1
|
Arora A, Kumar S, Kumar S, Dua A, Singh BK. Synthesis, characterization and photophysical studies of dual-emissive base-modified fluorescent nucleosides. Org Biomol Chem 2024; 22:4922-4939. [PMID: 38808609 DOI: 10.1039/d4ob00749b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A straightforward and efficient methodology has been employed for the synthesis of a diverse set of base-modified fluorescent nucleoside conjugates via Cu(I)-catalysed cycloaddition reaction of 5-ethynyl-2',3',5'-tri-O-acetyluridine/3',5'-di-O-acetyl-2'-deoxyuridine with 4-(azidomethyl)-N9-(4'-aryl)-9,10-dihydro-2H,8H-chromeno[8,7-e][1,3]oxazin-2-ones in tBuOH to afford the desired 1,2,3-triazoles in 92-95% yields. Treatment with NaOMe/MeOH resulted in the final deprotected nucleoside analogues. The synthesized 1,2,3-triazoles demonstrated a significant emission spectrum, featuring two robust bands in the region from 350-500 nm (with excitation at 300 nm) in fluorescence studies. Photophysical investigations revealed a dual-emissive band with high fluorescence intensity, excellent Stokes shift (140-164 nm) and superior quantum yields (0.068-0.350). Furthermore, the electronic structures of the synthesized triazoles have been further verified by DFT studies. Structural characterization of all synthesized compounds was carried out using various analytical techniques, including IR, 1H-NMR, 13C-NMR, 1H-1H COSY, 1H-13C HETCOR experiments, and HRMS measurements. The dual-emissive nature of these nucleosides would be a significant contribution to nucleoside chemistry as there are limited literature reports on the same.
Collapse
Affiliation(s)
- Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Sandeep Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
- Department of Chemistry, Ramjas College, University of Delhi, Delhi-110007, India
| | - Amita Dua
- Department of Chemistry, Dyal Singh College, University of Delhi, Delhi-110007, India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
2
|
Reyes Y, Mebel A, Wnuk SF. 6-azido and 6-azidomethyl uracil nucleosides. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:453-471. [PMID: 37859415 DOI: 10.1080/15257770.2023.2271023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Azido nucleosides have been utilized for click reactions, metabolic incorporation into cellular DNA, and fluorescent imaging of live cells. Two classes of 6-azido modified uracil nucleosides; one with azido group directly attached to uracil ring and second with azido group attached via methylene linker are described. The 6-azido-2'-deoxyuridine (6-AdU) was prepared in 55% overall yield by lithiation-based regioselective C6-iodination of silyl protected 2'-deoxyuridine followed by treatment with sodium azide and deprotection with TBAF. Lithiation-based C6-alkylation of the protected uridine with methyl iodide followed by the oxidation of the 6-methyl product with selenium dioxide and the subsequent mesylation and azidation of the resulting 6-hydroxymethyl group gave after deprotection 6-azidomethyluridine (6-AmU) in 61% overall yield. Direct lithiation-based C6-hydroxymethylation followed by mesylation/azidation sequence and deprotection provided 6-AmU or 6-azidomethyl-2'-deoxyuridine (6-AmdU). Yields for the lithiation-based regioselective C6-iodination and alkylation were higher for uridine than 2'-deoxyuridine derivatives and they appear to be less dependent on the sugar protection group used. Strain promoted click reactions of 6-AdU and 6-AmdU with symmetrically fused cyclopropyl cyclooctyne (OCT) provided fluorescent triazoles. DFT-calculated dihedral angles and energy differences for the favored anti and syn conformation of 6-AdU and 6-AmdU versus their C5 azido counterparts are discussed.
Collapse
Affiliation(s)
- Yahaira Reyes
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Alexander Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Stanislaw F Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| |
Collapse
|
3
|
Gungor O, Kose M. The biguanide-sulfonamide derivatives: synthesis, characterization and investigation of anticholinesterase inhibitory, antioxidant and DNA/BSA binding properties. J Biomol Struct Dyn 2023; 41:14952-14967. [PMID: 36858484 DOI: 10.1080/07391102.2023.2184637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/19/2023] [Indexed: 03/03/2023]
Abstract
A number of new biguanidine-sulfonamide derivatives (1-16) were synthesized and their structures were characterized by spectroscopic and analytical methods. Crystal structures of the compounds 1, 4, 8, 10 and 14 were determined by single crystal X-ray diffraction studies. X-ray crystallographic data showed the π-electron delocalization through the biguanide units. The AChE and BChE cholinesterase inhibitor, DPPH antioxidant and DNA/BSA binding properties of the synthesized compounds were evaluated. Results of cholinesterase inhibitory properties have shown that the compounds containing electron-withdrawing (-F, -Cl) groups have higher AChE/BChE inhibitory and antioxidant activities. Compound 3 showed higher BChE inhibitory activity than tacrine with IC50 value of 28.4 µM. The compounds interact with DNA via minor groove binding mode. The compounds with a naphthyl group in its structure strongly binds with DNA/BSA biomolecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ozge Gungor
- Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Muhammet Kose
- Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
4
|
Meher S, Gade CR, Sharma NK. Tropolone-Conjugated DNA: A Fluorescent Thymidine Analogue Exhibits Solvatochromism, Enzymatic Incorporation into DNA and HeLa Cell Internalization. Chembiochem 2023; 24:e202200732. [PMID: 36510378 DOI: 10.1002/cbic.202200732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Tropolone is a non-benzenoid aromatic scaffold with unique photophysical and metal-chelating properties. Recently, it has been conjugated with DNA, and the photophysical properties of this conjugate have been explored. Tropolonyl-deoxyuridine (tr-dU) is a synthetic fluorescent DNA nucleoside analogue that exhibits pH-dependent emissions. However, its solvent-dependent fluorescence properties are unexplored owing to its poor solubility in most organic solvents. It would be interesting to incorporate it into DNA primer enzymatically. This report describes the solvent-dependent fluorescence properties of the silyl-derivative, and enzymatic incorporation of its triphosphate analogue. For practical use, its cell-internalization and cytotoxicity are also explored. tr-dU nucleoside was found to be a potential analogue to design DNA probes and can be explored for various therapeutic applications in the future.
Collapse
Affiliation(s)
- Sagarika Meher
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatani, 752050, Odisha, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Chandrasekhar Reddy Gade
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatani, 752050, Odisha, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Nagendra K Sharma
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatani, 752050, Odisha, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
5
|
Bollu A, Panda SS, Sharma NK. Fluorescent DNA analog: 2-aminotroponyl-pyrrolyl-2'-deoxyuridinyl DNA oligo enhance fluorescence in DNA-duplex as compared to 2-aminotroponyl-ethynyl-2'-deoxyuridinyl DNA oligo. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:119-133. [PMID: 36002436 DOI: 10.1080/15257770.2022.2111442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The nucleobase modified fluorescent DNA and RNA analogs are synthesized by the conjugation of aromatic scaffolds through linkers, comprising mostly ethyne/ethene or fused ring residues at the pyrimidine/purine ring. These scaffolds are mainly derived from the benzenoid aromatic molecules comprising electron withdrawing/donating characters. However, non-benzenoid aromatic scaffolds such as tropolone and related derivatives are constituents of various troponoid natural products. The conjugation of nucleobases with a troponyl moiety is underutilized for the synthesis of fluorescent DNA analogs. This report describes the synthesis and photophysical studies of 2-aminotroponyl conjugated deoxyuridine nucleosides and their DNA analogs. 2-Aminotropone derivatives are conjugated at the C-5 position of uridine through an ethynyl linker/pyrrolyl ring fusion and their DNA analogs. Their photophysical studies reveal that aminotroponyl deoxyuridine analogs exhibit solvent-dependent fluorescence properties. Moreover, pyrrolyl ring-fused aminotroponyl DNA oligonucleotides enhance the fluorescence after formation of duplexation with complementary sequences of native DNA oligonucleotides. Hence, these modified nucleosides and DNA are promising fluorescent analogs which could be useful to design the sequence-specific DNA probes.
Collapse
Affiliation(s)
- Amarnath Bollu
- School of Chemical Science, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI)-Mumbai, Mumbai, India
| | - Subhashree Subhadarshini Panda
- School of Chemical Science, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI)-Mumbai, Mumbai, India
| | | |
Collapse
|
6
|
Fluorinated N-quinoxaline-based boron complexes: Synthesis, photophysical properties, and selective DNA/BSA biointeraction. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Kaczmarek R, Twardy DJ, Olson TL, Korczyński D, Andrei G, Snoeck R, Dolot R, Wheeler KA, Dembinski R. Extension of furopyrimidine nucleosides with 5-alkynyl substituent: Synthesis, high fluorescence, and antiviral effect in the absence of free ribose hydroxyl groups. Eur J Med Chem 2021; 209:112884. [PMID: 33039724 PMCID: PMC7521880 DOI: 10.1016/j.ejmech.2020.112884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 11/24/2022]
Abstract
A novel methodology to access alkynyl nucleoside analogues is elaborated. Highly fluorescent 5-alkynylfuropyrimidines were synthesized (97-46%) and their antiviral properties investigated in vitro. Regiochemistry of the functionalization was achieved with the aid of 5-endo-dig electrophilic halocyclization of acetyl 5-p-tolyl- or 5-p-pentylphenyl-2'-deoxyuridine. Structure of one of the resulting nucleosides, 6-p-tolyl-5-iodo-2'-deoxyribofuranosyl-furo[2,3-d]pyrimidin-2-one, was confirmed by X-ray crystallography, and its conformation was compared to related nucleosides. Diverse alkynyl substituents were introduced at the heterobicyclic base C-5 position via Sonogashira coupling of 5-iodo-2'-deoxyribofuranosyl-furo[2,3-d]pyrimidin-2-ones. The resulting compounds had fluorescence emissions of 452-481 nm. High quantum yields of 0.53-0.60 were observed for 9-ethynyl-9-fluorenol and propargyl alcohol/methyl ether-modified furopyrimidines. These modified nucleosides, designed in the form of ribose acetyl esters, are potential tools for fluorescent tagging, studying nucleoside metabolism, 2'-deoxyribonucleoside kinase activity, and antiviral activity. Antiviral assays against a broad spectrum of DNA and RNA viruses showed that in human embryonic lung (HEL) cell cultures some of the compounds posess antiviral activity (EC50 1.3-13.2 μM) against varicella-zoster virus (VZV). The alkynyl furopyrimidine with two p-pentylphenyl substituents emerged as the best compound with reasonable and selective anti-VZV activity, confirming p-pentylphenyl potency as a pharmacophore.
Collapse
Affiliation(s)
- Renata Kaczmarek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Dylan J Twardy
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI, 48309-4479, USA
| | - Trevor L Olson
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI, 48309-4479, USA
| | - Dariusz Korczyński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Graciela Andrei
- Rega Institute, Department of Microbiology, Immunology and Transplantation, Herestraat 49, 3000, Leuven, Belgium
| | - Robert Snoeck
- Rega Institute, Department of Microbiology, Immunology and Transplantation, Herestraat 49, 3000, Leuven, Belgium
| | - Rafał Dolot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Kraig A Wheeler
- Department of Chemistry, Whitworth University, 300 W. Hawthorne Rd., Spokane, WA, 99251, USA
| | - Roman Dembinski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland; Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI, 48309-4479, USA.
| |
Collapse
|
8
|
Stereochemistry of the α-carbon in the benzylic modifying moiety attached at the C-5 end of thymidine affects the potency of a newly identified anti-cancer lead nucleoside. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Li J, Fang X, Ming X. Visibly Emitting Thiazolyl-Uridine Analogues as Promising Fluorescent Probes. J Org Chem 2020; 85:4602-4610. [DOI: 10.1021/acs.joc.9b03208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jinsi Li
- Department of Pharmacy, Chengdu Medical College, No. 783 Xindu Avenue, Chengdu, Sichuan 610500, P. R. China
| | - Xuerong Fang
- Department of Pharmacy, Chengdu Medical College, No. 783 Xindu Avenue, Chengdu, Sichuan 610500, P. R. China
| | - Xin Ming
- Department of Pharmacy, Chengdu Medical College, No. 783 Xindu Avenue, Chengdu, Sichuan 610500, P. R. China
| |
Collapse
|
10
|
Kaczmarek R, Korczyński D, Green JR, Dembinski R. Extension of the 5-alkynyluridine side chain via C-C-bond formation in modified organometallic nucleosides using the Nicholas reaction. Beilstein J Org Chem 2020; 16:1-8. [PMID: 31976010 PMCID: PMC6964655 DOI: 10.3762/bjoc.16.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/14/2019] [Indexed: 01/15/2023] Open
Abstract
Dicobalt hexacarbonyl nucleoside complexes of propargyl ether or esters of 5-substituted uridines react with diverse C-nucleophiles. Synthetic outcomes confirmed that the Nicholas reaction can be carried out in a nucleoside presence, leading to a divergent synthesis of novel metallo-nucleosides enriched with alkene, arene, arylketo, and heterocyclic functions, in the deoxy and ribo series.
Collapse
Affiliation(s)
- Renata Kaczmarek
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Dariusz Korczyński
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - James R Green
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Roman Dembinski
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309-4479, USA
| |
Collapse
|
11
|
Ardhapure AV, Gayakhe V, Bhilare S, Kapdi AR, Bag SS, Sanghvi YS, Gunturu KC. Extended fluorescent uridine analogues: synthesis, photophysical properties and selective interaction with BSA protein. NEW J CHEM 2020. [DOI: 10.1039/d0nj02803g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The improvement in fluorescence properties of 2′-deoxyuridine was made possible by the introduction of (hetero)aromatic moieties at the C–5 position of uridine with alkenyl/phenyl/styryl linkers to create a library of useful fluorescent nucleosides.
Collapse
Affiliation(s)
| | - Vijay Gayakhe
- Department of Chemistry
- Institute of Chemical Technology
- Matunga
- Mumbai-400019
- India
| | - Shatrughn Bhilare
- Department of Chemistry
- Institute of Chemical Technology
- Matunga
- Mumbai-400019
- India
| | - Anant R. Kapdi
- Department of Chemistry
- Institute of Chemical Technology
- Matunga
- Mumbai-400019
- India
| | - Subhendu Sekhar Bag
- Bioorganic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology
- Guwahati 781039
- India
| | | | | |
Collapse
|
12
|
Aroche DP, Vargas JP, Nogara PA, da Silveira Santos F, da Rocha JBT, Lüdtke DS, Rodembusch FS. Glycoconjugates Based on Supramolecular Tröger's Base Scaffold: Synthesis, Photophysics, Docking, and BSA Association Study. ACS OMEGA 2019; 4:13509-13519. [PMID: 31460480 PMCID: PMC6705216 DOI: 10.1021/acsomega.9b01857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/18/2019] [Indexed: 05/03/2023]
Abstract
This study presents new Tröger's bases bearing glycosyl moieties obtained from a copper-catalyzed azide-alkyne cycloaddition reaction. The Tröger's bases present absorption maxima close to 275 nm related to fully spin and symmetry-allowed electronic transitions. The main fluorescence emission located at 350 nm was observed with no influence on the glycosyl moieties. Furthermore, protein detection studies have been performed using bovine serum albumin (BSA) as a model protein, and results have shown a strong interaction between some of the compounds through a static fluorescence suppression mechanism related to the formation of a glycoconjugate-BSA complex favored by the glycosyl subunit. Moreover, docking was also studied for better understanding the suppression mechanism and indicated that the glycosyl and triazole moieties increase the affinity with BSA.
Collapse
Affiliation(s)
- Débora
Muller Pimentel Aroche
- Grupo
de Pesquisa em Fotoquímica Orgânica Aplicada, Universidade Federal do Rio Grande do Sul, UFRGS,
Instituto de Química, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Jaqueline Pinto Vargas
- Instituto
de Química, Universidade Federal
do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Pablo Andrei Nogara
- Departamento
de Bioquímica e Biologia Molecular, Centro de Ciências
Naturais e Exatas, Universidade Federal
de Santa Maria, UFSM, 97105-900 Santa Maria, RS, Brazil
| | - Fabiano da Silveira Santos
- Grupo
de Pesquisa em Fotoquímica Orgânica Aplicada, Universidade Federal do Rio Grande do Sul, UFRGS,
Instituto de Química, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - João Batista Teixeira da Rocha
- Departamento
de Bioquímica e Biologia Molecular, Centro de Ciências
Naturais e Exatas, Universidade Federal
de Santa Maria, UFSM, 97105-900 Santa Maria, RS, Brazil
| | - Diogo Seibert Lüdtke
- Instituto
de Química, Universidade Federal
do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Fabiano Severo Rodembusch
- Grupo
de Pesquisa em Fotoquímica Orgânica Aplicada, Universidade Federal do Rio Grande do Sul, UFRGS,
Instituto de Química, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Triazolyl C-nucleosides via the intermediacy of β-1′-ethynyl-2′-deoxyribose derived from a Nicholas reaction: Synthesis, photophysical properties and interaction with BSA. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Wen Z, Tuttle PR, Howlader AH, Vasilyeva A, Gonzalez L, Tangar A, Lei R, Laverde EE, Liu Y, Miksovska J, Wnuk SF. Fluorescent 5-Pyrimidine and 8-Purine Nucleosides Modified with an N-Unsubstituted 1,2,3-Triazol-4-yl Moiety. J Org Chem 2019; 84:3624-3631. [PMID: 30806513 DOI: 10.1021/acs.joc.8b03135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Cu(I)- or Ag(I)-catalyzed cycloaddition between 8-ethynyladenine or guanine nucleosides and TMSN3 gave 8-(1- H-1,2,3-triazol-4-yl) nucleosides in good yields. On the other hand, reactions of 5-ethynyluracil or cytosine nucleosides with TMSN3 led to the chemoselective formation of triazoles via Cu(I)-catalyzed cycloaddition or vinyl azides via Ag(I)-catalyzed hydroazidation. These nucleosides with a minimalistic triazolyl modification showed excellent fluorescent properties with 8-(1- H-1,2,3-triazol-4-yl)-2'-deoxyadenosine (8-TrzdA), exhibiting a quantum yield of 44%. The 8-TrzdA 5'-triphosphate was incorporated into duplex DNA containing a one-nucleotide gap by DNA polymerase β.
Collapse
Affiliation(s)
- Zhiwei Wen
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Paloma R Tuttle
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - A Hasan Howlader
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Anna Vasilyeva
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Laura Gonzalez
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Antonija Tangar
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Ruipeng Lei
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Eduardo E Laverde
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Yuan Liu
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Stanislaw F Wnuk
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| |
Collapse
|
15
|
Triggered emission for rapid detection of hydrogen sulfide chaperoned by large Stokes shift. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|