1
|
Ahmad M, Tranchant MJ, Comesse S, Saffon-Merceron N, Pilmé J, Lakhdar S, Chataigner I, Dalla V, Taillier C. Unlocking the C-centered ring-opening of phosphiranium ions for a straightforward entry to functionalized phosphines. Nat Commun 2024; 15:8554. [PMID: 39362940 PMCID: PMC11449923 DOI: 10.1038/s41467-024-53003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
Phosphorus chemistry occupies a pivotal position in contemporary organic chemistry but significant synthetic challenges still endure. In this report, a class of electrophilic phosphiranium salts, bearing fluorinated benzyl quaternizing groups, is introduced for the direct synthesis of diversely β-functionalized phosphines. We show that, in comparison with regular quaternary phosphiranium salts, these species display the sought balance of excellent stability and high electrophilic reactivity that allow the unlocking of the C-centered ring-opening reactions with different classes of weak nitrogen-, sulfur- and oxygen protic nucleophiles.
Collapse
Affiliation(s)
- Mohammad Ahmad
- Normandie Univ, UNILEHAVRE FR 3038 CNRS, URCOM, 76600, Le Havre, France
| | | | - Sébastien Comesse
- Normandie Univ, UNILEHAVRE FR 3038 CNRS, URCOM, 76600, Le Havre, France
| | - Nathalie Saffon-Merceron
- Service Diffraction des Rayons X, Institut de Chimie de Toulouse ICT-UAR2599, Université de Toulouse III Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, Cedex 09, France
| | - Julien Pilmé
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT UMR7616, 75005, Paris, France
| | - Sami Lakhdar
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée, (LHFA, UMR5069), 118 Route de Narbonne, 31062, Toulouse, Cedex 09, France
| | - Isabelle Chataigner
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT UMR7616, 75005, Paris, France
- Normandie Univ., UNIROUEN, CNRS, INSA Rouen, COBRA, 76000, Rouen, France
| | - Vincent Dalla
- Normandie Univ, UNILEHAVRE FR 3038 CNRS, URCOM, 76600, Le Havre, France.
| | - Catherine Taillier
- Normandie Univ, UNILEHAVRE FR 3038 CNRS, URCOM, 76600, Le Havre, France.
| |
Collapse
|
2
|
Luderer SE, Masoudi B, Sarkar A, Grant C, Jaganathan A, Jackson JE, Borhan B. Structure-Enantioselectivity Relationship (SER) Study of Cinchona Alkaloid Chlorocyclization Catalysts. J Org Chem 2024; 89:11921-11929. [PMID: 36795431 DOI: 10.1021/acs.joc.3c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Various structural elements of the Cinchona alkaloid dimers are interrogated to establish a structure-enantioselectivity relationship (SER) in three different halocyclization reactions. SER for chlorocyclizations of a 1,1-disubstituted alkenoic acid, a 1,1-disubstituted alkeneamide, and a trans-1,2-disubstituted alkeneamide showed variable sensitivities to linker rigidity and polarity, aspects of the alkaloid structure, and the presence of two or only one alkaloid side group defining the catalyst pocket. The conformational rigidity of the linker-ether connections was probed via DFT calculations on the methoxylated models, uncovering especially high barriers to ether rotation out of plane in the arene systems that include the pyridazine ring. These linkers are also found in the catalysts with the highest enantioinduction. The diversity of the SER results suggested that the three apparently analogous test reactions may proceed by significantly different mechanisms. Based on these findings, a stripped-down analogue of (DHQD)2PYDZ, termed "(trunc)2PYDZ", was designed, synthesized, and evaluated, showing modest but considerable asymmetric induction in the three test reactions, with the best performance on the 1,1-disubstituted alkeneamide cyclization. This first effort to map out the factors essential to effective stereocontrol and reaction promotion offers guidance for the simplified design and systematic refinement of new, selective organocatalysts.
Collapse
Affiliation(s)
- Sarah E Luderer
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Behrad Masoudi
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Aritra Sarkar
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Calvin Grant
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Arvind Jaganathan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - James E Jackson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
3
|
Gorve DA, Fernandes RA. Oxone-Mediated Regioselective Oxy-iodination of 1-Aryl/Alkyl Butadienes Using TBAI. J Org Chem 2024; 89:12827-12831. [PMID: 39178010 DOI: 10.1021/acs.joc.4c01439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A simple, mild, and environmentally benign regioselective oxy-iodination of 1-aryl/alkyl butadienes has been developed. While styrenes have been explored previously, this work on dienes has been highly regioselective and metal-free in oxy-iodination following Markovnikov's rule. The oxy-iodination products were obtained in good to excellent yields using various co-solvents (H2O, MeOH, EtOH, AcOH, etc.). In addition, the halohydrins have been useful building blocks in the synthesis of various functionalized keto iodides and azido alcohols.
Collapse
Affiliation(s)
- Dnyaneshwar A Gorve
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| |
Collapse
|
4
|
Choudhary K, Biswas RG, Manna A, Singh VK. Kinetic Resolution of Electron-Deficient Bromohydrins via Copper(II)-Catalyzed C-C Bond Cleavage. J Org Chem 2023; 88:12041-12053. [PMID: 37533192 DOI: 10.1021/acs.joc.3c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Herein, we report a nonenzymatic kinetic resolution (KR) of α,β-unsaturated ketone-derived bromohydrins (up to s = 211) with N-bromosuccinimide (NBS) in the presence of a chiral Cu(II)-Box catalyst via the C-C bond cleavage of the fast reacting enantiomer. A one-pot synthesis-KR approach of the same has also been realized with excellent enantioselectivities (up to 99% ee). Both protocols are found to be effective for a variety of substrates, leading to enantioenriched bromohydrins. The synthetic utility of this process has been demonstrated by exploring a new strategy to convert the resolved enantiomer to an optically active epoxide.
Collapse
Affiliation(s)
- Kavita Choudhary
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Rayhan G Biswas
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Abhijit Manna
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
5
|
Li H, Fu J, Fu J, Li X, Wei D, Chen H, Bai L, Yang L, Yang H, Wang W. Regioselective and Diastereoselective Halofunctionalization of Alkenes Promoted by Organophotocatalytic Solar Catalysis. J Org Chem 2023. [PMID: 37154472 DOI: 10.1021/acs.joc.3c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A visible-light metal-free photocatalytic regioselective and enantioselective alkene halofunctionalization reaction under mild conditions is reported. Various terminal and internal alkenes were transformed to their α-halogenated and α,β-dibrominated derivatives in good to excellent yields within reaction time as short as 5 min. Water can be used as the "green" nucleophile and solvent in the halohydroxylation and halo-oxidation reactions. Different types of products can be obtained by adjusting the reaction conditions. In addition, sunlight is proved to produce products with similar yields, representing a practical example of solar synthesis and providing an opportunity for solar energy utilization.
Collapse
Affiliation(s)
- Huili Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jianmin Fu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jundong Fu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xueji Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| |
Collapse
|
6
|
Tsuji Y, Kon K, Horibe T, Ishihara K. Catalytic Site-, Diastereo-, and Enantioselective Cascade Iodocyclization of 2-Geranylarenols. Chem Asian J 2023; 18:e202300019. [PMID: 36745467 DOI: 10.1002/asia.202300019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/07/2023]
Abstract
A chiral amidophosphate-N-iodosuccinimide cooperative catalysis has been developed for the site-, diastereo-, and enantioselective iodocyclization of 2-geranylarenols with molecular iodine to give the corresponding iodo-containing polycyclic compounds with good levels of selectivity. This is the first example of a catalytic enantioselective iodocarbocyclization. A reactive chiral iodonium species is generated from molecular iodine via the dual halogen-bonding interactions with a chiral Lewis base and Lewis acid. The sterically demanding 3,3'-substituents of the chiral BINOL-derived amidophosphate are critical to induce the site-selective iodination at the less-hindered terminal alkenyl moiety of 2-geranylarenols.
Collapse
Affiliation(s)
- Yasutaka Tsuji
- Graduate School of Engineering, Nagoya University B2-3(611), Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| | - Kazumasa Kon
- Graduate School of Engineering, Nagoya University B2-3(611), Furo-cho, Chikusa, Nagoya, 464-8603, Japan.,Venture Business Laboratory, Nagoya University B2-4, Furo-cho, Chikusa, Nagoya, 464-814, Japan
| | - Takahiro Horibe
- Graduate School of Engineering, Nagoya University B2-3(611), Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University B2-3(611), Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| |
Collapse
|
7
|
Luis‐Barrera J, Rodriguez S, Uria U, Reyes E, Prieto L, Carrillo L, Pedrón M, Tejero T, Merino P, Vicario JL. Brønsted Acid versus Phase-Transfer Catalysis in the Enantioselective Transannular Aminohalogenation of Enesultams. Chemistry 2022; 28:e202202267. [PMID: 36111677 PMCID: PMC10053555 DOI: 10.1002/chem.202202267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/12/2022]
Abstract
We have studied the enantioselective transannular aminohalogenation reaction of unsaturated medium-sized cyclic benzosulfonamides by using both chiral Brønsted acid and phase-transfer catalysis. Under optimized conditions, a variety of bicyclic adducts can be obtained with good yields and high enantioselectivities. The mechanism of the reaction was also studied by using computational tools; we observed that the reaction involves the participation of a conformer of the nine-membered cyclic substrate with planar chirality in which the stereochemical outcome is controlled by the relative reactivity of the two pseudorotational enantiomers when interacting with the chiral catalyst.
Collapse
Affiliation(s)
- Javier Luis‐Barrera
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Sandra Rodriguez
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Uxue Uria
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Efraim Reyes
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Liher Prieto
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Luisa Carrillo
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Manuel Pedrón
- Instituto de Biocomputación y Fisica de Sistemas Complejos (BIFI)Universidad de Zaragoza50009ZaragozaSpain
| | - Tomás Tejero
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)Universidad de Zaragoza-CSIC50009ZaragozaSpain
| | - Pedro Merino
- Instituto de Biocomputación y Fisica de Sistemas Complejos (BIFI)Universidad de Zaragoza50009ZaragozaSpain
| | - Jose L. Vicario
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| |
Collapse
|
8
|
Liao L, Zhao X. Indane-Based Chiral Aryl Chalcogenide Catalysts: Development and Applications in Asymmetric Electrophilic Reactions. Acc Chem Res 2022; 55:2439-2453. [PMID: 36007167 DOI: 10.1021/acs.accounts.2c00201] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Asymmetric electrophilic reactions provide an ideal method for the construction of chiral molecules by incorporating one or more functional groups into the parent substrates under mild conditions. However, due to the issues of the reactivities of electrophilic species and the possible racemization of chiral intermediates as well as the restriction of the chiral scaffolds of chiral catalysts, many limitations remain in this field, such as the narrow scopes of substrates and electrophiles as well as the limited types of nucleophiles and reactions. To overcome the limitations in the synthesis of diversified chiral molecules, we developed a series of indane-based chiral amino aryl chalcogenide catalysts. These catalysts are easily prepared based on the privileged chiral indane scaffold. They can provide an appropriate H-bonding effect by varying the amino protecting groups as well as offer a proper Lewis basicity and steric hindrance by adjusting different substituents on the aryl chalcogenide motifs. These features allow for them to meet the requirements of reactivity and the chiral environment of the reactions. Notably, they have been successfully applied to various asymmetric electrophilic reactions of alkenes, alkynes, and arenes, expanding the field of electrophilic reactions.Using these catalysts, we realized the enantioselective CF3S-lactonization of olefinic carboxylic acids, enantioselective CF3S-aminocyclization of olefinic sulfonamides, desymmetrizing enantioselective CF3S-carbocyclization of gem-diaryl-tethered alkenes, enantioselective CF3S-oxycyclization of N-allylamides, enantioselective intermolecular trifluoromethylthiolating difunctionalization and allylic C-H trifluoromethylthiolation of trisubstituted alkenes, formally the intermolecular CF3S-oxyfunctionalization of aliphatic internal alkenes, intermolecular azidothiolation, oxythiolation, thioarylation of N-allyl sulfonamides, desymmetrizing enantioselective chlorocarbocyclization of aryl-tethered diolefins, enantioselective Friedel-Crafts-type electrophilic chlorination of N-allyl anilides, and enantioselective chlorocarbocyclization and dearomatization of N-allyl 1-naphthanilides. Additionally, the enantioselective electrophilic carbothiolation of alkynes to construct enantiopure carbon chirality center-containing molecules and axially chiral amino sulfide vinyl arenes and the electrophilic aromatic halogenation to produce P-chirogenic compounds can be accomplished. In these reactions, a bifunctional binding mode is proposed in the catalytic cycles, in which an acid-derived anion-binding interaction might exist and account for the high enantioselectivities of the reactions.In this Account, we demonstrate our achievements in asymmetric electrophilic reactions and share our thoughts on catalyst design, our understanding of asymmetric electrophilic reactions, and our perspectives in the field of chiral chalcogenide-catalyzed asymmetric electrophilic reactions. We hope that the experience we share will promote the design and development of other novel organocatalysts and new challenging reactions.
Collapse
Affiliation(s)
- Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
9
|
Xiong H, Yoshida K, Okada K, Ueda H, Tokuyama H. Catalytic enantioselective 5-endo-bromocycloetherification of unactivated cyclic alkenes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Suzuki TK, Yamanaka M, Arai T. Intermolecular Catalytic Asymmetric Iodoetherification of Unfunctionalized Alkenes. Org Lett 2022; 24:3872-3877. [PMID: 35604948 DOI: 10.1021/acs.orglett.2c01490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A newly prepared trinuclear Zn3-(R,S,S)-aminoiminobinaphthoxide complex (triZn-II) catalyzed the first general intermolecular asymmetric iodoetherification of unfunctionalized alkenes. Using triZn-II, the iodoetherification reaction of unfunctionalized alkenes with o-nitrophenols proceeded smoothly to give the products with up to 92.5:7.5 er, and diene substrates were converted to the products with up to 99:1 er with the formation of a meso-isomer (dl/meso = 78/22). The chiral iodoethers gave a new platform for the synthesis of chiral morpholines.
Collapse
Affiliation(s)
- Takumi K Suzuki
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Masahiro Yamanaka
- Department of Chemistry, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| |
Collapse
|
11
|
Yamashita K, Hirokawa R, Ichikawa M, Hisanaga T, Nagao Y, Takita R, Watanabe K, Kawato Y, Hamashima Y. Mechanistic Details of Asymmetric Bromocyclization with BINAP Monoxide: Identification of Chiral Proton-Bridged Bisphosphine Oxide Complex and Its Application to Parallel Kinetic Resolution. J Am Chem Soc 2022; 144:3913-3924. [PMID: 35226811 DOI: 10.1021/jacs.1c11816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mechanism of our previously reported catalytic asymmetric bromocyclization reactions using 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP) monoxide was examined in detail by the means of control experiments, NMR studies, X-ray structure analysis, and CryoSpray electrospray ionization mass spectrometry (ESI-MS) analysis. The chiral BINAP monoxide was transformed to a key catalyst precursor, proton-bridged bisphosphine oxide complex (POHOP·Br), in the presence of N-bromosuccinimide (NBS) and contaminating water. The thus-formed POHOP further reacts with NBS to afford BINAP dioxide and molecular bromine (Br2) simultaneously in equimolar amounts. While the resulting Br2 is activated by NBS to form a more reactive brominating reagent (Br2─NBS), BINAP dioxide serves as a bifunctional catalyst, acting as both a Lewis base that reacts with Br2─NBS to form a chiral brominating agent (P═O+─Br) and also as a Brønsted base for the activation of the substrate. By taking advantage of this novel concerted Lewis/Brønsted base catalysis by BINAP dioxide, we achieved the first regio- and chemodivergent parallel kinetic resolutions (PKRs) of racemic unsymmetrical bisallylic amides via bromocyclization.
Collapse
Affiliation(s)
- Kenji Yamashita
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryo Hirokawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Mamoru Ichikawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tatsunari Hisanaga
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshihiro Nagao
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryo Takita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kohei Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Kawato
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshitaka Hamashima
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
12
|
Adamovich SN, Ushakov IA, Oborina EN, Vashchenko AV. Silatrane-sulfonamide hybrids: Synthesis, characterization, and evaluation of biological activity. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Fu Z, Gao Y, Yin H, Chen FX. Electrophilic Thiocyanato Reagent Assisted Oxa-Michael/Thiocyanation of α,β-Unsaturated Ketones. J Org Chem 2021; 86:17418-17427. [PMID: 34783557 DOI: 10.1021/acs.joc.1c01993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A route for thiocyanation-functionalization of the electron-deficient C═C double bond was developed. Regioselective thiocyanation-etherification of α,β-unsaturated ketones was achieved. The desired products were obtained in moderate to high yields under mild conditions. It was suggested that the nucleophile was activated by the electrophilic thiocyanato reagent, and difunctionalization was achieved through a 1,4-addition/thiocyanation pathway.
Collapse
Affiliation(s)
- Zhenda Fu
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| | - Yong Gao
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| |
Collapse
|
14
|
Wu XB, Gao Q, Fan JJ, Zhao ZY, Tu XQ, Cao HQ, Yu J. Anionic Chiral Co(III) Complexes Mediated Asymmetric Halocyclization─Synthesis of 5-Halomethyl Pyrazolines and Isoxazolines. Org Lett 2021; 23:9134-9139. [PMID: 34812643 DOI: 10.1021/acs.orglett.1c03456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An asymmetric synthesis of 5-halomethyl pyrazolines and isoxazolines which bear a tertiary stereocenter by catalytic halocyclization of β,γ-unsaturated hydrazones and ketoximes is described. By using Brønsted acids of anionic chiral Co(III) complexes as catalysts, a variety of chiral 5-halomethyl pyrazolines and isoxazolines were obtained in good yields with high enantioselectivities (up to 99% yield, 97:3 er). Preliminary bioassay results indicated that several isoxazoline derivatives exhibited significant antifungal activities.
Collapse
Affiliation(s)
- Xiao-Bao Wu
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China.,School of Plant Protection, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Quan Gao
- School of Plant Protection, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Jun-Jie Fan
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Zhen-Yu Zhao
- School of Plant Protection, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Xue-Qin Tu
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Hai-Qun Cao
- School of Plant Protection, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Jie Yu
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China.,School of Plant Protection, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
15
|
Han C, Feng X, Du H. Asymmetric Halocyclizations of 2-Vinylbenzyl Alcohols with Chiral FLPs. Org Lett 2021; 23:7325-7329. [PMID: 34505791 DOI: 10.1021/acs.orglett.1c02361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By the use of a chiral frustrated Lewis pair (FLP) consisting of a chiral-diene-derived borane and tBu3P as the catalyst, an asymmetric halocyclization of 2-vinylbenzyl alcohols with NBS or NIS was successfully realized. A variety of optically active 1,3-dihydroisobenofuran derivatives were obtained in high yields with up to 87% ee and could be conveniently converted to other useful chiral compounds.
Collapse
Affiliation(s)
- Caifang Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangqing Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Zhang YF, Dong XY, Cheng JT, Yang NY, Wang LL, Wang FL, Luan C, Liu J, Li ZL, Gu QS, Liu XY. Enantioconvergent Cu-Catalyzed Radical C-N Coupling of Racemic Secondary Alkyl Halides to Access α-Chiral Primary Amines. J Am Chem Soc 2021; 143:15413-15419. [PMID: 34505516 DOI: 10.1021/jacs.1c07726] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
α-Chiral alkyl primary amines are virtually universal synthetic precursors for all other α-chiral N-containing compounds ubiquitous in biological, pharmaceutical, and material sciences. The enantioselective amination of common alkyl halides with ammonia is appealing for potential rapid access to α-chiral primary amines, but has hitherto remained rare due to the multifaceted difficulties in using ammonia and the underdeveloped C(sp3)-N coupling. Here we demonstrate sulfoximines as excellent ammonia surrogates for enantioconvergent radical C-N coupling with diverse racemic secondary alkyl halides (>60 examples) by copper catalysis under mild thermal conditions. The reaction efficiently provides highly enantioenriched N-alkyl sulfoximines (up to 99% yield and >99% ee) featuring secondary benzyl, propargyl, α-carbonyl alkyl, and α-cyano alkyl stereocenters. In addition, we have converted the masked α-chiral primary amines thus obtained to various synthetic building blocks, ligands, and drugs possessing α-chiral N-functionalities, such as carbamate, carboxylamide, secondary and tertiary amine, and oxazoline, with commonly seen α-substitution patterns. These results shine light on the potential of enantioconvergent radical cross-coupling as a general chiral carbon-heteroatom formation strategy.
Collapse
Affiliation(s)
- Yu-Feng Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao-Yang Dong
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiang-Tao Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning-Yuan Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li-Lei Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fu-Li Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cheng Luan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Juan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
17
|
Liu W, Pu M, He J, Zhang T, Dong S, Liu X, Wu YD, Feng X. Iron-Catalyzed Enantioselective Radical Carboazidation and Diazidation of α,β-Unsaturated Carbonyl Compounds. J Am Chem Soc 2021; 143:11856-11863. [PMID: 34296601 DOI: 10.1021/jacs.1c05881] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Azidation of alkenes is an efficient protocol to synthesize organic azides which are important structural motifs in organic synthesis. Enantioselective radical azidation, as a useful strategy to install a C-N3 bond, remains challenging due to the inherently instability and unique structure of radicals. Here, we disclose an efficient enantioselective radical carboazidation and diazidation of α,β-unsaturated ketones and amides catalyzed by chiral N,N'-dioxide/Fe(OTf)2 complexes. An array of substituted alkenes was transformed to the corresponding α-azido carbonyl derivatives in good to excellent enantioselectivities, benefiting the preparation of chiral α-amino ketones, vicinal amino alcohols, and vicinal diamines. Control experiments and mechanistic studies proved the radical pathway in the reaction process. The DFT calculations showed that the azido transferred to the radical intermediate via an intramolecular five-membered transition state with the internal nitrogen of the Fe-N3 species.
Collapse
Affiliation(s)
- Wen Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Jun He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Tinghui Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Shenzhen 518055, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
18
|
Guria S, Daniliuc CG, Hennecke U. Brønsted Acid‐Catalyzed Enantioselective Iodocycloetherification Enabled by Triphenylphosphine Selenide Cocatalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sudip Guria
- Organic Chemistry Research Group (ORGC) Department of Chemistry and Department of Bioengineering Sciences Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussel Belgium
| | | | - Ulrich Hennecke
- Organic Chemistry Research Group (ORGC) Department of Chemistry and Department of Bioengineering Sciences Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussel Belgium
| |
Collapse
|
19
|
Kearney AM, Murphy L, Murphy CC, Eccles KS, Lawrence SE, Collins SG, Maguire AR. Synthesis and reactivity of α-sulfenyl-β-chloroenones, including oxidation and Stille cross-coupling to form chalcone derivatives. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
|
21
|
Zhang Y, Liang Y, Zhao X. Chiral Selenide-Catalyzed, Highly Regio- and Enantioselective Intermolecular Thioarylation of Alkenes with Phenols. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00296] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuanyuan Zhang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yaoyu Liang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
22
|
Li J, Shi Y. Catalytic enantioselective bromohydroxylation of cinnamyl alcohols. RSC Adv 2021; 11:13040-13046. [PMID: 35423889 PMCID: PMC8697332 DOI: 10.1039/d1ra02297k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 11/21/2022] Open
Abstract
This work describes an effective enantioselective bromohydroxylation of cinnamyl alcohols with (DHQD)2PHAL as the catalyst and H2O as the nucleophile, providing a variety of corresponding optically active bromohydrins with up to 95% ee. Optically active bromohydrins are obtained with up to 95% ee via asymmetric bromohydroxylation of cinnamyl alcohols with H2O as nucleophile.![]()
Collapse
Affiliation(s)
- Jing Li
- Institute of Natural and Synthetic Organic Chemistry
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Yian Shi
- Institute of Natural and Synthetic Organic Chemistry
- Changzhou University
- Changzhou 213164
- P. R. China
- Department of Chemistry
| |
Collapse
|
23
|
Steigerwald DC, Soltanzadeh B, Sarkar A, Morgenstern CC, Staples RJ, Borhan B. Ritter-enabled catalytic asymmetric chloroamidation of olefins. Chem Sci 2020; 12:1834-1842. [PMID: 34163947 PMCID: PMC8179065 DOI: 10.1039/d0sc05224h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intermolecular asymmetric haloamination reactions are challenging due to the inherently high halenium affinity (HalA) of the nitrogen atom, which often leads to N-halogenated products as a kinetic trap. To circumvent this issue, acetonitrile, possessing a low HalA, was used as the nucleophile in the catalytic asymmetric Ritter-type chloroamidation of allyl-amides. This method is compatible with Z and E alkenes with both alkyl and aromatic substitution. Mild acidic workup reveals the 1,2-chloroamide products with enantiomeric excess greater than 95% for many examples. We also report the successful use of the sulfonamide chlorenium reagent dichloramine-T in this chlorenium-initiated catalytic asymmetric Ritter-type reaction. Facile modifications lead to chiral imidazoline, guanidine, and orthogonally protected 1,2,3 chiral tri-amines. Intermolecular haloamination reactions are challenging due to the high halenium affinity of the nitrogen atom. This is circumvented by using acetonitrile as an attenuated nucleophile, resulting in an enantioselective halo-Ritter reaction.![]()
Collapse
Affiliation(s)
| | - Bardia Soltanzadeh
- Michigan State University, Department of Chemistry East Lansing MI 48824 USA
| | - Aritra Sarkar
- Michigan State University, Department of Chemistry East Lansing MI 48824 USA
| | | | - Richard J Staples
- Michigan State University, Department of Chemistry East Lansing MI 48824 USA
| | - Babak Borhan
- Michigan State University, Department of Chemistry East Lansing MI 48824 USA
| |
Collapse
|
24
|
Qi C, Force G, Gandon V, Lebœuf D. Hexafluoroisopropanol‐Promoted Haloamidation and Halolactonization of Unactivated Alkenes. Angew Chem Int Ed Engl 2020; 60:946-953. [DOI: 10.1002/anie.202010846] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/18/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Chenxiao Qi
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Guillaume Force
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168 Ecole Polytechnique Institut Polytechnique de Paris 91128 Palaiseau France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006 Université de Strasbourg 67000 Strasbourg France
| |
Collapse
|
25
|
Qi C, Force G, Gandon V, Lebœuf D. Hexafluoroisopropanol‐Promoted Haloamidation and Halolactonization of Unactivated Alkenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chenxiao Qi
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Guillaume Force
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168 Ecole Polytechnique Institut Polytechnique de Paris 91128 Palaiseau France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006 Université de Strasbourg 67000 Strasbourg France
| |
Collapse
|
26
|
Kaasik M, Kanger T. Supramolecular Halogen Bonds in Asymmetric Catalysis. Front Chem 2020; 8:599064. [PMID: 33195108 PMCID: PMC7609521 DOI: 10.3389/fchem.2020.599064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Halogen bonding has received a significant increase in attention in the past 20 years. An important part of this interest has centered on catalytic applications of halogen bonding. Halogen bond (XB) catalysis is still a developing field in organocatalysis, although XB catalysis has outgrown its proof of concept phase. The start of this year witnessed the publication of the first example of a purely XB-based enantioselective catalytic reaction. While the selectivity can be improved upon, there are already plenty of examples in which halogen bonds, among other interactions, play a crucial role in the outcome of highly enantioselective reactions. This paper will give an overview of the current state of the use of XBs in catalytic stereoselective processes.
Collapse
Affiliation(s)
| | - Tõnis Kanger
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
27
|
Wang H, Zhong H, Xu X, Xu W, Jiang X. Catalytic Enantioselective Bromoaminocyclization and Bromocycloetherification. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Haitao Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University Guangzhou 510632 People's Republic of China
| | - Haijing Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University Guangzhou 510632 People's Republic of China
| | - Xi Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University Guangzhou 510632 People's Republic of China
| | - Wei Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University Guangzhou 510632 People's Republic of China
| | - Xiaojian Jiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University Guangzhou 510632 People's Republic of China
| |
Collapse
|
28
|
Rahman AU, Zarshad N, Zhou P, Yang W, Li G, Ali A. Hypervalent Iodine (III) Catalyzed Regio- and Diastereoselective Aminochlorination of Tailored Electron Deficient Olefins via GAP Chemistry. Front Chem 2020; 8:523. [PMID: 32733847 PMCID: PMC7358771 DOI: 10.3389/fchem.2020.00523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/21/2020] [Indexed: 01/17/2023] Open
Abstract
Herein, we report a protocol for highly efficient hypervalent iodine (III) mediated, group-assisted purification (GAP) method for the regioselectivities and stereoselective aminochlorination of electron-deficient olefins. A series of vicinal chloramines with multifunctionalities were acquired in moderate to excellent yields (45-94%), by merely mixing the GAP auxiliary-anchored substrates with dichloramine T and tosylamide as chlorine/nitrogen sources and iodobenzene diacetate as a catalyst. The vicinal chloramines were obtained without any column chromatographic purification and recrystallization simply by washing the reaction mixture with a minimum amount of common inexpensive solvents and thus avoiding wastage of silica, solvents, time, and labor. The GAP auxiliary is recyclable and reusable. This strategy is easy to handle, cost-effective, greener, sustainable, environmentally benign, and mostly suitable for the syntheses of vicinal haloamines from various electron-deficient alkenes.
Collapse
Affiliation(s)
- Anis Ur Rahman
- School of Chemistry and Chemical Engineering, Institute of Chemistry and BioMedical Sciences, Nanjing University, Nanjing, China
| | - Nighat Zarshad
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Peng Zhou
- School of Chemistry and Chemical Engineering, Institute of Chemistry and BioMedical Sciences, Nanjing University, Nanjing, China
| | - Weitao Yang
- School of Chemistry and Chemical Engineering, Institute of Chemistry and BioMedical Sciences, Nanjing University, Nanjing, China
| | - Guigen Li
- School of Chemistry and Chemical Engineering, Institute of Chemistry and BioMedical Sciences, Nanjing University, Nanjing, China.,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Asad Ali
- Department of Chemistry, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
29
|
Arai T, Horigane K, Suzuki TK, Itoh R, Yamanaka M. Catalytic Asymmetric Iodoesterification of Simple Alkenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC) Chiba Iodine Research Innovation Center (CIRIC) Molecular Chirality Research Center (MCRC) Department of Chemistry Graduate School of Science Chiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Kodai Horigane
- Soft Molecular Activation Research Center (SMARC) Chiba Iodine Research Innovation Center (CIRIC) Molecular Chirality Research Center (MCRC) Department of Chemistry Graduate School of Science Chiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Takumi K. Suzuki
- Soft Molecular Activation Research Center (SMARC) Chiba Iodine Research Innovation Center (CIRIC) Molecular Chirality Research Center (MCRC) Department of Chemistry Graduate School of Science Chiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Ryosuke Itoh
- Department of Chemistry Research Center for Smart Molecules Rikkyo University 3-34-1 Nishi-Ikebukuro, Toshima-ku Tokyo 171-8588 Japan
| | - Masahiro Yamanaka
- Department of Chemistry Research Center for Smart Molecules Rikkyo University 3-34-1 Nishi-Ikebukuro, Toshima-ku Tokyo 171-8588 Japan
| |
Collapse
|
30
|
Arai T, Horigane K, Suzuki TK, Itoh R, Yamanaka M. Catalytic Asymmetric Iodoesterification of Simple Alkenes. Angew Chem Int Ed Engl 2020; 59:12680-12683. [DOI: 10.1002/anie.202003886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC) Chiba Iodine Research Innovation Center (CIRIC) Molecular Chirality Research Center (MCRC) Department of Chemistry Graduate School of Science Chiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Kodai Horigane
- Soft Molecular Activation Research Center (SMARC) Chiba Iodine Research Innovation Center (CIRIC) Molecular Chirality Research Center (MCRC) Department of Chemistry Graduate School of Science Chiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Takumi K. Suzuki
- Soft Molecular Activation Research Center (SMARC) Chiba Iodine Research Innovation Center (CIRIC) Molecular Chirality Research Center (MCRC) Department of Chemistry Graduate School of Science Chiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Ryosuke Itoh
- Department of Chemistry Research Center for Smart Molecules Rikkyo University 3-34-1 Nishi-Ikebukuro, Toshima-ku Tokyo 171-8588 Japan
| | - Masahiro Yamanaka
- Department of Chemistry Research Center for Smart Molecules Rikkyo University 3-34-1 Nishi-Ikebukuro, Toshima-ku Tokyo 171-8588 Japan
| |
Collapse
|
31
|
Li W, Zhou P, Li G, Lin L, Feng X. Catalytic Asymmetric Halohydroxylation of α,β‐Unsaturated Ketones with Water as the Nucleophile. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Weiwei Li
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Pengfei Zhou
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Gonglin Li
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Lili Lin
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 People's Republic of China
| |
Collapse
|
32
|
|
33
|
Xie Q, Long HJ, Zhang QY, Tang P, Deng J. Enantioselective Syntheses of 4 H-3,1-Benzoxazines via Catalytic Asymmetric Chlorocyclization of o-Vinylanilides. J Org Chem 2020; 85:1882-1893. [PMID: 31880445 DOI: 10.1021/acs.joc.9b02395] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic asymmetric halocyclization of alkene is a powerful and straightforward strategy for the synthesis of chiral heterocyclic compounds. Herein, an effective approach to chiral benzoxazine derivatives through organocatalyzed chlorocyclization of o-vinylanilides was reported. This method provides facile access to a series of chiral benzoxazines in good to excellent yields (up to 99% yield) and with high-level enantiocontrol (up to 92% ee).
Collapse
Affiliation(s)
- Qinxia Xie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences , Chongqing University , 55 Daxuecheng South Road , Shapingba , Chongqing 401331 , China
| | - Hai-Jiao Long
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences , Chongqing University , 55 Daxuecheng South Road , Shapingba , Chongqing 401331 , China
| | - Qiong-Yin Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences , Chongqing University , 55 Daxuecheng South Road , Shapingba , Chongqing 401331 , China
| | - Pei Tang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences , Chongqing University , 55 Daxuecheng South Road , Shapingba , Chongqing 401331 , China.,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Jun Deng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences , Chongqing University , 55 Daxuecheng South Road , Shapingba , Chongqing 401331 , China
| |
Collapse
|
34
|
Goto M, Maejima S, Yamaguchi E, Itoh A. Regioselective Carboiodination of Styrenes:
N
‐Iodosuccinimide Affords Complete Reaction Regioselectivity. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mayuki Goto
- Laboratory of Pharmaceuticals Synthetic ChemistryGifu Pharmaceutical University 1-25-4, Daigaku-nishi Gifu 501-1196 Japan
| | - Saki Maejima
- Laboratory of Pharmaceuticals Synthetic ChemistryGifu Pharmaceutical University 1-25-4, Daigaku-nishi Gifu 501-1196 Japan
| | - Eiji Yamaguchi
- Laboratory of Pharmaceuticals Synthetic ChemistryGifu Pharmaceutical University 1-25-4, Daigaku-nishi Gifu 501-1196 Japan
| | - Akichika Itoh
- Laboratory of Pharmaceuticals Synthetic ChemistryGifu Pharmaceutical University 1-25-4, Daigaku-nishi Gifu 501-1196 Japan
| |
Collapse
|
35
|
Ma R, Feng J, Zhang K, Zhang B, Du D. Photoredox β-thiol-α-carbonylation of enones accompanied by unexpected Csp 2–C(CO) bond cleavage. Org Biomol Chem 2020; 18:7549-7553. [DOI: 10.1039/d0ob01349h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An olefinic difunctionalization method of enones was presented here via aerobic visible-light catalysis.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Natural Medicines
- Department of Organic Chemistry
- China Pharmaceutical University
- Nanjing
- P.R. China
| | - Jie Feng
- State Key Laboratory of Natural Medicines
- Department of Organic Chemistry
- China Pharmaceutical University
- Nanjing
- P.R. China
| | - Kuili Zhang
- State Key Laboratory of Natural Medicines
- Department of Organic Chemistry
- China Pharmaceutical University
- Nanjing
- P.R. China
| | - Beichen Zhang
- State Key Laboratory of Natural Medicines
- Department of Organic Chemistry
- China Pharmaceutical University
- Nanjing
- P.R. China
| | - Ding Du
- State Key Laboratory of Natural Medicines
- Department of Organic Chemistry
- China Pharmaceutical University
- Nanjing
- P.R. China
| |
Collapse
|
36
|
Ángel AYB, Bragança EF, Alberto EE. Dichlorination of Alkenes Using 1,3‐Dichloro‐5,5‐Dimethylhydantoin and ZnCl
2. ChemistrySelect 2019. [DOI: 10.1002/slct.201902568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Alix Y. Bastidas Ángel
- Department of ChemistryFederal University of Minas Gerais, Belo Horizonte 31.270-901 MG Brazil
| | - Emanuella F. Bragança
- Department of ChemistryFederal University of Minas Gerais, Belo Horizonte 31.270-901 MG Brazil
| | - Eduardo E. Alberto
- Department of ChemistryFederal University of Minas Gerais, Belo Horizonte 31.270-901 MG Brazil
| |
Collapse
|
37
|
Maji B. Stereoselective Haliranium, Thiiranium and Seleniranium Ion‐Triggered Friedel–Crafts‐Type Alkylations for Polyene Cyclizations. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Biswajit Maji
- Department of ChemistryIndira Gandhi National Tribal University Amarkantak – 484886 Madhya Pradesh India
| |
Collapse
|
38
|
Peng JB, Wu FP, Li D, Geng HQ, Qi X, Ying J, Wu XF. Palladium-Catalyzed Regioselective Carbonylative Coupling/Amination of Aryl Iodides with Unactivated Alkenes: Efficient Synthesis of β-Aminoketones. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00774] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin-Bao Peng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Fu-Peng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Da Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Hui-Qing Geng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Xinxin Qi
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Jun Ying
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
39
|
Zhou P, Liu X, Wu W, Xu C, Feng X. Catalytic Asymmetric Construction of β-Azido Amides and Esters via Haloazidation. Org Lett 2019; 21:1170-1175. [PMID: 30693781 DOI: 10.1021/acs.orglett.9b00110] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A catalytic regio- and enantioselective haloazidation reaction with a chiral iron(II) complex catalyst under mild reaction conditions was reported. By this approach, the stereoselective α-halo-β-azido difunctionalization of both α,β-unsaturated amides and α,β-unsaturated esters was achieved. This method enabled the construction of a broad spectrum of valuable functionalized amides and esters, including enantiomerically enriched β-azido amides, aziridine amides, α-amino amide derivatives, β-triazole amides, functionalized peptide derivatives, and α-halo-β-azido-substituted esters.
Collapse
Affiliation(s)
- Pengfei Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Wangbin Wu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Chaoran Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| |
Collapse
|