1
|
Kumar N, Kumar A. Enzyme-Catalyzed Regioselective Synthesis of 4-Hetero-Functionalized 1,5-Disubstituted 1,2,3-Triazoles. Org Lett 2024; 26:7514-7519. [PMID: 39230948 DOI: 10.1021/acs.orglett.4c02341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Enzyme-catalyzed novel protocols for the regioselective construction of fully substituted 1,2,3-triazoles by employing 2-azido-1,3,5-triazine (ADT) as a 1,3-dipole for the cycloaddition reaction with the activated alkene in an aqueous medium have been developed. Various 4-heterosubstituted-1,2,3-triazoles were readily assembled in good to excellent yields with high regioselectivity. This reaction also features wide substrate scope, strong functional group tolerance, gram-scale synthesis, and an environmentally friendly process.
Collapse
Affiliation(s)
- Navaneet Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Picnic Spot Road, Lucknow 226015, India
| | - Atul Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Gwak S, Park JY, Cho M, Kwon HJ, Han H. Efficient and Inexpensive Synthesis of 15N-Labeled 2-Azido-1,3-dimethylimidazolinium Salts Using Na 15NO 2 Instead of Na 15NNN. ACS OMEGA 2024; 9:6556-6560. [PMID: 38371833 PMCID: PMC10870284 DOI: 10.1021/acsomega.3c07147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 02/20/2024]
Abstract
15N-Labeled azides are important probes for infrared and magnetic resonance spectroscopy and imaging. They can be synthesized by reaction of primary amines with a 15N-labeled diazo-transfer reagent. We present the synthesis of 15N-labeled 2-azido-1,3-dimethylimidazolinium salts 1 as a 15N-labeled diazo-transfer reagent. Nitrosation of 1,3-dimethylimidazolinium-2-yl hydrazine (2) with Na15NO2 under acidic conditions gave 1 as a 1:1 mixture of α- and γ-15N-labeled azides, α- and γ-1, rather than γ-1 alone. The isotopomeric mixture thus obtained was then subjected to the diazo-transfer reaction with primary amines 3 to afford azides 4 as a 1:1 mixture of β-15N-labeled azides β-4 and unlabeled ones 4'. The efficient and inexpensive synthesis of 1 as a 1:1 mixture of α- and γ-1 using Na15NO2 instead of Na15NNN facilitates their wide use as a 15N-labeled diazo-transfer reagent for preparing 15N-labeled azides as molecular probes.
Collapse
Affiliation(s)
- Sungduk Gwak
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Jun Young Park
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- Center
for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
| | - Minhaeng Cho
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- Center
for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
| | - Hyeok-Jun Kwon
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Hogyu Han
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
3
|
Klapper M, Hübner A, Ibrahim A, Wasmuth I, Borry M, Haensch VG, Zhang S, Al-Jammal WK, Suma H, Fellows Yates JA, Frangenberg J, Velsko IM, Chowdhury S, Herbst R, Bratovanov EV, Dahse HM, Horch T, Hertweck C, González Morales MR, Straus LG, Vilotijevic I, Warinner C, Stallforth P. Natural products from reconstructed bacterial genomes of the Middle and Upper Paleolithic. Science 2023; 380:619-624. [PMID: 37141315 DOI: 10.1126/science.adf5300] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Major advances over the past decade in the field of ancient DNA are providing access to past paleogenomic diversity, but the diverse functions and biosynthetic capabilities of this growing paleome remain largely elusive. Here, we investigated the dental calculus of 12 Neanderthals and 52 anatomically modern humans spanning 100 kya to the present and reconstructed 459 bacterial metagenome-assembled genomes (MAGs). We identified a biosynthetic gene cluster (BGC) shared by seven Middle and Upper Paleolithic individuals that allows for the heterologous production of a class of previously unknown metabolites we name paleofurans. This paleobiotechnological approach demonstrates that viable biosynthetic machinery can be produced from the preserved genetic material of ancient organisms, allowing access to natural products from the Pleistocene and providing a promising area for natural product exploration.
Collapse
Affiliation(s)
- Martin Klapper
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Alexander Hübner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Associated Research Group of Archaeogenetics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Anan Ibrahim
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Ina Wasmuth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Maxime Borry
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Veit G Haensch
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Shuaibing Zhang
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Walid K Al-Jammal
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Harikumar Suma
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - James A Fellows Yates
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Associated Research Group of Archaeogenetics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Jasmin Frangenberg
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Irina M Velsko
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Somak Chowdhury
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Rosa Herbst
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Evgeni V Bratovanov
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Hans-Martin Dahse
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Therese Horch
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Manuel Ramon González Morales
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria, Universidad de Cantabria, 39071 Santander, Spain
| | - Lawrence Guy Straus
- Department of Anthropology, University of New Mexico, Albuquerque, NM 87131, USA
- Grupo I+D+i EvoAdapta, Departmento de Ciencias Históricas, Universidad de Cantabria, 39005 Santander, Spain
| | - Ivan Vilotijevic
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Associated Research Group of Archaeogenetics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
- Department of Anthropology, Harvard University, Cambridge, MA 02138, USA
| | - Pierre Stallforth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
4
|
Synthesis and in vitro assessment of anticholinesterase and antioxidant properties of triazineamide derivatives. Future Med Chem 2022; 14:1741-1753. [PMID: 36538284 DOI: 10.4155/fmc-2022-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: Cholinesterase inhibitors and radical scavengers have been recognized as powerful symptomatic anti-Alzheimer's disease agents. Hence, the present study aimed to develop new triazineamides as potent anticholinesterase and antioxidant agents. Methods: Triazineamide (7a-i) derivatives were synthesized using cyanuric chloride via nucleophilic substitution followed by condensation. Ellman assay, 2,2-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) radical scavenging assay and molecular docking studies with Autodock 4.2.3 program were conducted. Results: Triazineamide 7c was assessed as a potent, selective and mixed-type dual inhibitor of acetylcholinesterase, with and IC50 of 5.306 ± 0.002 μM, by binding simultaneously with the catalytic active and peripheral anionic sites of acetylcholinesterase, and it had strong 2,2-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) radical scavenging abilities. Conclusion: These results suggest that triazineamides may be of interest to establish a structural basis for new anti-Alzheimer's disease agents.
Collapse
|
5
|
Li Y, Wan TB, Guo B, Qi XW, Zhu C, Shen MH, Xu HD. Quaternization of azido-N-heteroarenes with Meerwein reagent: a straightforward synthesis of 2-azido(benzo)imidazolium and related azido-N-heteroarenium tetrafluoroborates. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
Castro J, Ferraro V, Bortoluzzi M. Visible-emitting Cu( i) complexes with N-functionalized benzotriazole-based ligands. NEW J CHEM 2022. [DOI: 10.1039/d2nj03165e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bidentate benzotriazole-based N-ligands are suited for the preparation of luminescent heteroleptic copper(i) complexes with noticeable emissions related to 3MLCT transitions.
Collapse
Affiliation(s)
- Jesús Castro
- Departamento de Química Inorgánica, Universidade de Vigo, Facultade de Química, Edificio de Ciencias Experimentais, 36310 Vigo, Galicia, Spain
| | - Valentina Ferraro
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Via Torino 155, I-30172 Mestre (VE), Italy
| | - Marco Bortoluzzi
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Via Torino 155, I-30172 Mestre (VE), Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), via Celso Ulpiani 27, 70126 Bari, Italy
| |
Collapse
|
7
|
Wagh MA, Maity R, Bhosale RJ, Semwal D, Tothadi S, Vaidhyanathan R, Sanjayan GJ. Three in One: Triple G-C-T Base-Coded Brahma Nucleobase Amino Acid: Synthesis, Peptide Formation, and Structural Features. J Org Chem 2021; 86:15689-15694. [PMID: 34623156 DOI: 10.1021/acs.joc.1c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This note reports the synthesis and peptide formation of a novel triple G-C-T nucleobase amino acid (NBA) building block featuring three recognition faces: DDA (G mimic), DAA (C mimic), and ADA (T mimic). Readily obtainable in multigram scale in a remarkably easy one-step reaction, this unique NBA building block offers scope for wide ranging applications for nucleic acid recognition and nucleic acid peptide/protein interaction studies.
Collapse
Affiliation(s)
- Mahendra A Wagh
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Rahul Maity
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Dr Homi Bhabha Road Pashan, Pune 411008, India
| | - Rohit J Bhosale
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road Pashan, Pune 411008, India
| | - Divyam Semwal
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road Pashan, Pune 411008, India
| | - Srinu Tothadi
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road Pashan, Pune 411008, India
| | - Ramanathan Vaidhyanathan
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Dr Homi Bhabha Road Pashan, Pune 411008, India
| | - Gangadhar J Sanjayan
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
8
|
Amino-modified Merrifield resins as recyclable catalysts for the safe and sustainable preparation of functionalized α-diazo carbonyl compounds. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Opsomer T, Dehaen W. Metal-free syntheses of N-functionalized and NH-1,2,3-triazoles: an update on recent developments. Chem Commun (Camb) 2021; 57:1568-1590. [PMID: 33491711 DOI: 10.1039/d0cc06654k] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An overview of the latest developments in the metal-free synthesis of non-benzo-fused N-functionalized and NH-1,2,3-triazoles is provided in this feature article. Synthetic studies that appeared from 2016 until August 2020 are organized according to a wide-ranging classification, comprising oxidative and eliminative azide-dipolarophile cycloadditions, diazo transfer reactions and N-tosylhydrazone-mediated syntheses. The newly developed methods constitute a significant contribution to the field of 1,2,3-triazole synthesis in terms of structural variation via either the exploration of novel reactions, or the exploitation of existing methodologies.
Collapse
Affiliation(s)
- Tomas Opsomer
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | | |
Collapse
|
10
|
Ma F, Xie X, Li Y, Yan Z, Ma M. Solvent-Directed Transition Metal-Free C-C Bond Cleavage by Azido-1,3,5-triazines and Their Stability-Reactivity Paradox. J Org Chem 2021; 86:762-769. [PMID: 33395741 DOI: 10.1021/acs.joc.0c02342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a solvent-directed and regioselective carbon-carbon bond cleavage of aryl ketones by azido-1,3,5-triazines (ATs), which is typically completed within 10 min in DMSO at room temperature, without using transition metal catalysts. The cleavage is driven by the steric hindrance in the adducts of aryl ketones and ATs, which is substantiated by DFT calculation. Our recent results showed that ATs present high reactivity in solution and high stability in solid state. This "stability-reactivity paradox" has been explained in light of the molecular and crystal structures of ATs.
Collapse
Affiliation(s)
- Fulei Ma
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoyu Xie
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuanheng Li
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ziqiang Yan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mingming Ma
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
11
|
Green S, Wheelhouse KM, Payne AD, Hallett JP, Miller PW, Bull JA. Thermal Stability and Explosive Hazard Assessment of Diazo Compounds and Diazo Transfer Reagents. Org Process Res Dev 2020; 24:67-84. [PMID: 31983869 PMCID: PMC6972035 DOI: 10.1021/acs.oprd.9b00422] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 11/29/2022]
Abstract
Despite their wide use in academia as metal-carbene precursors, diazo compounds are often avoided in industry owing to concerns over their instability, exothermic decomposition, and potential explosive behavior. The stability of sulfonyl azides and other diazo transfer reagents is relatively well understood, but there is little reliable data available for diazo compounds. This work first collates available sensitivity and thermal analysis data for diazo transfer reagents and diazo compounds to act as an accessible reference resource. Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and accelerating rate calorimetry (ARC) data for the model donor/acceptor diazo compound ethyl (phenyl)diazoacetate are presented. We also present a rigorous DSC dataset with 43 other diazo compounds, enabling direct comparison to other energetic materials to provide a clear reference work to the academic and industrial chemistry communities. Interestingly, there is a wide range of onset temperatures (T onset) for this series of compounds, which varied between 75 and 160 °C. The thermal stability variation depends on the electronic effect of substituents and the amount of charge delocalization. A statistical model is demonstrated to predict the thermal stability of differently substituted phenyl diazoacetates. A maximum recommended process temperature (T D24) to avoid decomposition is estimated for selected diazo compounds. The average enthalpy of decomposition (ΔH D) for diazo compounds without other energetic functional groups is -102 kJ mol-1. Several diazo transfer reagents are analyzed using the same DSC protocol and found to have higher thermal stability, which is in general agreement with the reported values. For sulfonyl azide reagents, an average ΔH D of -201 kJ mol-1 is observed. High-quality thermal data from ARC experiments shows the initiation of decomposition for ethyl (phenyl)diazoacetate to be 60 °C, compared to that of 100 °C for the common diazo transfer reagent p-acetamidobenzenesulfonyl azide (p-ABSA). The Yoshida correlation is applied to DSC data for each diazo compound to provide an indication of both their impact sensitivity (IS) and explosivity. As a neat substance, none of the diazo compounds tested are predicted to be explosive, but many (particularly donor/acceptor diazo compounds) are predicted to be impact-sensitive. It is therefore recommended that manipulation, agitation, and other processing of neat diazo compounds are conducted with due care to avoid impacts, particularly in large quantities. The full dataset is presented to inform chemists of the nature and magnitude of hazards when using diazo compounds and diazo transfer reagents. Given the demonstrated potential for rapid heat generation and gas evolution, adequate temperature control and cautious addition of reagents that begin a reaction are strongly recommended when conducting reactions with diazo compounds.
Collapse
Affiliation(s)
- Sebastian
P. Green
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K.
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, Exhibition Road, London SW7 2AZ, U.K.
| | - Katherine M. Wheelhouse
- API Chemistry, Product Development & Supply and Process Safety,
Pilot Plant Operations, GlaxoSmithKline,
GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Andrew D. Payne
- API Chemistry, Product Development & Supply and Process Safety,
Pilot Plant Operations, GlaxoSmithKline,
GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Jason P. Hallett
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, Exhibition Road, London SW7 2AZ, U.K.
| | - Philip W. Miller
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K.
| | - James A. Bull
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K.
| |
Collapse
|
12
|
Yan Z, Li Y, Ma M. Solvent-Directed Click Reaction between Active Methylene Compounds and Azido-1,3,5-triazines. Org Lett 2019; 21:7204-7208. [DOI: 10.1021/acs.orglett.9b02089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ziqiang Yan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuanheng Li
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mingming Ma
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
13
|
Debbarma S, Sk MR, Modak B, Maji MS. On-Water Cp*Ir(III)-Catalyzed C–H Functionalization for the Synthesis of Chromones through Annulation of Salicylaldehydes with Diazo-Ketones. J Org Chem 2019; 84:6207-6216. [DOI: 10.1021/acs.joc.9b00418] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Suvankar Debbarma
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Md Raja Sk
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Biswabrata Modak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
14
|
Green SP, Payne AD, Wheelhouse KM, Hallett JP, Miller PW, Bull JA. Diazo-Transfer Reagent 2-Azido-4,6-dimethoxy-1,3,5-triazine Displays Highly Exothermic Decomposition Comparable to Tosyl Azide. J Org Chem 2019; 84:5893-5898. [PMID: 30951630 DOI: 10.1021/acs.joc.9b00269] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
2-Azido-4,6-dimethoxy-1,3,5-triazine (ADT) was reported recently as a new "intrinsically safe" diazo-transfer reagent. This assessment was based on differential scanning calorimetry data indicating that ADT exhibits endothermic decomposition. We present DSC data on ADT that show exothermic decomposition with an initiation temperature ( Tinit) of 159 °C and an enthalpy of decomposition (Δ HD) of -1135 J g-1 (-207 kJ mol-1). We conclude that ADT is potentially explosive and must be treated with caution, being of comparable exothermic magnitude to tosyl azide (TsN3). A maximum recommended process temperature for ADT is 55 °C.
Collapse
Affiliation(s)
- Sebastian P Green
- Department of Chemistry, Molecular Sciences Research Hub , Imperial College London , White City Campus, 80 Wood Lane , London W12 0BZ , U.K.,Department of Chemical Engineering , Imperial College London , South Kensington Campus, Exhibition Road , London SW7 2AZ , U.K
| | - Andrew D Payne
- Process Safety, Pilot Plant Operations, GlaxoSmithKline , GSK Medicines Research Centre , Gunnels Wood Road , Stevenage , Hertfordshire SG1 2NY , U.K
| | - Katherine M Wheelhouse
- API Chemistry, Product Development & Supply, GlaxoSmithKline , GSK Medicines Research Centre , Gunnels Wood Road , Stevenage , Hertfordshire SG1 2NY , U.K
| | - Jason P Hallett
- Department of Chemical Engineering , Imperial College London , South Kensington Campus, Exhibition Road , London SW7 2AZ , U.K
| | - Philip W Miller
- Department of Chemistry, Molecular Sciences Research Hub , Imperial College London , White City Campus, 80 Wood Lane , London W12 0BZ , U.K
| | - James A Bull
- Department of Chemistry, Molecular Sciences Research Hub , Imperial College London , White City Campus, 80 Wood Lane , London W12 0BZ , U.K
| |
Collapse
|
15
|
O'Mahony RM, Broderick CM, Lynch D, Collins SG, Maguire AR. Synthesis and use of a cost-effective, aqueous soluble diazo transfer reagent – m-carboxybenzenesulfonyl azide. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.11.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Yokoi T, Tanimoto H, Ueda T, Morimoto T, Kakiuchi K. Site-Selective Conversion of Azido Groups at Carbonyl α-Positions to Diazo Groups in Diazido and Triazido Compounds. J Org Chem 2018; 83:12103-12121. [DOI: 10.1021/acs.joc.8b02074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Taiki Yokoi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Hiroki Tanimoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Tomomi Ueda
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Tsumoru Morimoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Kiyomi Kakiuchi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|