central University of Tamil Nadu Thiruvarur 610 005 Tamil Nadu India
| | - Advaya G. Raghuthaman
- Department of Chemistry School of Basic and Applied Sciences Central University of Tamil Nadu Thiruvarur 610 005 Tamil Nadu India
| | - Vittal B. Gudimetla
- Department of Chemistry School of Basic and Applied Sciences Central University of Tamil Nadu Thiruvarur 610 005 Tamil Nadu India
| |
Collapse
|
31
|
Mondal B, Bhandari P, Mukherjee PS. Nucleation of Tiny Silver Nanoparticles by Using a Tetrafacial Organic Molecular Barrel: Potential Use in Visible-Light-Triggered Photocatalysis. Chemistry 2020; 26:15007-15015. [PMID: 32770587 DOI: 10.1002/chem.202003390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Coordination-driven self-assembly of discrete molecular architectures of diverse shapes and sizes has been well studied in the last three decades. Use of dynamic imine bonds for designing analogous metal-free architectures has become a growing challenge recently. This article reports an organic molecular barrel (OB4R ) as a potential template for nucleation and stabilization of very tiny (<1.5 nm) Ag nanoparticles (AgNPs). Imine bond condensation of a rigid tetra-aldehyde with a flexible diamine followed by imine-bond reduction yielded the discrete tetragonal organic barrel (OB4R ). The presence of a molecular pocket ornamented with eight diamine moieties gives the potential for encapsulation of silver(I). The organic barrel was finally used as a molecular vessel for the controlled nucleation of silver nanoparticles (AgNPs) with fine size tuning through binding of AgI ions in the confined space of the barrel followed by reduction. Transmission electron microscopy (TEM) analysis of the Ag0 @OB4R composite revealed that the mean particle size is 1.44±0.16 nm. The composite material has approximately 52 wt % silver loading. The barrel-supported ultrafine AgNPs [Ag0 @OB4R ] are found to be an efficient photocatalyst for facile Ullmann-type aryl-amination coupling of haloarenes at ambient temperature without using any additives. The catalyst was stable for several cycles of reuse without any agglomeration. The new composite Ag0 @OB4R represents the first example of discrete organic barrel-supported AgNPs employed as a photocatalyst in Ullmann-type coupling reactions at room temperature.
Collapse
Affiliation(s)
- Bijnaneswar Mondal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Pallab Bhandari
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
32
|
CuIBiOI is an efficient novel catalyst in Ullmann-type CN couplings with wide scope—A rare non-photocatalyic application. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Yao H, Xie B, Zhong X, Jin S, Lin S, Yan Z. Copper-catalyzed direct amination of benzylic hydrocarbons and inactive aliphatic alkanes with arylamines. Org Biomol Chem 2020; 18:3263-3268. [PMID: 32301941 DOI: 10.1039/d0ob00491j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new synthetic method toward direct C-N bond formation through saturated C-H amination of benzylic hydrocarbons and inactive aliphatic alkanes with primary aromatic amines under an inexpensive catalyst/oxidant (Cu/DTBP) system has been developed. Both aminopyridines and anilines could react smoothly with primary and secondary benzylic C-H substrates or cyclohexane to form the corresponding aromatic secondary amines in moderate to good yields. This protocol has the advantages of wide functional group tolerance and use of readily available raw materials.
Collapse
Affiliation(s)
- Hua Yao
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd., Nanchang, 330031, P. R. China.
| | - Bo Xie
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd., Nanchang, 330031, P. R. China.
| | - Xiaoyang Zhong
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd., Nanchang, 330031, P. R. China.
| | - Shengzhou Jin
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd., Nanchang, 330031, P. R. China.
| | - Sen Lin
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd., Nanchang, 330031, P. R. China.
| | - Zhaohua Yan
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd., Nanchang, 330031, P. R. China.
| |
Collapse
|
34
|
Panday A, Ali D, Choudhury LH. Cs 2CO 3-Mediated Rapid Room-Temperature Synthesis of 3-Amino-2-aroyl Benzofurans and Their Copper-Catalyzed N-Arylation Reactions. ACS OMEGA 2020; 5:3646-3660. [PMID: 32118180 PMCID: PMC7045548 DOI: 10.1021/acsomega.9b04169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/21/2020] [Indexed: 05/04/2023]
Abstract
Cs2CO3 in dimethylformamide (DMF) is a perfect combination for the rapid room-temperature synthesis of 3-amino-2-aroyl benzofuran derivatives from the reaction of 2-hydroxybenzonitriles and 2-bromoacetophenones in good to excellent yields. Using this one-pot C-C and C-O bond-forming strategy, we prepared a series of 3-amino-2-aroyl benzofuran derivatives within a very short time (10-20 min). This method was also found suitable for gram-scale synthesis. Benzofurans (3) obtained by this Cs2CO3-mediated methodology were then further explored for the development of a tunable base- and ligand-free copper-catalyzed N-arylation methodology using arylboronic acids for the easy access of either mono- or bi-N-aryl derivatives of aminobenzofurans at ambient temperature. The reaction of 3 with malononitrile in DMF medium under microwave heating conditions provided highly fluorescent conjugated alkenes and novel pyridine-fused benzofurans.
Collapse
|
35
|
Niakan M, Asadi Z, Zare S. Preparation, Characterization and Application of Copper Schiff base Complex Supported on MCM‐41 as a Recyclable Catalyst for the Ullmann‐type N‐arylation Reaction. ChemistrySelect 2020. [DOI: 10.1002/slct.201903807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mahsa Niakan
- College of ScienceDepartment of Chemistry Shiraz University Shiraz Iran
| | - Zahra Asadi
- College of ScienceDepartment of Chemistry Shiraz University Shiraz Iran
| | - Sayeh Zare
- College of ScienceDepartment of Chemistry Shiraz University Shiraz Iran
| |
Collapse
|
36
|
Harry NA, Radhika S, Neetha M, Anilkumar G. Recent Advances and Prospects of Organic Reactions “On Water”. ChemistrySelect 2019. [DOI: 10.1002/slct.201903360] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Nissy Ann Harry
- School of Chemical Sciences, Mahatma Gandhi UniversityPriyadarsini Hills, Kottayam 686 560 Kerala INDIA
| | - Sankaran Radhika
- School of Chemical Sciences, Mahatma Gandhi UniversityPriyadarsini Hills, Kottayam 686 560 Kerala INDIA
| | - Mohan Neetha
- School of Chemical Sciences, Mahatma Gandhi UniversityPriyadarsini Hills, Kottayam 686 560 Kerala INDIA
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi UniversityPriyadarsini Hills, Kottayam 686 560 Kerala INDIA
- Advanced Molecular Materials Research Centre (AMMRC)Mahatma Gandhi University, Priyadarsini Hills, Kottayam Kerala 686 560 INDIA
| |
Collapse
|
37
|
Quivelli AF, Vitale P, Perna FM, Capriati V. Reshaping Ullmann Amine Synthesis in Deep Eutectic Solvents: A Mild Approach for Cu-Catalyzed C-N Coupling Reactions With No Additional Ligands. Front Chem 2019; 7:723. [PMID: 31737602 PMCID: PMC6833937 DOI: 10.3389/fchem.2019.00723] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
The CuI-catalyzed Ullmann amine cross-coupling between (hetero)aryl halides (Br, I) and aromatic and aliphatic amines has been accomplished in deep eutectic solvents as environmentally benign and recycling reaction media. Under optimized conditions, the reaction proceeds smoothly under mild conditions (60–100°C) in air, in the absence of ligands, with a catalyst (CuI) loading of 10 mol% and K2CO3 (aliphatic primary and secondary amines) or t-BuOK (aromatic amines) as the base. A variety of amines have been synthesized in yields up to 98% with a broad substrate scope.
Collapse
Affiliation(s)
- Andrea Francesca Quivelli
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Bari, Italy
| | - Paola Vitale
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Bari, Italy
| | - Filippo Maria Perna
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Bari, Italy
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Bari, Italy
| |
Collapse
|
38
|
Li J, Yao J, He W, Yang F, Liu X. Modular Synthesis of New Bicyclic Carbene Precursors. LETT ORG CHEM 2019. [DOI: 10.2174/1570178616666190212125426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
A series of new N-heterocyclic carbene (NHC) precursors, containing bicyclic pyrrolo[1,2-
c]imidazole framework, were prepared from N-(tert-butoxycarbonyl)-L-proline (1-Boc-L-proline). The
sequential attachment of nitrogen nucleophiles and subsequent ring closure gave the desired bicyclic
NHC precursors in good yields. The structures of these new NHC precursors were determined on the
basis of spectroscopic techniques, including NMR and MS.
Collapse
Affiliation(s)
- Jie Li
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, China
| | - Jiaqi Yao
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, China
| | - Weiping He
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, China
| | - Fan Yang
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, China
| | - Xiaoming Liu
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou 213000, China
| |
Collapse
|
39
|
Jang WC, Hwang DW, Seo JH, Ko HM. Transition-Metal-Free Diarylation of Isocyanates with Arynes. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Morarji DV, Gurjar KK. Theoretical and Experimental Studies: Cu(I)/Cu(II) Catalytic Cycle in CuI/Oxalamide-Promoted C–N Bond Formation. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Jia X, Peng P. N
‐(4‐Thiazolylmethyl)Morpholine
N
‐Oxide as N,O‐Bidentate Ligand for Copper‐Catalyzed Ullmann‐Type N‐Arylation of Azoles/Amines with Aryl Halides. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xuefeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education School of Chemical and Material ScienceShanxi Normal University Linfen, Shanxi Province 041004 China
| | - Pai Peng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education School of Chemical and Material ScienceShanxi Normal University Linfen, Shanxi Province 041004 China
| |
Collapse
|
42
|
Dhiman AK, Chandra D, Kumar R, Sharma U. Catalyst-Free Synthesis of 2-Anilinoquinolines and 3-Hydroxyquinolines via Three-Component Reaction of Quinoline N-Oxides, Aryldiazonium Salts, and Acetonitrile. J Org Chem 2019; 84:6962-6969. [DOI: 10.1021/acs.joc.9b00739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ankit Kumar Dhiman
- Natural Product Chemistry & Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Devesh Chandra
- Natural Product Chemistry & Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rakesh Kumar
- Natural Product Chemistry & Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Natural Product Chemistry & Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
43
|
|
44
|
Polley A, Varalaxmi K, Jana R. Palladium-Catalyzed Ortho C-H Arylation of Aniline Carbamates with Diazonium Salts under Mild Conditions: Expedient Synthesis of Carbazole Alkaloids. ACS OMEGA 2018; 3:14503-14516. [PMID: 31458136 PMCID: PMC6644385 DOI: 10.1021/acsomega.8b02009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/19/2018] [Indexed: 06/10/2023]
Abstract
Despite the significant progress, C-H arylation with aryldiazonium salts is a major challenge because of the faster rate of oxidative addition compared to the C-H insertion, leading to a deleterious homocoupling product. Recently, this limitation has been overcome by merging a photoredox catalyst with transition-metal catalysts which proceeds through a distinct single electron-transfer mechanism. However, we have observed that the photoredox catalyst is not necessary for the C-H arylation of aniline rather chemical reactivity can be controlled by tuning the electronic nature of the substrate. We report, herein, a palladium-catalyzed C-H arylation of aniline carbamates with aryldiazonium salts under external oxidant, acid, base free conditions at room temperature. Mechanistic studies suggest that the present reaction proceeds through a directed electrophilic metalation pathway which is the slowest step. However, the oxidative addition may take place through either ionic (2e-) or radical (1e-) pathway to generate hypervalent Pd(IV) or Pd(III) intermediate, respectively. A facile reductive elimination from the hypervalent palladium complex furnishes the C-H arylation product under mild conditions. The carbamate directing group is easily removed from the product to obtain the corresponding ortho-arylated aniline, which is a precursor for plethora of carbazole alkaloids and other biologically active molecules. The reaction is scaled-up to gram scale to furnish the desired product in comparable yields. Finally, we have applied this C-H arylation methodology for the synthesis of series of carbazole alkaloids such as clausine V, clauszoline K, O-methoxymahanine, and O-methylmurrayamine-D.
Collapse
Affiliation(s)
- Arghya Polley
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West
Bengal, India
- Academy
of Scientific and Innovative Research (AcSIR), Kolkata 700032, West Bengal, India
| | - Kasarla Varalaxmi
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West
Bengal, India
- National
Institute of Pharmaceutical Education and Research, Kolkata 700054, West Bengal, India
| | - Ranjan Jana
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West
Bengal, India
- Academy
of Scientific and Innovative Research (AcSIR), Kolkata 700032, West Bengal, India
| |
Collapse
|
45
|
Tankam T, Srisa J, Sukwattanasinitt M, Wacharasindhu S. Microwave-Enhanced On-Water Amination of 2-Mercaptobenzoxazoles To Prepare 2-Aminobenzoxazoles. J Org Chem 2018; 83:11936-11943. [DOI: 10.1021/acs.joc.8b01824] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Theeranon Tankam
- Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University Bangkok 10330, Thailand
| | - Jakkrit Srisa
- Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University Bangkok 10330, Thailand
| | - Mongkol Sukwattanasinitt
- Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University Bangkok 10330, Thailand
| | - Sumrit Wacharasindhu
- Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University Bangkok 10330, Thailand
| |
Collapse
|
46
|
Romney DK, Arnold FH, Lipshutz BH, Li CJ. Chemistry Takes a Bath: Reactions in Aqueous Media. J Org Chem 2018; 83:7319-7322. [DOI: 10.1021/acs.joc.8b01412] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- David K. Romney
- Division of Chemistry and Chemical Engineering, California Institute of Technology
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology
| | - Bruce H. Lipshutz
- Department of Chemistry & Biochemistry, University of California, Santa Barbara
| | | |
Collapse
|