1
|
Doraghi F, Mohaghegh F, Qareaghaj OH, Larijani B, Mahdavi M. Synthesis of N-, O-, and S-heterocycles from aryl/alkyl alkynyl aldehydes. RSC Adv 2023; 13:13947-13970. [PMID: 37181524 PMCID: PMC10167737 DOI: 10.1039/d3ra01778h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023] Open
Abstract
In the field of heterocyclic synthesis, alkynyl aldehydes serve as privileged reagents for cyclization reactions with other organic compounds to construct a broad spectrum of N-, O-, and S-heterocycles. Due to the immense application of heterocyclic molecules in pharmaceuticals, natural products, and material chemistry, the synthesis of such scaffolds has received wide attention. The transformations occurred under metal-catalyzed, metal-free-promoted, and visible-light-mediated systems. The present review article highlights the progress made in this field over the past two decades.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Farid Mohaghegh
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
2
|
Qiu D, Ni H, Su Y. Halogen Bond‐Catalyzed Oxidative Annulation of
N
‐Alkyl Pyridinium Salts and Alkenes with Air as a Sole Oxidant: Metal‐free Synthesis of Indolizines. ChemistrySelect 2023. [DOI: 10.1002/slct.202300382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
3
|
Liu Z, Liu X, Yang S, Miao X, Li D, Wang D. Titanium-Mediated aza-Nazarov Annulation for the Synthesis of N-Fused Tricycles: A General Method to Access Lamellarin Analogues. J Org Chem 2022; 87:10319-10332. [PMID: 35881508 DOI: 10.1021/acs.joc.2c01379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fused heterocycles with nitrogen incorporation are of particular bioactive use and high importance in many research fields, especially isoquinoline-based [6/6/5] tricycles. Here, we report a unique strategy to access multifunctional N-fused tricycles from α,β-unsaturated isoquinoline ketone and sulfonamide under mild reaction conditions. The methodology features wide substrate tolerance, and a set of N-fused heteroarenes including quinoline, phthalazine, quinazoline, quinoxaline, and benzothiazole cores are furnished efficiently. Moreover, the protocol is easy to scale up to synthesize lamellarin analogues, and the amide group of the product is also easy to transfer to other functional groups.
Collapse
Affiliation(s)
- Zhixin Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266100, China
| | - Xinyu Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266100, China
| | - Shengkuan Yang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266100, China
| | - Xiaohe Miao
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou 310024, China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266100, China.,Laboratory for Marine Drugs and Bioproducts & Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| | - De Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266100, China.,Laboratory for Marine Drugs and Bioproducts & Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China.,State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, PR China
| |
Collapse
|
4
|
Wu Q, Wang S, Li J, Li W, Chen M, Huang C. Cascade Reaction by I
2
/Base‐Promoted Synthesis of Chromeno‐[3,4‐
c
]pyrrol‐4(2
H
)‐ones from 2‐Hydroxychalcones and
β‐
Enamine Esters. ChemistrySelect 2022. [DOI: 10.1002/slct.202104106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qin Wu
- Biobased Materials School of Chemistry and Environment Yunnan Minzu University Kunming 650500 P. R. China
| | - Shuang Wang
- Biobased Materials School of Chemistry and Environment Yunnan Minzu University Kunming 650500 P. R. China
| | - Jingpeng Li
- Biobased Materials School of Chemistry and Environment Yunnan Minzu University Kunming 650500 P. R. China
| | - Weiqiang Li
- Biobased Materials School of Chemistry and Environment Yunnan Minzu University Kunming 650500 P. R. China
| | - Minghong Chen
- Biobased Materials School of Chemistry and Environment Yunnan Minzu University Kunming 650500 P. R. China
| | - Chao Huang
- Biobased Materials School of Chemistry and Environment Yunnan Minzu University Kunming 650500 P. R. China
| |
Collapse
|
5
|
Shen YB, Zhao JQ, Wang ZH, You Y, Zhou MQ, Yuan WC. DBU-catalyzed dearomative annulation of 2-pyridylacetates with α,β-unsaturated pyrazolamides for the synthesis of multisubstituted 2,3-dihydro-4H-quinolizin-4-ones. Org Chem Front 2022. [DOI: 10.1039/d1qo01414e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DBU-catalyzed dearomative [3 + 3] annulation of 2-pyridylacetates and α,β-unsaturated pyrazolamides for the synthesis of multisubstituted 2,3-dihydro-4H-quinolizin-4-ones was developed.
Collapse
Affiliation(s)
- Yao-Bin Shen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
6
|
Zhang XJ, Wang Z, Zhang H, Gao JJ, Yang KR, Fan WY, Wu RX, Feng ML, Zhu W, Zhu YP. Iodine-Mediated Domino Cyclization for One-Pot Synthesis of Indolizine-Fused Chromones via Metal-Free sp 3 C-H Functionalization. J Org Chem 2021; 87:835-845. [PMID: 34962788 DOI: 10.1021/acs.joc.1c02508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient method for the synthesis of new indolizine-fused chromones has been accomplished from ethyl (E)-3-(2-acetylphenoxy)acrylates and pyridines in a "one-pot" manner. Facile operation in open-air, metal-free, and mild conditions renders this protocol particularly practical and attractive. Moreover, this method can simultaneously construct two molecular fragments of chromone and indolizine. Scale-up experiment and the construction of natural products further prove the practicability of this strategy.
Collapse
Affiliation(s)
- Xiang-Jin Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, PR China
| | - Zhuo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, PR China
| | - Han Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, PR China
| | - Jing-Jing Gao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, PR China
| | - Kai-Rui Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, PR China
| | - Wei-Yu Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, PR China
| | - Rui-Xue Wu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, PR China
| | - Meng-Lin Feng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, PR China
| | - Wei Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, PR China
| | - Yan-Ping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, PR China
| |
Collapse
|
7
|
Miao CB, Guan HR, Tang Y, Wang K, Ren WL, Lyu X, Yao C, Yang HT. Copper-Catalyzed Bisannulations of Malonate-Tethered O-Acyl Oximes with Pyridine, Pyrazine, Pyridazine, and Quinoline Derivatives for the Construction of Dihydroindolizine-Fused Pyrrolidinones and Analogues. Org Lett 2021; 23:8699-8704. [PMID: 34723547 DOI: 10.1021/acs.orglett.1c03078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A copper-catalyzed bisannulation reaction of malonate-tethered O-acyl oximes with pyridine, pyrazine, pyridazine, and quinoline derivatives has been developed for the concise synthesis of structurally novel dihydroindolizine-fused pyrrolidinones and their analogues. The present reaction shows excellent regioselectivity and stereoselectivity. Theoretical calculations reveal that the coordination effect of the carbonyl group in the nucleophilic substrate determines the excellent regioselectivity. Further functionalization of the generated dihydroindolizine-fused pyrrolidinone could be easily realized through substitution, Michael addition, selective aminolysis, and hydrolysis reactions.
Collapse
Affiliation(s)
- Chun-Bao Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Hong-Rong Guan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - YiHan Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Kun Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Wen-Long Ren
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | | | - ChangSheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Hai-Tao Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
8
|
Watanabe K, Terao N, Niwa T, Hosoya T. Direct 3-Acylation of Indolizines by Carboxylic Acids for the Practical Synthesis of Red Light-Releasable Caged Carboxylic Acids. J Org Chem 2021; 86:11822-11834. [PMID: 34279948 DOI: 10.1021/acs.joc.1c01244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To enhance the practicality of photouncaging system using 3-acyl-2-methoxyindolizines, direct acylation of indolizines with carboxylic acids was developed using condensation reagents, generally used for peptide coupling. This method allowed for caging a broad range of carboxylic acids with indolizines. The method enabled a facile synthesis of water-soluble caged bioactive carboxylic acids having an intramolecular photosensitizer. The efficient release of carboxylic acids from the synthesized caged compounds upon red light irradiation was confirmed in neutral buffered solutions.
Collapse
Affiliation(s)
- Kenji Watanabe
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
| | - Nodoka Terao
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
| | - Takashi Niwa
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
| | - Takamitsu Hosoya
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan.,Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
9
|
Chen HR, Hu ZY, Qin HL, Tang H. A novel three-component reaction for constructing indolizine-containing aliphatic sulfonyl fluorides. Org Chem Front 2021. [DOI: 10.1039/d0qo01430c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A copper-catalyzed three-component reaction for transforming quinolines, isoquinolines and pyridines to a class of indolizine-containing alkyl sulfonyl fluorides was developed.
Collapse
Affiliation(s)
- Hong-Ru Chen
- School of Chemistry
- Chemical Engineering and Life Science; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Zhen-Yu Hu
- School of Chemistry
- Chemical Engineering and Life Science; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Hua-Li Qin
- School of Chemistry
- Chemical Engineering and Life Science; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Haolin Tang
- School of Chemistry
- Chemical Engineering and Life Science; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| |
Collapse
|
10
|
Schifferer L, García Mancheño O. Metal‐ and Solvent‐Free, One‐Pot Synthesis of 3‐Unsubstituted Benzoindolizines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lukas Schifferer
- Organic Chemistry Institute Münster University Corrensstraße 36 48149 Münster Germany
| | - Olga García Mancheño
- Organic Chemistry Institute Münster University Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
11
|
Liu T, Xu F, Liu X, Huang Z, Long L, Xu G, Xiao H, Chen Z. Switching the Regioselectivity Access to Pyrroles and Isoquinolines from Ketoxime Acetates and Ynals. ACS OMEGA 2020; 5:31473-31484. [PMID: 33324860 PMCID: PMC7726942 DOI: 10.1021/acsomega.0c05272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 05/28/2023]
Abstract
A novel formal [3+2] and [4+2] annulation of ketoxime acetates and ynals for the synthesis of pyrroles and isoquinolines has been developed. By simply switching the catalyst and solvent, the reaction proceeds via two pathways. The reactions are achieved under mild conditions with broad substrate scope and excellent regioselectivity.
Collapse
|
12
|
Zheng J, Chen L, Liu X, Xu W, Wang Y, He Q, Liu H, Ye M, Luo G, Chen Z. I
2
‐Catalyzed Intermolecular Cyclization to Synthesis of 3‐Acylated Indolizines. ChemistrySelect 2020. [DOI: 10.1002/slct.202003849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jing Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Linli Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Xiaojuan Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Wenju Xu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Yan Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Qin He
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Hanqing Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Min Ye
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Guotian Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| |
Collapse
|
13
|
Silva TS, Zeoly LA, Coelho F. Catalyst-Free Conjugate Addition of Indolizines to In Situ-Generated Oxidized Morita-Baylis-Hillman Adducts. J Org Chem 2020; 85:5438-5448. [PMID: 32192330 DOI: 10.1021/acs.joc.0c00189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sequential one-pot 2-iodoxybenzoic acid (IBX) oxidation of Morita-Baylis-Hillman (MBH) adducts followed by catalyst-free indolizine conjugate addition was developed. The wide scopes of MBH adducts and indolizines were investigated, and densely functionalized adducts were obtained in yields of up to 94%. The conjugate addition step occurred in less than a minute at room temperature with total regioselectivity toward indolizine C3 carbon. Less nucleophilic C1 carbon was also alkylated when C3-substituted indolizines were employed as the substrate.
Collapse
Affiliation(s)
- Thiago S Silva
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Lucas A Zeoly
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Fernando Coelho
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
14
|
Arupula SK, Qureshi AA, Swamy KCK. Lewis Base-Switched [3 + 3] and [4 + 2] Annulation Reactions of δ-Acetoxy Allenoates with Cyclic N-Sulfonyl Imines: Divergent Synthesis of Functionalized α-Pyridyl Acetates and Teraryl Scaffolds. J Org Chem 2020; 85:4130-4144. [DOI: 10.1021/acs.joc.9b03281] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sanjeeva K. Arupula
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Asif Ali Qureshi
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - K. C. Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| |
Collapse
|
15
|
Zhang Q, Ablajan K, Wang B, Ma H, Guo Z. One-Pot Synthesis of Indolizines Using TBHP as the Methylene Source Under Metal-Free Condition. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901803] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qianwei Zhang
- Key Laboratory of Oil & Gas Fine Chemicals; Ministry of Education & Xinjiang Uyghur Autonomous Region; College of Chemistry and Chemical Engineering; Xinjiang University; 830046 Urumqi PR China
| | - Keyume Ablajan
- Key Laboratory of Oil & Gas Fine Chemicals; Ministry of Education & Xinjiang Uyghur Autonomous Region; College of Chemistry and Chemical Engineering; Xinjiang University; 830046 Urumqi PR China
| | - Bin Wang
- Key Laboratory of Oil & Gas Fine Chemicals; Ministry of Education & Xinjiang Uyghur Autonomous Region; College of Chemistry and Chemical Engineering; Xinjiang University; 830046 Urumqi PR China
| | - Huifang Ma
- Key Laboratory of Oil & Gas Fine Chemicals; Ministry of Education & Xinjiang Uyghur Autonomous Region; College of Chemistry and Chemical Engineering; Xinjiang University; 830046 Urumqi PR China
| | - Zhongqi Guo
- Key Laboratory of Oil & Gas Fine Chemicals; Ministry of Education & Xinjiang Uyghur Autonomous Region; College of Chemistry and Chemical Engineering; Xinjiang University; 830046 Urumqi PR China
| |
Collapse
|
16
|
Fyfe TJ, Kellam B, Sykes DA, Capuano B, Scammells PJ, Lane JR, Charlton SJ, Mistry SN. Structure-Kinetic Profiling of Haloperidol Analogues at the Human Dopamine D 2 Receptor. J Med Chem 2019; 62:9488-9520. [PMID: 31580666 DOI: 10.1021/acs.jmedchem.9b00864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Haloperidol is a typical antipsychotic drug (APD) associated with an increased risk of extrapyramidal side effects (EPSs) and hyperprolactinemia relative to atypical APDs such as clozapine. Both drugs are dopamine D2 receptor (D2R) antagonists, with contrasting kinetic profiles. Haloperidol displays fast association/slow dissociation at the D2R, whereas clozapine exhibits relatively slow association/fast dissociation. Recently, we have provided evidence that slow dissociation from the D2R predicts hyperprolactinemia, whereas fast association predicts EPS. Unfortunately, clozapine can cause severe side effects independent of its D2R action. Our results suggest an optimal kinetic profile for D2R antagonist APDs that avoids EPS. To begin exploring this hypothesis, we conducted a structure-kinetic relationship study of haloperidol and revealed that subtle structural modifications dramatically change binding kinetic rate constants, affording compounds with a clozapine-like kinetic profile. Thus, optimization of these kinetic parameters may allow development of novel APDs based on the haloperidol scaffold with improved side-effect profiles.
Collapse
Affiliation(s)
- Tim J Fyfe
- School of Pharmacy, Centre for Biomolecular Sciences , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Barrie Kellam
- School of Pharmacy, Centre for Biomolecular Sciences , University of Nottingham , Nottingham NG7 2RD , U.K
| | - David A Sykes
- School of Life Sciences, Queen's Medical Centre , University of Nottingham , Nottingham NG7 2UH , U.K.,Centre of Membrane Protein and Receptors , University of Nottingham , Nottingham NG7 2UH , U.K
| | | | | | - J Robert Lane
- School of Life Sciences, Queen's Medical Centre , University of Nottingham , Nottingham NG7 2UH , U.K.,Centre of Membrane Protein and Receptors , University of Nottingham , Nottingham NG7 2UH , U.K
| | - Steven J Charlton
- School of Life Sciences, Queen's Medical Centre , University of Nottingham , Nottingham NG7 2UH , U.K.,Centre of Membrane Protein and Receptors , University of Nottingham , Nottingham NG7 2UH , U.K.,Excellerate Bioscience Ltd., BioCity , Nottingham NG1 1GF , U.K
| | - Shailesh N Mistry
- School of Pharmacy, Centre for Biomolecular Sciences , University of Nottingham , Nottingham NG7 2RD , U.K
| |
Collapse
|
17
|
Chen Z, Liang P, Xu F, Deng Z, Long L, Luo G, Ye M. Metal-Free Aminothiation of Alkynes: Three-Component Tandem Annulation toward Indolizine Thiones from 2-Alkylpyridines, Ynals, and Elemental Sulfur. J Org Chem 2019; 84:12639-12647. [PMID: 31545050 DOI: 10.1021/acs.joc.9b01802] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A metal-free three-component annulation reaction for the synthesis of indolizine thiones via tandem C-C/C-N/C-S bond formation was developed. Various 2-alkylpyridines with aromatic ynals and elemental sulfur proceeded smoothly under catalyst-free conditions, and the desired products were obtained in moderate to excellent yields.
Collapse
Affiliation(s)
- Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou 341000 , P. R. China
| | - Pei Liang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou 341000 , P. R. China
| | - Fan Xu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou 341000 , P. R. China
| | - Zhen Deng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou 341000 , P. R. China
| | - Lipeng Long
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou 341000 , P. R. China
| | - Guotian Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou 341000 , P. R. China
| | - Min Ye
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou 341000 , P. R. China
| |
Collapse
|
18
|
Metal-free synthesis of novel indolizines from chromones and pyridinium salts via 1,3-dipolar cycloaddition, ring-opening and aromatization. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Transition-metal-free highly efficient synthesis of 2-pyridones from β-keto amides and ynals. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Zhang Q, Wang B, Ma H, Ablajan K. Transition-metal-free catalyzed [3+2] cycloadditions/oxidative aromatization reactions for the synthesis of annulated indolizines. NEW J CHEM 2019. [DOI: 10.1039/c9nj03076j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A transition-metal-free catalyzed [3+2] cycloadditions/oxidative aromatization three-component reactions for direct construction of annulated indolizines was reported.
Collapse
Affiliation(s)
- Qianwei Zhang
- Key Laboratory of Oil & Gas Fine Chemicals
- Ministry of Education & Xinjiang Uyghur Autonomous Region
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi 830046
| | - Bin Wang
- Key Laboratory of Oil & Gas Fine Chemicals
- Ministry of Education & Xinjiang Uyghur Autonomous Region
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi 830046
| | - Huifang Ma
- Key Laboratory of Oil & Gas Fine Chemicals
- Ministry of Education & Xinjiang Uyghur Autonomous Region
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi 830046
| | - Keyume Ablajan
- Key Laboratory of Oil & Gas Fine Chemicals
- Ministry of Education & Xinjiang Uyghur Autonomous Region
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi 830046
| |
Collapse
|