1
|
Guo Y, Ge L, Phillips DL, Ma J, Fang Y. Different Reaction Mechanisms Triggered by the Meta Effect: Photoinduced Generation of Quinone Methides from Hydroxybiphenyl Derivatives. J Phys Chem Lett 2024; 15:8569-8576. [PMID: 39140706 DOI: 10.1021/acs.jpclett.4c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
A series of sterically congested quinone methides (QMs) exhibit photoinduced antiproliferative activity against some human cancer cell lines. To elucidate the structure-reactivity relationship and details of mechanisms of the photogeneration of sterically congested QMs, we chose phenylphenol derivatives 1-3 as QM precursors and investigated their photodehydration processes in aqueous solutions using ultrafast spectroscopy and theoretical computations. We found that meta derivatives 1 and 2 undergo water-mediated excited-state proton transfer (ESPT) from the phenol OH, followed by expulsion of the OH- to form QMs. By comparison, para derivative 3 proceeds via water-mediated ESPT from H2O to benzyl alcohol coupled with dehydration as the first step, delivering a cation intermediate, which further deprotonates to yield QM. Such results would help chemists understand more about the meta effects in photochemistry and about ESPT and would help synthetic chemists design sterically congested QM precursors with extraordinary reactivities and expand applications of QMs in biological and medical systems.
Collapse
Affiliation(s)
- Yan Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Lingfeng Ge
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R. 999077, P. R. China
| | - Jiani Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
2
|
Sviben I, Glavaš M, Erben A, Bachelart T, Pavlović Saftić D, Piantanida I, Basarić N. Dipeptides Containing Pyrene and Modified Photochemically Reactive Tyrosine: Noncovalent and Covalent Binding to Polynucleotides. Molecules 2023; 28:7533. [PMID: 38005255 PMCID: PMC10672942 DOI: 10.3390/molecules28227533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Dipeptides 1 and 2 were synthesized from unnatural amino acids containing pyrene as a fluorescent label and polynucleotide binding unit, and modified tyrosine as a photochemically reactive unit. Photophysical properties of the peptides were investigated by steady-state and time-resolved fluorescence. Both peptides are fluorescent (Φf = 0.3-0.4) and do not show a tendency to form pyrene excimers in the concentration range < 10-5 M, which is important for their application in the fluorescent labeling of polynucleotides. Furthermore, both peptides are photochemically reactive and undergo deamination delivering quinone methides (QMs) (ΦR = 0.01-0.02), as indicated from the preparative photomethanolysis study of the corresponding N-Boc protected derivatives 7 and 8. Both peptides form stable complexes with polynucleotides (log Ka > 6) by noncovalent interactions and similar affinities, binding to minor grooves, preferably to the AT reach regions. Peptide 2 with a longer spacer between the fluorophore and the photo-activable unit undergoes a more efficient deamination reaction, based on the comparison with the N-Boc protected derivatives. Upon light excitation of the complex 2·oligoAT10, the photo-generation of QM initiates the alkylation, which results in the fluorescent labeling of the oligonucleotide. This study demonstrated, as a proof of principle, that small molecules can combine dual forms of fluorescent labeling of polynucleotides, whereby initial addition of the dye rapidly forms a reversible high-affinity noncovalent complex with ds-DNA/RNA, which can be, upon irradiation by light, converted to the irreversible (covalent) form. Such a dual labeling ability of a dye could have many applications in biomedicinal sciences.
Collapse
Affiliation(s)
| | | | | | | | | | - Ivo Piantanida
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (I.S.); (M.G.); (A.E.); (T.B.); (D.P.S.)
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (I.S.); (M.G.); (A.E.); (T.B.); (D.P.S.)
| |
Collapse
|
3
|
Zlatić K, Popović M, Uzelac L, Kralj M, Basarić N. Antiproliferative activity of meso-substituted BODIPY photocages: Effect of electrophiles vs singlet oxygen. Eur J Med Chem 2023; 259:115705. [PMID: 37544182 DOI: 10.1016/j.ejmech.2023.115705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
A series of BODIPY compounds with a methylphenol substituent at the meso-position and halogen atoms on the BODIPY core, or OCH3 or OAc substituents at the phenolic moiety was synthesized. Their spectral and photophysical properties and the photochemical reactivity upon irradiation in CH3OH were investigated. The molecules with the phenolic substituent at the meso-position undergo more efficient photo-methanolysis at the boron atom, while the introduction of the OCH3 group at the phenolic moiety changes the reaction selectivity towards the cleavage at the meso-position. The introduction of the halogen atoms into the BODIPY increases the photo-cleavage reaction efficiency, as well as the ability of the molecules to sensitize oxygen and form reactive oxygen species (ROS). The efficiency of the ROS formation was measured in comparison with that of tetraphenylporphyrin. The antiproliferative effect of BODIPY molecules was investigated against three human cancer cell lines MCF-7 (breast carcinoma), H460 (lung carcinoma), HCT116 (colon carcinoma), and two non-cancer cell lines, HEK293T (embryonic kindey) and HaCaT (keratinocytes), with the cells kept in the dark or irradiated with visible light. For most of the compounds a modest or no antiproliferative activity was observed for cells in the dark. However, when cells were irradiated, a dramatic increase in cytotoxicity was observed (more than 100-fold), with IC50 values in the submicromolar concentration range. The enhancement of the cytotoxic effect was explained by the formation of ROS, which was studied for cells in vitro. However, for some BODIPY compounds, the effects due to the formation of electrophilic species (carbocations and quinone methides, which react with biomolecules) cannot be disregarded. Confocal fluorescence microscopy images of H460 cells and HEK293T show that the compounds enter the cells and are retained in the cytoplasm and membranes of the various organelles. When the cells treated with the compounds are irradiated, photo-processes lead to cell death by apoptosis. The study performed is important because it provides bases for the development of novel photo-therapeutics capable of exerting photo-cytotoxic effects in both oxygenated and hypoxic cells.
Collapse
Affiliation(s)
- Katarina Zlatić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia; Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia; Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000, Zagreb, Croatia.
| | - Matija Popović
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia
| | - Lidija Uzelac
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia
| | - Marijeta Kralj
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia.
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia.
| |
Collapse
|
4
|
Photodehydration mechanisms of quinone methide formation from 2-naphthol derivatives. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Hornung JE, Weinrich T, Göbel MW. Directed Crosslinking of RNA by Glutathione‐Triggered PNA‐Quinone‐Methide‐Conjugates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jan-Erik Hornung
- Goethe-Universitat Frankfurt am Main Institut für Organische Chemie und Chemische Biologie GERMANY
| | - Timo Weinrich
- Goethe-Universitat Frankfurt am Main Institut für Organische Chemie und Chemische Biologie GERMANY
| | - Michael W. Göbel
- Goethe-Universität Frankfurt Institut für Organische Chemie und Chemi Max-von-Laue-Str. 7 60438 Frankfurt am Main GERMANY
| |
Collapse
|
6
|
Erben A, Sviben I, Mihaljević B, Piantanida I, Basarić N. Non-Covalent Binding of Tripeptides-Containing Tryptophan to Polynucleotides and Photochemical Deamination of Modified Tyrosine to Quinone Methide Leading to Covalent Attachment. Molecules 2021; 26:molecules26144315. [PMID: 34299591 PMCID: PMC8306964 DOI: 10.3390/molecules26144315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022] Open
Abstract
A series of tripeptides TrpTrpPhe (1), TrpTrpTyr (2), and TrpTrpTyr[CH2N(CH3)2] (3) were synthesized, and their photophysical properties and non-covalent binding to polynucleotides were investigated. Fluorescent Trp residues (quantum yield in aqueous solvent ΦF = 0.03–0.06), allowed for the fluorometric study of non-covalent binding to DNA and RNA. Moreover, high and similar affinities of 2×HCl and 3×HCl to all studied double stranded (ds)-polynucleotides were found (logKa = 6.0–6.8). However, the fluorescence spectral responses were strongly dependent on base pair composition: the GC-containing polynucleotides efficiently quenched Trp emission, at variance to AT- or AU-polynucleotides, which induced bisignate response. Namely, addition of AT(U) polynucleotides at excess over studied peptide induced the quenching (attributed to aggregation in the grooves of polynucleotides), whereas at excess of DNA/RNA over peptide the fluorescence increase of Trp was observed. The thermal denaturation and circular dichroism (CD) experiments supported peptides binding within the grooves of polynucleotides. The photogenerated quinone methide (QM) reacts with nucleophiles giving adducts, as demonstrated by the photomethanolysis (quantum yield ΦR = 0.11–0.13). Furthermore, we have demonstrated photoalkylation of AT oligonucleotides by QM, at variance to previous reports describing the highest reactivity of QMs with the GC reach regions of polynucleotides. Our investigations show a proof of principle that QM precursor can be imbedded into a peptide and used as a photochemical switch to enable alkylation of polynucleotides, enabling further applications in chemistry and biology.
Collapse
Affiliation(s)
- Antonija Erben
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia; (A.E.); (I.S.); (I.P.)
| | - Igor Sviben
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia; (A.E.); (I.S.); (I.P.)
| | - Branka Mihaljević
- Department of Material Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia;
| | - Ivo Piantanida
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia; (A.E.); (I.S.); (I.P.)
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia; (A.E.); (I.S.); (I.P.)
- Correspondence:
| |
Collapse
|
7
|
Zlatić K, Cindrić M, Antol I, Uzelac L, Mihaljević B, Kralj M, Basarić N. Wavelength dependent photochemistry of BODIPY-phenols and their applications in the fluorescent labeling of proteins. Org Biomol Chem 2021; 19:4891-4903. [PMID: 34106112 DOI: 10.1039/d1ob00278c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A series of BODIPY dyes were synthesized, that were at the 3, or 3 and 5 positions, substituted by photochemically reactive quinone methide (QM) precursor moieties. Fluorescence properties of the molecules were investigated and we demonstrated that the molecules undergo wavelength dependent photochemistry. Photodeamination to deliver QMs takes place only upon excitation to higher excited singlet states, showing unusual anti-Kasha photochemical reactivity. The findings were corroborated by TD-DFT computations. Laser flash photolysis experiments could not reveal QMs due to the low efficiency of their formation, but enabled the detection of phenoxyl radicals. The applicability of the molecules for the fluorescent labeling of bovine serum albumin as a model protein upon photoexcitation at 350 nm was demonstrated.
Collapse
Affiliation(s)
- Katarina Zlatić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Matej Cindrić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Ivana Antol
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Lidija Uzelac
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Branka Mihaljević
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Marijeta Kralj
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| |
Collapse
|
8
|
Photochemical Reactivity of Naphthol-Naphthalimide Conjugates and Their Biological Activity. Molecules 2021; 26:molecules26113355. [PMID: 34199541 PMCID: PMC8199699 DOI: 10.3390/molecules26113355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022] Open
Abstract
Quinone methide precursors 1a–e, with different alkyl linkers between the naphthol and the naphthalimide chromophore, were synthesized. Their photophysical properties and photochemical reactivity were investigated and connected with biological activity. Upon excitation of the naphthol, Förster resonance energy transfer (FRET) to the naphthalimide takes place and the quantum yields of fluorescence are low (ΦF ≈ 10−2). Due to FRET, photodehydration of naphthols to QMs takes place inefficiently (ΦR ≈ 10−5). However, the formation of QMs can also be initiated upon excitation of naphthalimide, the lower energy chromophore, in a process that involves photoinduced electron transfer (PET) from the naphthol to the naphthalimide. Fluorescence titrations revealed that 1a and 1e form complexes with ct-DNA with moderate association constants Ka ≈ 105–106 M−1, as well as with bovine serum albumin (BSA) Ka ≈ 105 M−1 (1:1 complex). The irradiation of the complex 1e@BSA resulted in the alkylation of the protein, probably via QM. The antiproliferative activity of 1a–e against two human cancer cell lines (H460 and MCF 7) was investigated with the cells kept in the dark or irradiated at 350 nm, whereupon cytotoxicity increased, particularly for 1e (>100 times). Although the enhancement of this activity upon UV irradiation has no imminent therapeutic application, the results presented have importance in the rational design of new generations of anticancer phototherapeutics that absorb visible light.
Collapse
|
9
|
Byrne SR, Rokita SE. Unraveling Reversible DNA Cross-Links with a Biological Machine. Chem Res Toxicol 2020; 33:2903-2913. [PMID: 33147957 DOI: 10.1021/acs.chemrestox.0c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reversible generation and capture of certain electrophilic quinone methide intermediates support dynamic reactions with DNA that allow for migration and transfer of alkylation and cross-linking. This reversibility also expands the possible consequences that can be envisioned when confronted by DNA repair processes and biological machines. To begin testing the response to such an encounter, quinone methide-based modification of DNA has now been challenged with a helicase (T7 bacteriophage gene protein four, T7gp4) that promotes 5' to 3' translocation and unwinding. This model protein was selected based on its widespread application, well characterized mechanism and detailed structural information. Little over one-half of the cross-linking generated by a bisfunctional quinone methide remained stable to T7gp4 and did not suppress its activity. The helicase likely avoids the topological block generated by this fraction of cross-linking by its ability to shift from single- to double-stranded translocation. The remaining fraction of cross-linking was destroyed during T7gp4 catalysis. Thus, this helicase is chemically competent to promote release of the quinone methide from DNA. The ability of T7gp4 to act as a Brownian ratchet for unwinding DNA may block recapture of the QM intermediate by DNA during its transient release from a donor strand. Most surprisingly, T7gp4 releases the quinone methide from both the translocating strand that passes through its central channel and the excluded strand that was typically unaffected by other lesions. The ability of T7gp4 to reverse the cross-link formed by the quinone methide does not extend to that formed irreversibly by the nitrogen mustard mechlorethamine.
Collapse
Affiliation(s)
- Shane R Byrne
- Chemistry Biology Interface Graduate Training Program and Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Steven E Rokita
- Chemistry Biology Interface Graduate Training Program and Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
10
|
Hutchinson MA, Deeyaa BD, Byrne SR, Williams SJ, Rokita SE. Directing Quinone Methide-Dependent Alkylation and Cross-Linking of Nucleic Acids with Quaternary Amines. Bioconjug Chem 2020; 31:1486-1496. [PMID: 32298588 PMCID: PMC7242154 DOI: 10.1021/acs.bioconjchem.0c00166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyamine and polyammonium ion conjugates are often used to direct reagents to nucleic acids based on their strong electrostatic attraction to the phosphoribose backbone. Such nonspecific interactions do not typically alter the specificity of the attached reagent, but polyammonium ions dramatically redirected the specificity of a series of quinone methide precursors. Replacement of a relatively nonspecific intercalator based on acridine with a series of polyammonium ions resulted in a surprising change of DNA products. Piperidine stable adducts were generated in duplex DNA that lacked the ability to support a dynamic cross-linking observed previously with acridine conjugates. Minor reaction at guanine N7, the site of reversible reaction, was retained by a monofunctional quinone methide-polyammonium ion conjugate, but a bisfunctional analogue designed for tandem quinone methide formation modified guanine N7 in only single-stranded DNA. The resulting intrastrand cross-links were sufficiently dynamic to rearrange to interstrand cross-links. However, no further transfer of adducts was observed in duplex DNA. An alternative design that spatially and temporally decoupled the two quinone methide equivalents neither restored the dynamic reaction nor cross-linked DNA efficiently. While di- and triammonium ion conjugates successfully enhanced the yields of cross-linking by a bisquinone methide relative to a monoammonium equivalent, alternative ligands will be necessary to facilitate the migration of cross-linking and its potential application to disrupt DNA repair.
Collapse
Affiliation(s)
- Mark A. Hutchinson
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Blessing D. Deeyaa
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Shane R. Byrne
- Chemistry-Biology Interface Program, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Sierra J. Williams
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Steven E. Rokita
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
- Chemistry-Biology Interface Program, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| |
Collapse
|
11
|
Johnson BM, Shu YZ, Zhuo X, Meanwell NA. Metabolic and Pharmaceutical Aspects of Fluorinated Compounds. J Med Chem 2020; 63:6315-6386. [PMID: 32182061 DOI: 10.1021/acs.jmedchem.9b01877] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The applications of fluorine in drug design continue to expand, facilitated by an improved understanding of its effects on physicochemical properties and the development of synthetic methodologies that are providing access to new fluorinated motifs. In turn, studies of fluorinated molecules are providing deeper insights into the effects of fluorine on metabolic pathways, distribution, and disposition. Despite the high strength of the C-F bond, the departure of fluoride from metabolic intermediates can be facile. This reactivity has been leveraged in the design of mechanism-based enzyme inhibitors and has influenced the metabolic fate of fluorinated compounds. In this Perspective, we summarize the literature associated with the metabolism of fluorinated molecules, focusing on examples where the presence of fluorine influences the metabolic profile. These studies have revealed potentially problematic outcomes with some fluorinated motifs and are enhancing our understanding of how fluorine should be deployed.
Collapse
Affiliation(s)
- Benjamin M Johnson
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Yue-Zhong Shu
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Xiaoliang Zhuo
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Nicholas A Meanwell
- Discovery Chemistry Platforms, Small Molecule Drug Discovery, Bristol Myers Squibb Company, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
12
|
Limones-Herrero D, Palumbo F, Vendrell-Criado V, Andreu I, Lence E, González-Bello C, Miranda MA, Jiménez MC. Investigation of metabolite-protein interactions by transient absorption spectroscopy and in silico methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117652. [PMID: 31654902 DOI: 10.1016/j.saa.2019.117652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/23/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Transient absorption spectroscopy in combination with in silico methods has been employed to study the interactions between human serum albumin (HSA) and the anti-psychotic agent chlorpromazine (CPZ) as well as its two demethylated metabolites (MCPZ and DCPZ). Thus, solutions containing CPZ, MCPZ or DCPZ and HSA (molar ligand:protein ratios between 1:0 and 1:3) were submitted to laser flash photolysis and the ΔAmax value at λ = 470 nm, corresponding to the triplet excited state, was monitored. In all cases, the protein-bound ligand exhibited higher ΔAmax values measured after the laser pulse and were also considerably longer-lived than the non-complexed forms. This is in agreement with an enhanced hydrophilicity of the metabolites, due to the replacement of methyl groups with H that led to a lower extent of protein binding. For the three compounds, laser flash photolysis displacement experiments using warfarin or ibuprofen indicated Sudlow site I as the main binding site. Docking and molecular dynamics simulation studies revealed that the binding mode of the two demethylated ligands with HSA would be remarkable different from CPZ, specially for DCPZ, which appears to come from the different ability of their terminal ammonium groups to stablish hydrogen bonding interactions with the negatively charged residues within the protein pocket (Glu153, Glu292) as well as to allocate the methyl groups in an apolar environment. DCPZ would be rotated 180° in relation to CPZ locating the aromatic ring away from the Sudlow site I of HSA.
Collapse
Affiliation(s)
- Daniel Limones-Herrero
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Fabrizio Palumbo
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Victoria Vendrell-Criado
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Inmaculada Andreu
- Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782, Santiago de Compostela, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782, Santiago de Compostela, Spain
| | - Miguel A Miranda
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - M Consuelo Jiménez
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain.
| |
Collapse
|
13
|
Zlatić K, Antol I, Uzelac L, Mikecin Dražić AM, Kralj M, Bohne C, Basarić N. Labeling of Proteins by BODIPY-Quinone Methides Utilizing Anti-Kasha Photochemistry. ACS APPLIED MATERIALS & INTERFACES 2020; 12:347-351. [PMID: 31829548 DOI: 10.1021/acsami.9b19472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel approach for the photolabeling of proteins by a BODIPY fluorophore is reported that is based on an anti-Kasha photochemical reaction from an upper singlet excited state (Sn) leading to the deamination of the BODIPY quinone methide precursor. On the other hand, the high photochemical stability of the dye upon excitation by visible light to S1 allows for the selective fluorescence detection from the dye or dye-protein adduct, without concomitant bleaching or hydrolysis of the protein-dye adduct. Therefore, photolabeling and fluorescence monitoring can be uncoupled by using different excitation wavelengths. Combined theoretical and experimental studies by preparative irradiations, fluorescence, and laser flash photolysis fully disclose the photophysical properties of the dye and its anti-Kasha photochemical reactivity. The application of the dye was demonstrated on photolabeling of bovine serum albumin.
Collapse
Affiliation(s)
- Katarina Zlatić
- Department of Organic Chemistry and Biochemistry , Ruđer Bošković Institute , Bijenička cesta 54 , 10000 Zagreb , Croatia
| | - Ivana Antol
- Department of Organic Chemistry and Biochemistry , Ruđer Bošković Institute , Bijenička cesta 54 , 10000 Zagreb , Croatia
| | - Lidija Uzelac
- Division of Molecular Medicine , Ruđer Bošković Institute , Bijenička cesta 54 , 10000 Zagreb , Croatia
| | - Ana-Matea Mikecin Dražić
- Division of Molecular Medicine , Ruđer Bošković Institute , Bijenička cesta 54 , 10000 Zagreb , Croatia
| | - Marijeta Kralj
- Division of Molecular Medicine , Ruđer Bošković Institute , Bijenička cesta 54 , 10000 Zagreb , Croatia
| | - Cornelia Bohne
- Department of Chemistry , University of Victoria , Box 1700 STN CSC, Victoria , British Columbia V8W 2Y2 , Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC) , University of Victoria , Box 1700 STN CSC, Victoria , British Columbia V8W 2Y2 , Canada
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry , Ruđer Bošković Institute , Bijenička cesta 54 , 10000 Zagreb , Croatia
| |
Collapse
|
14
|
Molins-Molina O, Pérez-Ruiz R, Lence E, González-Bello C, Miranda MA, Jiménez MC. Photobinding of Triflusal to Human Serum Albumin Investigated by Fluorescence, Proteomic Analysis, and Computational Studies. Front Pharmacol 2019; 10:1028. [PMID: 31616294 PMCID: PMC6764118 DOI: 10.3389/fphar.2019.01028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/12/2019] [Indexed: 11/13/2022] Open
Abstract
Triflusal is a platelet antiaggregant employed for the treatment and prevention of thromboembolic diseases. After administration, it is biotransformed into its active metabolite, the 2-hydroxy-4-trifluoromethylbenzoic acid (HTB). We present here an investigation on HTB photobinding to human serum albumin (HSA), the most abundant protein in plasma, using an approach that combines fluorescence, MS/MS, and peptide fingerprint analysis as well as theoretical calculations (docking and molecular dynamics simulation studies). The proteomic analysis of HTB/HSA photolysates shows that HTB addition takes place at the ε-amino groups of the Lys137, Lys199, Lys205, Lys351, Lys432, Lys525, Lys541 and Lys545 residues and involves replacement of the trifluoromethyl moiety of HTB with a new amide function. Only Lys199 is located in an internal pocket of the protein, and the remaining modified residues are placed in the external part. Docking and molecular dynamic simulation studies reveal that HTB supramolecular binding to HSA occurs in the "V-cleft" region and that the process is assisted by the presence of Glu/Asp residues in the neighborhood of the external Lys, in agreement with the experimentally observed modifications. In principle, photobinding can occur with other trifluoroaromatic compounds and may be responsible for the appearance of undesired photoallergic side effects.
Collapse
Affiliation(s)
- Oscar Molins-Molina
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politécnica de València, Valencia, Spain
| | - Raúl Pérez-Ruiz
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politécnica de València, Valencia, Spain
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel A Miranda
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politécnica de València, Valencia, Spain
| | - M Consuelo Jiménez
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politécnica de València, Valencia, Spain
| |
Collapse
|
15
|
Aroche DP, Vargas JP, Nogara PA, da Silveira Santos F, da Rocha JBT, Lüdtke DS, Rodembusch FS. Glycoconjugates Based on Supramolecular Tröger's Base Scaffold: Synthesis, Photophysics, Docking, and BSA Association Study. ACS OMEGA 2019; 4:13509-13519. [PMID: 31460480 PMCID: PMC6705216 DOI: 10.1021/acsomega.9b01857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/18/2019] [Indexed: 05/03/2023]
Abstract
This study presents new Tröger's bases bearing glycosyl moieties obtained from a copper-catalyzed azide-alkyne cycloaddition reaction. The Tröger's bases present absorption maxima close to 275 nm related to fully spin and symmetry-allowed electronic transitions. The main fluorescence emission located at 350 nm was observed with no influence on the glycosyl moieties. Furthermore, protein detection studies have been performed using bovine serum albumin (BSA) as a model protein, and results have shown a strong interaction between some of the compounds through a static fluorescence suppression mechanism related to the formation of a glycoconjugate-BSA complex favored by the glycosyl subunit. Moreover, docking was also studied for better understanding the suppression mechanism and indicated that the glycosyl and triazole moieties increase the affinity with BSA.
Collapse
Affiliation(s)
- Débora
Muller Pimentel Aroche
- Grupo
de Pesquisa em Fotoquímica Orgânica Aplicada, Universidade Federal do Rio Grande do Sul, UFRGS,
Instituto de Química, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Jaqueline Pinto Vargas
- Instituto
de Química, Universidade Federal
do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Pablo Andrei Nogara
- Departamento
de Bioquímica e Biologia Molecular, Centro de Ciências
Naturais e Exatas, Universidade Federal
de Santa Maria, UFSM, 97105-900 Santa Maria, RS, Brazil
| | - Fabiano da Silveira Santos
- Grupo
de Pesquisa em Fotoquímica Orgânica Aplicada, Universidade Federal do Rio Grande do Sul, UFRGS,
Instituto de Química, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - João Batista Teixeira da Rocha
- Departamento
de Bioquímica e Biologia Molecular, Centro de Ciências
Naturais e Exatas, Universidade Federal
de Santa Maria, UFSM, 97105-900 Santa Maria, RS, Brazil
| | - Diogo Seibert Lüdtke
- Instituto
de Química, Universidade Federal
do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Fabiano Severo Rodembusch
- Grupo
de Pesquisa em Fotoquímica Orgânica Aplicada, Universidade Federal do Rio Grande do Sul, UFRGS,
Instituto de Química, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
16
|
Sambol M, Ester K, Landgraf S, Mihaljević B, Cindrić M, Kralj M, Basarić N. Competing photochemical reactions of bis-naphthols and their photoinduced antiproliferative activity. Photochem Photobiol Sci 2019; 18:1197-1211. [PMID: 30820496 DOI: 10.1039/c8pp00532j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The photophysical properties and photochemical reactivities of a series of bis-naphthols 4a-4e and bis-anthrols 5a and 5e were investigated by preparative irradiation in CH3OH, fluorescence spectroscopy and laser flash photolysis (LFP). Methanolysis taking place via photodehydration (bis-naphthols: ΦR = 0.04-0.05) is in competition with symmetry breaking charge separation (SB-CS). The SB-CS gave rise to radical ions that were detected for 4a and 4e by LFP. Photodehydration gave quinone methides (QMs) that were also detected by LFP (λmax = 350 nm, τ ≈ 1-2 ms). In the aqueous solvent, excited state proton transfer (ESPT) competes with the abovementioned processes, giving rise to naphtholates, but the process is inefficient and can only be observed in the buffered aqueous solution at pH > 7. Since the dehydration of bis-naphthols delivers QMs, their potential antiproliferative activity was investigated by an MTT test on three human cancer cell lines (NCI-H1299, lung carcinoma; MCF-7, breast adenocarcinoma; and SUM159, pleomorphic breast carcinoma). Cells were treated with 4 or 5 with or without irradiation (350 nm). An enhancement of the activity (up to 10-fold) was observed upon irradiation, which may be associated with QM formation. However, these QMs do not cross-link DNA. The activity is most likely associated with the alkylation of proteins present in the cell cytoplasm, as evidenced by photoinduced alkylation of bovine and human serum albumins by 4a.
Collapse
Affiliation(s)
- Matija Sambol
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | | | | | | | | | | | | |
Collapse
|
17
|
Minard A, Liano D, Wang X, Di Antonio M. The unexplored potential of quinone methides in chemical biology. Bioorg Med Chem 2019; 27:2298-2305. [PMID: 30955994 DOI: 10.1016/j.bmc.2019.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 11/16/2022]
Abstract
Quinone methides (QMs) are transient reactive species that can be efficiently generated from stable precursors under a variety of biocompatible conditions. Due to their electrophilic nature, QMs have been widely explored as cross-linking agents of DNA and proteins under physiological conditions. However, QMs also have a diene character and can irreversibly react via Diels-Alder reaction with electron-rich dienophiles. This particular reactivity has been recently exploited to label biomolecules with fluorophores in living cells. QMs are characterised by two unique properties that make them ideal candidates for chemical biology applications: i) they can be efficiently generated in situ from very stable precursors by means of bio-orthogonal protocols ii) they are reversible cross-linking agents, making them suitable for "catch and release" target-enrichment experiments. Nevertheless, there are only few examples reported to date that truly take advantage of QMs unique chemistry in the context of chemical-biology assay development. In this review, we will examine the most relevant examples that illustrate the benefit of using QMs for chemical biology purposes and we will anticipate novel approaches to further their applications in biologically relevant contexts.
Collapse
Affiliation(s)
- Aisling Minard
- Imperial College London, Department of Chemistry, Molecular Science Research Hub, Wood Lane, W12 0BZ London, UK
| | - Denise Liano
- Imperial College London, Department of Chemistry, Molecular Science Research Hub, Wood Lane, W12 0BZ London, UK
| | - Xiaofan Wang
- Imperial College London, Department of Chemistry, Molecular Science Research Hub, Wood Lane, W12 0BZ London, UK
| | - Marco Di Antonio
- Imperial College London, Department of Chemistry, Molecular Science Research Hub, Wood Lane, W12 0BZ London, UK.
| |
Collapse
|