1
|
Li H, Li Y, Chen J, Lu L, Wang P, Hu J, Ma R, Gao Y, Yi H, Li W, Lei A. Scalable and Selective Electrochemical Hydrogenation of Polycyclic Arenes. Angew Chem Int Ed Engl 2024; 63:e202407392. [PMID: 39031667 DOI: 10.1002/anie.202407392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Indexed: 07/22/2024]
Abstract
The reduction of aromatic compounds constitutes a fundamental and ongoing area of investigation. The selective reduction of polycyclic aromatic compounds to give either fully or partially reduced products remains a challenge, especially in applications to complex molecules at scale. Herein, we present a selective electrochemical hydrogenation of polycyclic arenes conducted under mild conditions. A noteworthy achievement of this approach is the ability to finely control both the complete and partial reduction of specific aromatic rings within polycyclic arenes by judiciously varying the reaction solvents. Mechanistic investigations elucidate the pivotal role played by in situ proton generation and interface regulation in governing reaction selectivity. The reductive electrochemical conditions show a very high level of functional-group tolerance. Furthermore, this methodology represents an easily scalable reduction (demonstrated by the reduction of 1 kg scale starting material) using electrochemical flow chemistry to give key intermediates for the synthesis of specific drugs.
Collapse
Affiliation(s)
- Hao Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Yan Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Jiaye Chen
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Lijun Lu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Pengjie Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Jingcheng Hu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Rui Ma
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Yiming Gao
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Wu Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P.R. China
| |
Collapse
|
2
|
De Luca C, Zanetti D, Battisti T, Ferreira RR, Lopez S, McMillan AH, Lesher-Pérez SC, Maggini L, Bonifazi D. Photoreduction of Anthracenes Catalyzed by peri-Xanthenoxanthene: a Scalable and Sustainable Birch-Type Alternative. Chemistry 2023; 29:e202302129. [PMID: 37593905 DOI: 10.1002/chem.202302129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
The typical Birch reduction transforms arenes into cyclohexa-1,4-dienes by using alkali metals, an alcohol as a proton source, and an amine as solvent. Capitalizing on the strong photoreductive properties of peri-xanthenoxanthene (PXX), herein we report the photocatalyzed "Birch-type" reduction of acenes by employing visible blue light irradiation at room temperature in the presence of air. Upon excitation at 405 or 460 nm in the presence of a mixture of N,N-diisopropylethylamine (DIPEA) and trifluoromethanesulfonimide (HNTf2 ) in DMSO, PXX photocatalyzes the selective reduction of full-carbon acene derivatives (24-75 %). Immobilization of PXX onto polydimethylsiloxane (PDMS) beads (PXX-PDMS) allowed the use of the catalyst in heterogeneous batch reactions, giving 9-phenyl-9,10-dihydroanthracene in high yield (68 %). The catalyst could easily be recovered and reused, with no notable drop in performance observed after five reaction cycles. Integration of the PXX-PDMS beads into a microreactor enabled the reduction of acenes under continuous-flow conditions, thereby validating the sustainability and scalability of this heterogeneous-phase approach.
Collapse
Affiliation(s)
- Cristian De Luca
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Davide Zanetti
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Tommaso Battisti
- School of Chemistry, Cardiff University, Park Place, CF10 3AT, Cardiff, UK
| | - Rúben R Ferreira
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Sofia Lopez
- División Polímeros Nanoestructurados, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMdP-CONICET y Departamento de Química, UNMdP, Av. Cristóbal Colón 10850, Mar del Plata, B7606BWV, Buenos Aires, Argentina
| | | | - Sasha Cai Lesher-Pérez
- Department of Chemical Engineering, Department of Biomedical Engineering, University of Michigan, North Campus Research Complex Building 28, 2800 Plymouth Rd, 48109-2800, Ann Arbor, MI, USA
| | - Laura Maggini
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Davide Bonifazi
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| |
Collapse
|
3
|
Lepori M, Schmid S, Barham JP. Photoredox catalysis harvesting multiple photon or electrochemical energies. Beilstein J Org Chem 2023; 19:1055-1145. [PMID: 37533877 PMCID: PMC10390843 DOI: 10.3762/bjoc.19.81] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
Photoredox catalysis (PRC) is a cutting-edge frontier for single electron-transfer (SET) reactions, enabling the generation of reactive intermediates for both oxidative and reductive processes via photon activation of a catalyst. Although this represents a significant step towards chemoselective and, more generally, sustainable chemistry, its efficacy is limited by the energy of visible light photons. Nowadays, excellent alternative conditions are available to overcome these limitations, harvesting two different but correlated concepts: the use of multi-photon processes such as consecutive photoinduced electron transfer (conPET) and the combination of photo- and electrochemistry in synthetic photoelectrochemistry (PEC). Herein, we review the most recent contributions to these fields in both oxidative and reductive activations of organic functional groups. New opportunities for organic chemists are captured, such as selective reactions employing super-oxidants and super-reductants to engage unactivated chemical feedstocks, and scalability up to gram scales in continuous flow. This review provides comparisons between the two techniques (multi-photon photoredox catalysis and PEC) to help the reader to fully understand their similarities, differences and potential applications and to therefore choose which method is the most appropriate for a given reaction, scale and purpose of a project.
Collapse
Affiliation(s)
- Mattia Lepori
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Simon Schmid
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| |
Collapse
|
4
|
Mild and metal-free Birch-type hydrogenation of (hetero)arenes with boron carbonitride in water. Nat Catal 2022. [DOI: 10.1038/s41929-022-00886-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
A room-temperature-stable electride and its reactivity: Reductive benzene/pyridine couplings and solvent-free Birch reductions. Chem 2022. [DOI: 10.1016/j.chempr.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
6
|
Constantin T, Górski B, Tilby MJ, Chelli S, Juliá F, Llaveria J, Gillen KJ, Zipse H, Lakhdar S, Leonori D. Halogen-atom and group transfer reactivity enabled by hydrogen tunneling. Science 2022; 377:1323-1328. [DOI: 10.1126/science.abq8663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The generation of carbon radicals by halogen-atom and group transfer reactions is generally achieved using tin and silicon reagents that maximize the interplay of enthalpic (thermodynamic) and polar (kinetic) effects. In this work, we demonstrate a distinct reactivity mode enabled by quantum mechanical tunneling that uses the cyclohexadiene derivative γ-terpinene as the abstractor under mild photochemical conditions. This protocol activates alkyl and aryl halides as well as several alcohol and thiol derivatives. Experimental and computational studies unveiled a noncanonical pathway whereby a cyclohexadienyl radical undergoes concerted aromatization and halogen-atom or group abstraction through the reactivity of an effective H atom. This activation mechanism is seemingly thermodynamically and kinetically unfavorable but is rendered feasible through quantum tunneling.
Collapse
Affiliation(s)
| | - Bartosz Górski
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Michael J. Tilby
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Saloua Chelli
- CNRS/Université Toulouse III—Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée, LHFA UMR 5069, 31062 Toulouse Cedex 09, France
| | - Fabio Juliá
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Josep Llaveria
- Global Discovery Chemistry, Therapeutics Discovery, Janssen Research & Development, Janssen-Cilag S.A., 45007 Toledo, Spain
| | - Kevin J. Gillen
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage SG1 2FX, UK
| | - Hendrik Zipse
- Department Chemie, LMU München, D-81377 München, Germany
| | - Sami Lakhdar
- CNRS/Université Toulouse III—Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée, LHFA UMR 5069, 31062 Toulouse Cedex 09, France
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
7
|
Thacharon A, Jang W, Kim J, Kang J, Kim Y, Kim SW. Non-Oxidized Bare Metal Nanoparticles in Air: A Rational Approach for Large-Scale Synthesis via Wet Chemical Process. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201756. [PMID: 35869036 PMCID: PMC9475554 DOI: 10.1002/advs.202201756] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Metal nanoparticles (MeNPs) have been used in various industrial applications, owing to their unique physical and chemical properties different from the bulk counterparts. However, the natural oxidation of MeNPs is an imminent hindrance to their widespread applications despite much research efforts to prevent it. Here, a rational approach for non-oxidized bare MeNPs in air, which requires no additional surface passivation treatment is reported. The direct synthetic route uses the [Gd2 C]2+ · 2e- electride as an exceptional electron-donating agent to reduce diverse metal precursors in alcoholic solvents. All synthesized bare Cu, Ag, and Sn nanoparticles are ultra-stable in ambient air, exhibiting no trace of metal oxides even on their outermost atomic layer. This unique resistance to oxidation is ascribed to the accumulation of excess electrons on the surface of bare MeNPs, which originates from the spontaneous transfer of anionic electrons from the electride during the nanoparticle growth process. This approach provides not only a revolutionary scheme to obtain MeNPs with non-passivated and non-oxidized surfaces, but also fundamental knowledge about metal oxidation.
Collapse
Affiliation(s)
- Athira Thacharon
- Department of Energy ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Woo‐Sung Jang
- Department of Energy ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Jihyun Kim
- School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Joohoon Kang
- School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Young‐Min Kim
- Department of Energy ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Sung Wng Kim
- Department of Energy ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
| |
Collapse
|
8
|
Zhang X, Chen Y, Sun Y, Ye TN, Wen XD. First-Principles Study of Three-Dimensional Electrides Containing One-Dimensional [Ba 3N] 3+ Chains. ACS OMEGA 2022; 7:13290-13298. [PMID: 35474803 PMCID: PMC9026116 DOI: 10.1021/acsomega.2c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Electrides, a unique type of compound where electrons act as anions, have a high electron mobility and a low work function, which makes them promising for applications in electronic devices and high-performance catalysts. The discovery of novel electrides and the expansion of the electride family have great significance for their promising applications. Herein, we reported four three-dimensional (3D) electrides by coupling crystal structure database searches and first-principles electronic structure analysis. Subnitrides (Ba3N, LiBa3N, NaBa3N, and Na5Ba3N) containing one-dimensional (1D) [Ba3N]3+ chains are identified as 3D electrides for the first time. The anionic electrons are confined in the 3D interstitial space of Ba3N, LiBa3N, NaBa3N, and Na5Ba3N. Interestingly, with the increase of Na content, the excess electrons of Na5Ba3N play two roles of metallic bonding and anionic electrons. Therefore, the subnitrides containing 1D [Ba3N]3+ chains can be regarded as a new family of 3D electrides, where anionic electrons reside in the 3D interstitial spaces and provide a conduction path. These materials not only are experimentally synthesizable 3D electrides but also are promising to be exfoliated into advanced 1D nanowire materials. Furthermore, our work suggests a discovery strategy of novel electrides based on one parent framework like [Ba3N]3+ chains, which would accelerate the mining of electrides from the crystal structure database.
Collapse
Affiliation(s)
- Xiangyu Zhang
- State
Key Laboratory of Coal Conversion, Institute
of Coal Chemistry of CAS, Taiyuan 030001, China
- National
Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing 101400, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunlei Chen
- SINOPEC
Shanghai Research Institute of Petrochemical Technology, Shanghai 200120, China
| | - Yongfang Sun
- State
Key Laboratory of Coal Conversion, Institute
of Coal Chemistry of CAS, Taiyuan 030001, China
- National
Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing 101400, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Nan Ye
- Frontiers
Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao-Dong Wen
- State
Key Laboratory of Coal Conversion, Institute
of Coal Chemistry of CAS, Taiyuan 030001, China
- National
Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing 101400, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Park Y, Tian L, Kim S, Pabst TP, Kim J, Scholes GD, Chirik PJ. Visible-Light-Driven, Iridium-Catalyzed Hydrogen Atom Transfer: Mechanistic Studies, Identification of Intermediates, and Catalyst Improvements. JACS AU 2022; 2:407-418. [PMID: 35252990 PMCID: PMC8889617 DOI: 10.1021/jacsau.1c00460] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 06/14/2023]
Abstract
The harvesting of visible light is a powerful strategy for the synthesis of weak chemical bonds involving hydrogen that are below the thermodynamic threshold for spontaneous H2 evolution. Piano-stool iridium hydride complexes are effective for the blue-light-driven hydrogenation of organic substrates and contra-thermodynamic dearomative isomerization. In this work, a combination of spectroscopic measurements, isotopic labeling, structure-reactivity relationships, and computational studies has been used to explore the mechanism of these stoichiometric and catalytic reactions. Photophysical measurements on the iridium hydride catalysts demonstrated the generation of long-lived excited states with principally metal-to-ligand charge transfer (MLCT) character. Transient absorption spectroscopic studies with a representative substrate, anthracene revealed a diffusion-controlled dynamic quenching of the MLCT state. The triplet state of anthracene was detected immediately after the quenching events, suggesting that triplet-triplet energy transfer initiated the photocatalytic process. The key role of triplet anthracene on the post-energy transfer step was further demonstrated by employing photocatalytic hydrogenation with a triplet photosensitizer and a HAT agent, hydroquinone. DFT calculations support a concerted hydrogen atom transfer mechanism in lieu of stepwise electron/proton or proton/electron transfer pathways. Kinetic monitoring of the deactivation channel established an inverse kinetic isotope effect, supporting reversible C(sp2)-H reductive coupling followed by rate-limiting ligand dissociation. Mechanistic insights enabled design of a piano-stool iridium hydride catalyst with a rationally modified supporting ligand that exhibited improved photostability under blue light irradiation. The complex also provided improved catalytic performance toward photoinduced hydrogenation with H2 and contra-thermodynamic isomerization.
Collapse
|
10
|
Tang W, Yan DY, Liang KC, Su M, Liu F. Radical-mediated alkene carboamination/dearomatization of arylsulfonyl- o-allylanilines via photoredox catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo01221a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A mild and redox-neutral protocol is developed for the synthesis of 1,4-cyclohexadiene-containing indoline-fused heterocycles via photoredox catalysis.
Collapse
Affiliation(s)
- Wan Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Duan-Yang Yan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Kai-Cheng Liang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Ma Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
- Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
11
|
Lan J, Yamamoto YI, Suzuki T, Rybkin VV. Shallow and deep trap states of solvated electrons in methanol and their formation, electronic excitation, and relaxation dynamics. Chem Sci 2022; 13:3837-3844. [PMID: 35432888 PMCID: PMC8966712 DOI: 10.1039/d1sc06666h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/24/2022] [Indexed: 11/30/2022] Open
Abstract
We present condensed-phase first-principles molecular dynamics simulations to elucidate the presence of different electron trapping sites in liquid methanol and their roles in the formation, electronic transitions, and relaxation of solvated electrons (emet−) in methanol. Excess electrons injected into liquid methanol are most likely trapped by methyl groups, but rapidly diffuse to more stable trapping sites with dangling OH bonds. After localization at the sites with one free OH bond (1OH trapping sites), reorientation of other methanol molecules increases the OH coordination number and the trap depth, and ultimately four OH bonds become coordinated with the excess electrons under thermal conditions. The simulation identified four distinct trapping states with different OH coordination numbers. The simulation results also revealed that electronic transitions of emet− are primarily due to charge transfer between electron trapping sites (cavities) formed by OH and methyl groups, and that these transitions differ from hydrogenic electronic transitions involving aqueous solvated electrons (eaq−). Such charge transfer also explains the alkyl-chain-length dependence of the photoabsorption peak wavelength and the excited-state lifetime of solvated electrons in primary alcohols. Condensed-phase first-principles molecular dynamics simulations elucidate the presence of different electron trapping sites in liquid methanol and their roles in the formation, electronic transitions, and relaxation of solvated electrons.![]()
Collapse
Affiliation(s)
- Jinggang Lan
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Yo-ichi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Vladimir V. Rybkin
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| |
Collapse
|
12
|
Heo S, Chun YS, Bang J, Hwang HS, Hwang S, Kim S, Cho EJ, Kim SW, You Y. Boosting Photoredox Catalysis Using a Two-Dimensional Electride as a Persistent Electron Donor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42880-42888. [PMID: 34464098 DOI: 10.1021/acsami.1c12363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrides, which have excess anionic electrons, are solid-state sources of solvated electrons that can be used as powerful reducing agents for organic syntheses. However, the abrupt decomposition of electrides in organic solvents makes controlling the transfer inefficient, thereby limiting the utilization of their superior electron-donating ability. Here, we demonstrate the efficient reductive transformation strategy which combines the stable two-dimensional [Gd2C]2+·2e- electride electron donor and cyclometalated Pt(II) complex photocatalysts. Strongly localized anionic electrons at the interlayer space in the [Gd2C]2+·2e- electride are released via moderate alcoholysis in 2,2,2-trifluoroethanol, enabling persistent electron donation. The Pt(II) complexes are adsorbed onto the surface of the [Gd2C]2+·2e- electride and rapidly capture the released electrons at a rate of 107 s-1 upon photoexcitation. The one-electron-reduced Pt complex is electrochemically stable enough to deliver the electron to substrates in the bulk, which completes the photoredox cycle. The key benefit of this system is the suppression of undesirable charge recombination because back electron transfer is prohibited due to the irreversible disruption of the electride after the electron transfer. These desirable properties collectively serve as the photoredox catalysis principle for the reductive generation of the benzyl radical from benzyl halide, which is the key intermediate for dehalogenated or homocoupled products.
Collapse
Affiliation(s)
- Seunga Heo
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yu Sung Chun
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Joonho Bang
- Department of Energy Science, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Ho Seong Hwang
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sanju Hwang
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sonam Kim
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sung Wng Kim
- Department of Energy Science, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
13
|
Affiliation(s)
- Hideo Hosono
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Masaaki Kitano
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
14
|
Arene dearomatization through a catalytic N-centered radical cascade reaction. Nat Commun 2020; 11:2528. [PMID: 32433521 PMCID: PMC7239915 DOI: 10.1038/s41467-020-16369-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/29/2020] [Indexed: 11/09/2022] Open
Abstract
Arene dearomatization reactions are an important class of synthetic technologies for the rapid assembly of unique chemical architectures. Herein, we report a catalytic protocol to initiate a carboamination/dearomatization cascade that proceeds through transient sulfonamidyl radical intermediates formed from native sulfonamide N-H bonds leading to 1,4-cyclohexadiene-fused sultams. Importantly, this work demonstrates a facile approach to employ two-dimensional aromatic compounds as modular building blocks to generate richly substituted, three-dimensional compounds. These reactions occur at room temperature under visible light irradiation and are catalyzed by the combination of an iridium(III) photocatalyst and a dialkyl phosphate base. Reaction optimization, substrate scope, mechanistic features, and synthetic applications of this transformation are presented.
Collapse
|
15
|
Chatterjee A, König B. Birch-Type Photoreduction of Arenes and Heteroarenes by Sensitized Electron Transfer. Angew Chem Int Ed Engl 2019; 58:14289-14294. [PMID: 31379035 PMCID: PMC6790943 DOI: 10.1002/anie.201905485] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/30/2019] [Indexed: 01/09/2023]
Abstract
The direct reduction of arenes and heteroarenes by visible-light irradiation remains challenging, as the energy of a single photon is not sufficient for breaking aromatic stabilization. Shown herein is that the energy accumulation of two visible-light photons allows the dearomatization of arenes and heteroarenes. Mechanistic investigations confirm that the combination of energy-transfer and electron-transfer processes generates an arene radical anion, which is subsequently trapped by hydrogen-atom transfer and finally protonated to form the dearomatized product. The photoreduction converts planar aromatic feedstock compounds into molecular skeletons that are of use in organic synthesis.
Collapse
Affiliation(s)
- Anamitra Chatterjee
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Burkhard König
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| |
Collapse
|
16
|
Chatterjee A, König B. Birch‐Type Photoreduction of Arenes and Heteroarenes by Sensitized Electron Transfer. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905485] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Anamitra Chatterjee
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Germany
| | - Burkhard König
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Germany
| |
Collapse
|
17
|
Uthoff F, Löwe J, Harms C, Donsbach K, Gröger H. Chemoenzymatic Synthesis of a Chiral Ozanimod Key Intermediate Starting from Naphthalene as Cheap Petrochemical Feedstock. J Org Chem 2019; 84:4856-4866. [DOI: 10.1021/acs.joc.8b03290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Florian Uthoff
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Jana Löwe
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Christina Harms
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Kai Donsbach
- PharmaZell GmbH, Rosenheimer Str. 43, 83064 Raubling, Germany
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|