1
|
Zhang F, Sasmal HS, Rana D, Glorius F. Switchable and Chemoselective Arene Hydrogenation for Efficient Late Stage Applications. J Am Chem Soc 2024; 146:18682-18688. [PMID: 38934861 DOI: 10.1021/jacs.4c05883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The incorporation of three-dimensional structures into drug molecules has demonstrated significant improvements in clinical success. Late-stage saturation of drug molecules provides a direct pathway for this transformation. However, achieving selective and controllable reduction of aromatic rings remains challenging, particularly when multiple aromatic rings coexist. Herein, we present the switchable and chemoselective hydrogenation of benzene and pyridine rings. The utility of the protocol has been comprehensively investigated in diversified substrates with the assistance of a fragment-screening technique. This approach provides convenient access to a diverse array of cyclohexane and piperidine compounds, prevalent in various bioactive molecules and drugs. Furthermore, it discloses promising avenues for applications in the late-stage switchable saturation of drugs, facilitating an increase in the fraction of sp3-carbons which holds the potential to enhance the medicinal properties of drugs.
Collapse
Affiliation(s)
- Fuhao Zhang
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Himadri Sekhar Sasmal
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Debanjan Rana
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
2
|
Lyons TW, Leibler INM, He CQ, Gadamsetty S, Estrada GJ, Doyle AG. Broad Survey of Selectivity in the Heterogeneous Hydrogenation of Heterocycles. J Org Chem 2024; 89:1438-1445. [PMID: 38241605 DOI: 10.1021/acs.joc.3c02028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
A broad survey of heterogeneous hydrogenation catalysts has been conducted for the reduction of heterocycles commonly found in pharmaceuticals. The comparative reactivity of these substrates is reported as a function of catalyst, temperature, and hydrogen pressure. This analysis provided several catalysts with complementary reactivity between substrates. We then explored a series of bisheterocyclic substrates that provided an intramolecular competition of heterocycle hydrogenation reactivity. In several cases, complete selectivity could be achieved for reduction of one heterocycle and isolated yields are reported. A general trend in reactivity is inferred in which quinoline is the most reactive, followed by pyrazine, then pyrrole and with pyridine being the least reactive.
Collapse
Affiliation(s)
- Thomas W Lyons
- Department of Process Research and Development, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | | - Cyndi Qixin He
- Modeling & Informatics, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Surendra Gadamsetty
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Gregorio J Estrada
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Abigail G Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
3
|
Vázquez-Domínguez P, Rizo JF, Arteaga JF, Jacquemin D, Favereau L, Ros A, Pischel U. Azaborahelicene fluorophores derived from four-coordinate N, C-boron chelates: synthesis, photophysical and chiroptical properties. Org Chem Front 2024; 11:843-853. [PMID: 38298564 PMCID: PMC10825847 DOI: 10.1039/d3qo01762a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 02/02/2024]
Abstract
A series of six azaborahelicenes with varying electron-donor substitution at the 4-position of the aryl residue (i.e., naphthyl) or with variable π-extension of the aryl residue (thianthrenyl, anthryl, pyrenyl) was prepared with an efficient and flexible synthetic protocol. These different types of functionalization afforded notably pronounced intramolecular charge-transfer (ICT) character for the dyes with the strongest electron donor substitution (NMe2) or easiest to oxidize aryl residues, as evidenced by photophysical investigations. These effects also impact the corresponding chiroptical properties of the separated M- and P-enantiomers, which notably display circularly polarized luminescence (CPL) with dissymmetry factors in the order of magnitude of 10-4 to 10-3. Theoretical calculations confirm the optical spectroscopy data and are in agreement with the proposed involvement of ICT processes.
Collapse
Affiliation(s)
- Pablo Vázquez-Domínguez
- Institute for Chemical Research (CSIC-US) C/Américo Vespucio 49 E-41092 Seville Spain
- Department of Organic Chemistry, Innovation Centre in Advanced Chemistry, ORFEO-CINQA, University of Seville C/Prof. García González 1 41012 Seville Spain
| | - José Francisco Rizo
- Institute for Chemical Research (CSIC-US) C/Américo Vespucio 49 E-41092 Seville Spain
| | - Jesús F Arteaga
- CIQSO - Center for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva Campus de El Carmen s/n E-21071 Huelva Spain
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230 F-44000 Nantes France
- Institut Universitaire de France (IUF) F-75005 Paris France
| | | | - Abel Ros
- Institute for Chemical Research (CSIC-US) C/Américo Vespucio 49 E-41092 Seville Spain
| | - Uwe Pischel
- CIQSO - Center for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva Campus de El Carmen s/n E-21071 Huelva Spain
| |
Collapse
|
4
|
Colliere V, Verelst M, Lecante P, Axet MR. Colloidal ruthenium catalysts for selective quinaldine hydrogenation: Ligand and solvent effects. Chemistry 2023:e202302131. [PMID: 38133951 DOI: 10.1002/chem.202302131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/10/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Colloidal Ru nanoparticles (NP) display interesting catalytic properties for the hydrogenation of (hetero)arenes as they proceed efficiently in mild reaction conditions. In this work, a series of Ru based materials was used in order to selectively hydrogenate quinaldine and assess the impact of the stabilizing agent on their catalytic performances. Ru nanoparticles stabilized with polyvinylpyrrolidone (PVP) and 1-adamantanecarboxylic acid (AdCOOH) allowed to obtain 5,6,7,8-tetrahydroquinaldine with a remarkable selectivity in mild reaction conditions by choosing the suitable solvent. The presence of a carboxylate ligand on the surface of the Ru NP led to an increase in the activity when compared to Ru/PVP catalyst. The stabilizing agent had also an impact on the selectivity, as carboxylate ligand modified catalysts promoted the selectivity towards 1,2,3,4-tetrahydroquinaldine, with bulky carboxylate displaying the highest ones.
Collapse
Affiliation(s)
- Vincent Colliere
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 route de Narbonne, BP 44099, F-31077, Toulouse Cedex 4, France
| | - Marc Verelst
- Centre d'Elaboration de Matériaux et d'Etudes Structurales, Université de Toulouse-UPS, 29 rue Jeanne Marvig, Cedex 4, 31055, Toulouse, BP 94347, France
| | - Pierre Lecante
- Centre d'Elaboration de Matériaux et d'Etudes Structurales, Université de Toulouse-UPS, 29 rue Jeanne Marvig, Cedex 4, 31055, Toulouse, BP 94347, France
| | - M Rosa Axet
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 route de Narbonne, BP 44099, F-31077, Toulouse Cedex 4, France
| |
Collapse
|
5
|
Jha N, Guo W, Kong WY, Tantillo DJ, Kapur M. Regiocontrol via Electronics: Insights into a Ru-Catalyzed, Cu-Mediated Site-Selective Alkylation of Isoquinolones via a C-C Bond Activation of Cyclopropanols. Chemistry 2023; 29:e202301551. [PMID: 37403766 DOI: 10.1002/chem.202301551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/06/2023]
Abstract
A site-selective C(3)/C(4)-alkylation of N-pyridylisoquinolones is achieved by employing C-C bond activation of cyclopropanols under Ru(II)-catalyzed/Cu(II)-mediated conditions. The regioisomeric ratios of the products follow directly from the electronic nature of the cyclopropanols and isoquinolones used, with electron-withdrawing groups yielding predominantly the C(3)-alkylated products, whereas the electron-donating groups primarily generate the C(4)-alkylated isomers. Density functional theory calculations and detailed mechanistic investigations suggest the simultaneous existence of the singlet and triplet pathways for the C(3)- and C(4)-product formation. Further transformations of the products evolve the utility of the methodology thereby yielding scaffolds of synthetic relevance.
Collapse
Affiliation(s)
- Neha Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, MP, India
| | - Wentao Guo
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, MP, India
| |
Collapse
|
6
|
Hedouin G, Sharma S, Kaur K, Choudhary RH, Jasinski JB, Gallou F, Handa S. Ligand-Free Ultrasmall Recyclable Iridium(0) Nanoparticles for Regioselective Aromatic Hydrogenation of Phosphine Oxide Scaffolds: An Easy Access to New Phosphine Ligands. Angew Chem Int Ed Engl 2023; 62:e202307139. [PMID: 37279182 DOI: 10.1002/anie.202307139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
Herein, we developed the recyclable ligand-free iridium (Ir)-hydride based Ir0 nanoparticles (NPs) for the first regioselective partial hydrogenation of PV -substituted naphthalenes. Both the isolated and in situ generated NPs are catalytically active. A control nuclear magnetic resonance (NMR) study revealed the presence of metal-surface-bound hydrides, most likely formed from Ir0 species. A control NMR study confirmed that hexafluoroisopropanol as a solvent was accountable for substrate activation via hydrogen bonding. High-resolution transmission electron microscopy of the catalyst supports the formation of ultrasmall NPs, and X-ray photoelectron spectroscopy confirmed the dominance of Ir0 in the NPs. The catalytic activity of NPs is broad as showcased by highly regioselective aromatic ring reduction in various phosphine oxides or phosphonates. The study also showcased a novel pathway toward preparing bis(diphenylphosphino)-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl (H8 -BINAP) and its derivatives without losing enantioselectivity during catalytic events.
Collapse
Affiliation(s)
- Gaspard Hedouin
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, KY 40292, USA
| | - Sudripet Sharma
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, KY 40292, USA
| | - Karanjeet Kaur
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, KY 40292, USA
| | - Ramesh Hiralal Choudhary
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, KY 40292, USA
| | - Jacek B Jasinski
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - Fabrice Gallou
- Chemical & Analytical Development, Novartis Pharma AG, 4056, Basel, Switzerland
| | - Sachin Handa
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, KY 40292, USA
- Department of Chemistry, University of Missouri, 601 S College Ave # 125, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Ma X, Mane MV, Cavallo L, Nolan SP. Ruthenium‐Catalyzed Regioselective 1,2‐Hydrosilylation of N‐Heteroarenes. European J Org Chem 2023. [DOI: 10.1002/ejoc.202201466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Xinyuan Ma
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Manoj V. Mane
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
- Centre for Nano and Material Sciences Jain (Deemed-to-be University) Jain Global Campus Kanakapura, Bangalore Karnataka 562112 India
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| |
Collapse
|
8
|
Ruthenium‐Catalyzed Enantioselective Hydrogenation of 9‐Phenanthrols. Angew Chem Int Ed Engl 2022; 61:e202205739. [DOI: 10.1002/anie.202205739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/07/2022]
|
9
|
Ding Y, Zhu Z, Chen M, Yu C, Zhou Y. Rhodium‐Catalyzed Asymmetric Hydrogenation of All‐Carbon Aromatic Rings. Angew Chem Int Ed Engl 2022; 61:e202205623. [DOI: 10.1002/anie.202205623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Yi‐Xuan Ding
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhou‐Hao Zhu
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Mu‐Wang Chen
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Chang‐Bin Yu
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Yong‐Gui Zhou
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116023 P. R. China
| |
Collapse
|
10
|
Fan QH, Zhang SX, Xu C, Yi N, Li S, He YM, Feng Y. Ruthenium‐Catalyzed Enantioselective Hydrogenation of 9‐Phenanthrols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qing-Hua Fan
- Institute of Chemistry, Chinese Academy of Sciences No.2 First North Street, Zhongguan Cun 100190 Beijing CHINA
| | - Shu-Xin Zhang
- Institute of Chemistry Chinese Academy of Sciences CAS key laboratory of molecular recognition and function 100190 Beijing CHINA
| | - Cong Xu
- Institute of Chemistry Chinese Academy of Sciences CAS key laboratory of molecular recognition and function 100190 Beijing CHINA
| | - Niannian Yi
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences CAS key laboratory of molecular recognition and function 100190 Beijing CHINA
| | - Shan Li
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences CAS key laboratory of molecular recognition and function 100190 Beijing CHINA
| | - Yan-Mei He
- Institute of Chemistry Chinese Academy of Sciences CAS key laboratory of molecular recognition and function 100190 Beijing CHINA
| | - Yu Feng
- Institute of Chemistry Chinese Academy of Sciences CAS key laboratory of molecular recognition and function 100190 Beijing CHINA
| |
Collapse
|
11
|
Viereck P, Hierlmeier G, Tosatti P, Pabst TP, Puentener K, Chirik PJ. Molybdenum-Catalyzed Asymmetric Hydrogenation of Fused Arenes and Heteroarenes. J Am Chem Soc 2022; 144:11203-11214. [PMID: 35714999 DOI: 10.1021/jacs.2c02007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The synthesis of enantioenriched molybdenum precatalysts for the asymmetric hydrogenation of substituted quinolines and naphthalenes is described. Three classes of pincer ligands with chiral substituents were evaluated as supporting ligands in the molybdenum-catalyzed hydrogenation reactions, where oxazoline imino(pyridine) chelates were identified as optimal. A series of 2,6-disubstituted quinolines was hydrogenated to enantioenriched decahydroquinolines with high diastereo- and enantioselectivities. For quinoline derivatives, selective hydrogenation of both the carbocycle and heterocycle was observed depending on the ring substitution. Spectroscopic and mechanistic studies established molybdenum η6-arene complexes as the catalyst resting state and that partial hydrogenation arises from dissociation of the substrate from the coordination sphere of molybdenum prior to complete reduction. A stereochemical model is proposed based on the relative energies of the respective coordination of the prochiral faces of the arene determined by steric interactions between the substrate and the chiral ligand, rather than through precoordination by a heteroatom.
Collapse
Affiliation(s)
- Peter Viereck
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gabriele Hierlmeier
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paolo Tosatti
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Tyler P Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Kurt Puentener
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
12
|
Zhou YG, Ding YX, Zhu ZH, Chen MW, Yu CB. Rhodium‐Catalyzed Asymmetric Hydrogenation of All‐Carbon Aromatic Rings. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yong-Gui Zhou
- Dalian Institute of Chemical Physics Department of Fine Chemicals 457 Zhongshan Road 116023 Dalian CHINA
| | - Yi-Xuan Ding
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis State Key Laboratory of Catalysis CHINA
| | - Zhou-Hao Zhu
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis State Key Laboratory of Catalysis Dalian CHINA
| | - Mu-Wang Chen
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis State Key Laboratory of Catalysis Dalian CHINA
| | - Chang-Bin Yu
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis State Key Laboratory of Catalysis Dalian CHINA
| |
Collapse
|
13
|
Hamza A, Moock D, Schlepphorst C, Schneidewind J, Baumann W, Glorius F. Unveiling a key catalytic pocket for the ruthenium NHC-catalysed asymmetric heteroarene hydrogenation. Chem Sci 2022; 13:985-995. [PMID: 35211263 PMCID: PMC8790799 DOI: 10.1039/d1sc06409f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
The chiral ruthenium(ii)bis-SINpEt complex is a versatile and powerful catalyst for the hydrogenation of a broad range of heteroarenes. This study aims to provide understanding of the active form of this privileged catalyst as well as the reaction mechanism, and to identify the factors which control enantioselectivity. To this end we used computational methods and in situ NMR spectroscopy to study the hydrogenation of 2-methylbenzofuran promoted by this system. The high flexibility and conformational freedom of the carbene ligands in this complex lead to the formation of a chiral pocket interacting with the substrate in a "lock-and-key" fashion. The non-covalent stabilization of the substrate in this particular pocket is an exclusive feature of the major enantiomeric pathway and is preserved throughout the mechanism. Substrate coordination leading to the minor enantiomer inside this pocket is inhibited by steric repulsion. Rather, the catalyst exhibits a "flat" interaction surface with the substrate in the minor enantiomer pathway. We probe this concept by computing transition states of the rate determining step of this reaction for a series of different substrates. Our findings open up a new approach for the rational design of chiral catalysts.
Collapse
Affiliation(s)
- Andrea Hamza
- Institute of Organic Chemistry, Research Centre for Natural Sciences Magyar Tudósok Körútja 2 H-1117 Budapest Hungary
| | - Daniel Moock
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Christoph Schlepphorst
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Jacob Schneidewind
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Wolfgang Baumann
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
14
|
Wang N, Tang W. Rhodium-Catalyzed Asymmetric Hydrogenation of All-Carbon Aromatic Rings. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Kuwano R. Catalytic Asymmetric Hydrogenation of Arenes. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.1125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ryoichi Kuwano
- Department of Chemistry, Faculty of Science, Kyushu University
| |
Collapse
|
16
|
Mao Y, Mao H, Xu J, Liu T, Liu B, Tan Q, Ding CH, Xu B. Synthesis of Poly-Substituted Pyridines via Noble-Metal-Free Cycloaddition of Ketones and Imines. Chem Asian J 2021; 16:3905-3908. [PMID: 34626095 DOI: 10.1002/asia.202100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/05/2021] [Indexed: 11/12/2022]
Abstract
An eco-friendly and noble-metal-free formal [4+2] cycloaddition reaction was developed for the efficient synthesis of biologically interesting poly-substituted pyridines from easily available ketones and imines, whereby two sequential C-C bonds are formed. The given approach features a unique synthetic strategy of imines and ketones with wide substrate scope, good functional group tolerance, mild conditions and operational simplicity, which represents a more direct pathway to synthesize poly-substituted pyridines than traditional methods.
Collapse
Affiliation(s)
- Yeting Mao
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Hong Mao
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiaojiao Xu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Tianqi Liu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Bingxin Liu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Qitao Tan
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Chang-Hua Ding
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Bin Xu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
17
|
Ramu S, Baskar B. A simple and efficient metal free, additive, or base free dehydrogenation of tetrahydroisoquinolines using oxygen as a clean oxidant. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metal free dehydrogenation of various substituted tetrahydroisoquinolines via a simple and convenient metal free, atom economical route for the synthesis of corresponding isoquinolines under oxygen atmosphere in N-methyl-2-pyrollidone (NMP) is described. Metal free dehydrogenation was carried out without the use of additive or base. A scope of the methodology was demonstrated for a number of aryl and heteroaryl substitutions present at C1 position and ester moiety at C3 position and was found to be good substrates. Substituted isoquinolines (3a–3h) and their esters (3i–3m) were synthesized in very good to excellent yields.
Collapse
Affiliation(s)
- Shanmugam Ramu
- Laboratory of Sustainable Chemistry, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpet (Dt), Tamilnadu 603 203, India
- Laboratory of Sustainable Chemistry, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpet (Dt), Tamilnadu 603 203, India
| | - Baburaj Baskar
- Laboratory of Sustainable Chemistry, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpet (Dt), Tamilnadu 603 203, India
- Laboratory of Sustainable Chemistry, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpet (Dt), Tamilnadu 603 203, India
| |
Collapse
|
18
|
Lai B, Ye M, Liu P, Li M, Bai R, Gu Y. A novel and robust heterogeneous Cu catalyst using modified lignosulfonate as support for the synthesis of nitrogen-containing heterocycles. Beilstein J Org Chem 2020; 16:2888-2902. [PMID: 33299487 PMCID: PMC7705867 DOI: 10.3762/bjoc.16.238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
A waste biomass, sodium lignosulfonate, was treated with sodium 2-formylbenzenesulfonate, and the phenylaldehyde condensation product was then used as a robust supporting material to immobilize a copper species. The so-obtained catalyst was characterized by many physicochemical methods including FTIR, EA, FSEM, FTEM, XPS, and TG. This catalyst exhibited excellent catalytic activity in the synthesis of nitrogen-containing heterocycles such as tricyclic indoles bearing 3,4-fused seven-membered rings, 2‑arylpyridines, aminonaphthalenes and 3-phenylisoquinolines. In addition, this catalyst showed to be recyclable and could be reused several times without significant loss in activity during the course of the reaction process.
Collapse
Affiliation(s)
- Bingbing Lai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education. Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, P. R. China
| | - Meng Ye
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education. Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, P. R. China
| | - Ping Liu
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, 832004, China
| | - Minghao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education. Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, P. R. China
| | - Rongxian Bai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education. Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, P. R. China
| | - Yanlong Gu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education. Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, P. R. China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
19
|
Nie B, Wu W, Ren Q, Wang Z, Zhang J, Zhang Y, Jiang H. Access to Cycloalkeno[ c]-Fused Pyridines via Pd-Catalyzed C(sp 2)-H Activation and Cyclization of N-Acetyl Hydrazones of Acylcycloalkenes with Vinyl Azides. Org Lett 2020; 22:7786-7790. [PMID: 32990446 DOI: 10.1021/acs.orglett.0c02466] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel Pd(II)-catalyzed vinylic C-H activation and cyclization has been developed, reacting a series of small, medium, and large N-acetyl hydrazones of acylcycloalkenes with vinyl azides to access diverse cycloalkeno[c]-fused pyridine scaffolds. This protocol provides progress in C(sp2)-H bond activation of medium to large cycloalkenes, and the target products can be obtained in a specific regioselectivity with good functional group tolerance and a broad substrate scope.
Collapse
Affiliation(s)
- Biao Nie
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qingyun Ren
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Company, Ltd., Dongguan 523871, China
| | - Zhongqing Wang
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Company, Ltd., Dongguan 523871, China
| | - Ji Zhang
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Company, Ltd., Dongguan 523871, China
| | - Yingjun Zhang
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Company, Ltd., Dongguan 523871, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
20
|
Wiesenfeldt MP, Nairoukh Z, Dalton T, Glorius F. Selective Arene Hydrogenation for Direct Access to Saturated Carbo- and Heterocycles. Angew Chem Int Ed Engl 2019; 58:10460-10476. [PMID: 30701650 PMCID: PMC6697539 DOI: 10.1002/anie.201814471] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 01/08/2023]
Abstract
Arene hydrogenation provides direct access to saturated carbo- and heterocycles and thus its strategic application may be used to shorten synthetic routes. This powerful transformation is widely applied in industry and is expected to facilitate major breakthroughs in the applied sciences. The ability to overcome aromaticity while controlling diastereo-, enantio-, and chemoselectivity is central to the use of hydrogenation in the preparation of complex molecules. In general, the hydrogenation of multisubstituted arenes yields predominantly the cis isomer. Enantiocontrol is imparted by chiral auxiliaries, Brønsted acids, or transition-metal catalysts. Recent studies have demonstrated that highly chemoselective transformations are possible. Such methods and the underlying strategies are reviewed herein, with an emphasis on synthetically useful examples that employ readily available catalysts.
Collapse
Affiliation(s)
- Mario P. Wiesenfeldt
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Zackaria Nairoukh
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Toryn Dalton
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Frank Glorius
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
21
|
Wiesenfeldt MP, Nairoukh Z, Dalton T, Glorius F. Die selektive Arenhydrierung bietet einen direkten Zugang zu gesättigten Carbo‐ und Heterocyclen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814471] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mario P. Wiesenfeldt
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Zackaria Nairoukh
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Toryn Dalton
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Frank Glorius
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
22
|
Zhang WB, Yang XT, Ma JB, Su ZM, Shi SL. Regio- and Enantioselective C–H Cyclization of Pyridines with Alkenes Enabled by a Nickel/N-Heterocyclic Carbene Catalysis. J Am Chem Soc 2019; 141:5628-5634. [DOI: 10.1021/jacs.9b00931] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wu-Bin Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Xin-Tuo Yang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Jun-Bao Ma
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Zhi-Ming Su
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Shi-Liang Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
23
|
Seo CSG, Morris RH. Catalytic Homogeneous Asymmetric Hydrogenation: Successes and Opportunities. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00774] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Chris S. G. Seo
- Department of Chemistry, University of Toronto, M5S3H6 Toronto, Ontario, Canada
| | - Robert H. Morris
- Department of Chemistry, University of Toronto, M5S3H6 Toronto, Ontario, Canada
| |
Collapse
|
24
|
|
25
|
Zheng B, Trieu TH, Li FL, Zhu XL, He YG, Fan QQ, Shi XX. Copper-Catalyzed Benign and Efficient Oxidation of Tetrahydroisoquinolines and Dihydroisoquinolines Using Air as a Clean Oxidant. ACS OMEGA 2018; 3:8243-8252. [PMID: 31458961 PMCID: PMC6644811 DOI: 10.1021/acsomega.8b00855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 06/06/2018] [Indexed: 06/10/2023]
Abstract
A green chemical method for mild oxidation of 1,2,3,4-tetrahydroisoquinolines (THIQs) and 3,4-dihydroisoquinolines (DHIQs) has been developed using air (O2) as a clean oxidant. DHIQs and THIQs could be efficiently oxidized to isoquinolines in dimethyl sulfoxide at 25 °C under an open air atmosphere with CuBr2 (20 mol %) as the catalyst; different bases [NaOEt and/or 1,8-diazabicyclo[5,4,0]undec-7-ene] were used for the reaction according to the patterns of substituents (R1, R2).
Collapse
Affiliation(s)
- Bo Zheng
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Tien Ha Trieu
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Feng-Lei Li
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Xing-Liang Zhu
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Yun-Gang He
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Qi-Qi Fan
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Xiao-Xin Shi
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| |
Collapse
|