1
|
Li X, Fang Y, Zhao Y, Luo S, Xue Y, Yong T, Wang B. Employing a PhI(OAc) 2-mediated domino reaction to assemble nitrogen-containing heterocyclic derivatives and assessing their anti-inflammatory activity. Chem Commun (Camb) 2024; 60:13352-13355. [PMID: 39449580 DOI: 10.1039/d4cc03245d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Metal-free radical cascade synthesis of substituted pyrazole derivatives was initiated by PhI(OAc)2 at 23 °C. This protocol features wide functional group tolerance, a simple purification process without column chromatography, and an oxygen migration. Compound 5 demonstrated significant anti-inflammatory activity, indicating potential for therapy.
Collapse
Affiliation(s)
- Xinyue Li
- College of Chinese Medicine, the First Affiliated Hospital, and Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, P. R. China.
| | - Yuhua Fang
- College of Chinese Medicine, the First Affiliated Hospital, and Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, P. R. China.
| | - Yuanyuan Zhao
- College of Chinese Medicine, the First Affiliated Hospital, and Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, P. R. China.
| | - Shenshen Luo
- College of Chinese Medicine, the First Affiliated Hospital, and Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, P. R. China.
| | - Yuhui Xue
- College of Chinese Medicine, the First Affiliated Hospital, and Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, P. R. China.
| | - Tingting Yong
- College of Chinese Medicine, the First Affiliated Hospital, and Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, P. R. China.
| | - Bin Wang
- College of Chinese Medicine, the First Affiliated Hospital, and Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, P. R. China.
- Institute of Pharmaceutical Chemistry, Anhui Academy of Chinese Medicine, Hefei, 230038, P. R. China
| |
Collapse
|
2
|
Mekky AEM, Sanad SMH. New Bis(pyrazolo[5,1-b]quinazolines) and Bis(9H-xanthenediones) Linked to Alkane Cores: One-Pot Synthesis, Antibacterial Screening, and SAR Study. Chem Biodivers 2024:e202401700. [PMID: 39284770 DOI: 10.1002/cbdv.202401700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/04/2024] [Indexed: 10/27/2024]
Abstract
Effective one-pot methods were used to synthesize some new alkane-linked bis(pyrazolo[5,1-b]quinazolines) and bis(9H-xanthenediones). The first series was produced, in 80-88 % yields, via the reaction of one equivalent of the appropriate bis(aldehydes) with two equivalents of 1H-pyrazole-3,5-diamine and dimedone in DMF at 150 °C for 5-6 h. The second series was prepared, in 82-89 % yields, via the reaction one equivalent of the appropriate bis(aldehydes) with four equivalents of dimedone in acetic acid at 120 °C for 4-5 h. The new products displayed a broad range of antibacterial activity against different bacterial strains. Generally, the antibacterial activity of the alkane-linked bis(pyrazolo[5,1-b]quinazoline) units is more than 2-fold their bis(9H-xanthenedione) analogues. The (p-tolylthio)methyl)-linked bis(pyrazolo[5,1-b]quinazolines) demonstrate the best antibacterial activity with MIC/MBC values up to 3.3/6.6 μM.
Collapse
Affiliation(s)
- Ahmed E M Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sherif M H Sanad
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
3
|
Zhang Y, Zhang X, Liao J, Wei Z, Zhang Z, Liang T. Organoselenium-Catalyzed C2,3-Diarylation of N-H Indoles. J Org Chem 2024; 89:7216-7224. [PMID: 38693864 DOI: 10.1021/acs.joc.4c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
An organoselenium-catalyzed C2,3-diarylation of unprotected N-H indoles with electron-rich aromatics has been developed. This one-pot multicomponent tandem cross-dehydrogenation coupling reaction allows for the incorporation of two different aromatic groups to indoles. More importantly, this approach offers significant advantages, including a high atom and step economy, eliminating the need for prepreparation of the reaction substrates, streamlining the synthetic process and enhancing its practicality. Overall, this organoselenium-catalyzed C2,3-diarylation reaction presents an efficient and versatile strategy for the functionalization of indole derivatives.
Collapse
Affiliation(s)
- Yingying Zhang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Xiaoxiang Zhang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Junqiu Liao
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zongwu Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhuan Zhang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Taoyuan Liang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
4
|
Graf S, Pesch H, Appleson T, Lei T, Breder A, Siewert I. Mechanistic Analysis Reveals Key Role of Interchalcogen Multicatalysis in Photo-Aerobic 3-Pyrroline Syntheses by Aza-Wacker Cyclizations. CHEMSUSCHEM 2024; 17:e202301518. [PMID: 38214219 DOI: 10.1002/cssc.202301518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 01/13/2024]
Abstract
A light-driven dual and ternary catalytic aza-Wacker protocol for the construction of 3-pyrrolines by partially disulfide-assisted selenium-π-acid multicatalysis is reported. A structurally diverse array of sulfonamides possessing homopolar mono-, di- and trisubstituted olefinic double bonds is selectively converted to the corresponding 3-pyrrolines in up to 95 % isolated yield and with good functional group tolerance. Advanced electrochemical mechanistic investigations of the protocol suggest a dual role of the disulfide co-catalyst. On the one hand, the disulfide serves as an electron hole shuttle between the excited photoredox catalyst and the selenium co-catalyst. On the other hand, the sulfur species engages in the final, product releasing step of the catalytic cycle by accelerating the β-elimination of the selenium moiety, which was found in many cases to lead to considerably improved product yields.
Collapse
Affiliation(s)
- Sebastian Graf
- Universität Regensburg, Institut für Organische Chemie, Universitätstrasse 31, 93053, Regensburg, Germany
| | - Henner Pesch
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Theresa Appleson
- Universität Regensburg, Institut für Organische Chemie, Universitätstrasse 31, 93053, Regensburg, Germany
| | - Tao Lei
- Universität Regensburg, Institut für Organische Chemie, Universitätstrasse 31, 93053, Regensburg, Germany
| | - Alexander Breder
- Universität Regensburg, Institut für Organische Chemie, Universitätstrasse 31, 93053, Regensburg, Germany
| | - Inke Siewert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077, Göttingen, Germany
| |
Collapse
|
5
|
Gao S, Cai M, Xu G, Jin Q, Wang X, Xu L, Wang L, Dai L. (NH 4) 2S 2O 8 promoted tandem radical cyclization of quinazolin-4(3 H)-ones with oxamic acids for the construction of fused quinazolinones under metal-free conditions. Org Biomol Chem 2024; 22:2241-2251. [PMID: 38372133 DOI: 10.1039/d3ob02081a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
A novel cascade radical addition/cyclization reaction of non-activated olefins and oxamic acids has been proposed. Under transition metal-free conditions, 36 quinazolinone derivatives containing an amide moiety were successfully synthesized, with the highest yield being 81%. This method involves the preparation of aminoacyl fused quinazolinone derivatives under mild conditions, offering advantages such as a high yield, a broad substrate compatibility, and a high atom economy.
Collapse
Affiliation(s)
- Shenyuan Gao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Menglu Cai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, PR China.
| | - Gang Xu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Qiaolin Jin
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Xiaozhong Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Linze Xu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Lixiang Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Liyan Dai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
6
|
Tang JJ, Zhao MY, Lin YJ, Yang LH, Xie LY. Persulfate-Promoted Carbamoylation/Cyclization of Alkenes: Synthesis of Amide-Containing Quinazolinones. Molecules 2024; 29:997. [PMID: 38474508 DOI: 10.3390/molecules29050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
The incorporation of amide groups into biologically active molecules has been proven to be an efficient strategy for drug design and discovery. In this study, we present a simple and practical method for the synthesis of amide-containing quinazolin-4(3H)-ones under transition-metal-free conditions. This is achieved through a carbamoyl-radical-triggered cascade cyclization of N3-alkenyl-tethered quinazolinones. Notably, the carbamoyl radical is generated in situ from the oxidative decarboxylative process of oxamic acids in the presence of (NH4)2S2O8.
Collapse
Affiliation(s)
- Jia-Jun Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Meng-Yang Zhao
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Ying-Jun Lin
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Li-Hua Yang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Long-Yong Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| |
Collapse
|
7
|
Parekh JN, Patel MS, Chudasama DD, Patel HC, Sutariya PG, Soni HN, Rajput CV, Ram KR. Meglumine-based Sustainable Three-component Deep Eutectic Solvent Applicable for the Synthesis of Pyrazolo[5,1-b]quinazoline-3-carboxylates as a Sensing Probe for Cu 2+ Ions. Chem Asian J 2024:e202301116. [PMID: 38303566 DOI: 10.1002/asia.202301116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
An unprecedented meglumine-based three-component deep eutectic solvent (3c-DES) (MegPAc) was synthesized using meglumine, p-toluenesulfonic acid (PTSA), and acetic acid as a renewable, and non-toxic solvent. The exploitation of the MegPAc as an eco-friendly reaction media to construct a selective and sensitive small organic molecular sensing probe, namely, pyrazolo[5,1-b]quinazoline-3-carboxylates (PQCs) was executed. Captivatingly, the MegPAc served the dual role of solvent and catalyst, and it delivered the title components with 69-94 % yields within 67-150 minutes. Furthermore, a UV-visible study unfolds the selective detection of Cu2+ ions with our synthetic probe 4 ba and resulted in hypsochromic shift due to electrostatic interactions. Additionally, 1 H NMR titration study and density functional theory (DFT) calculations were performed to attest the binding mechanism of sensing probe 4 ba and Cu2+ ions. Worthy of mention, this protocol unveils the efficacy of meglumine-based 3c-DES for the first time as a bio-renewable system to synthesize the PQCs.
Collapse
Affiliation(s)
- Jaydeepkumar N Parekh
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| | - Manan S Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| | - Dipakkumar D Chudasama
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| | - Harsh C Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| | - Pinkesh G Sutariya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| | - Heni N Soni
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| | - Chetan V Rajput
- School of Sciences, National Institute of Science Education and Research, Bhubaneswar, Jatni, Khurda, 752050, Odisha, India
| | - Kesur R Ram
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| |
Collapse
|
8
|
Guo YM, Wang H, Yang JR, Chen Q, Cao C, Chen JZ. Synthesis of 2,3-Fused Quinazolinones via the Radical Cascade Pathway and Reaction Mechanistic Studies by DFT Calculations. J Org Chem 2023; 88:10448-10459. [PMID: 37458429 DOI: 10.1021/acs.joc.2c03050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
An efficient radical cascade cyclization of unactivated alkenes toward the synthesis of a series of ring-fused quinazolinones has been developed in moderate to excellent yields using commercially available ethers, alkanes, and alcohols, respectively, under a base-free condition in a short time without a transition metal as catalyst. Notably, the transformations can be carried out with the advantages of a broad substrate scope and high atomic economy. Density functional theory calculations and wavefunction analyses were performed to elucidate the radical reaction mechanism.
Collapse
Affiliation(s)
- Ya-Min Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Hao Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Jin-Rong Yang
- Polytechnic Institute, Zhejiang University, 269 Shixiang Rd., Hangzhou 310015, Zhejiang, China
| | - Qiang Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Cheng Cao
- Polytechnic Institute, Zhejiang University, 269 Shixiang Rd., Hangzhou 310015, Zhejiang, China
| | - Jian-Zhong Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| |
Collapse
|
9
|
Liu Q, Jiang J, Ye X, Sun J, Wu Y, Shao Y, Deng C, Zhang F. Iodine-Mediated Oxidative Annulation of β,γ-Unsaturated Hydrazones in Dimethyl Sulfoxide: A Strategy to Build 1,6-Dihydropyridazines and Pyrroles. J Org Chem 2023. [PMID: 37449736 DOI: 10.1021/acs.joc.3c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Simple, commercially available iodine was successfully employed as a highly efficient and chemoselective catalyst for the oxidative annulation of β,γ-unsaturated hydrazones to produce 1,6-dihydropyridazines under mild conditions for the first time. Interestingly, when active β,γ-unsaturated hydrazone compounds containing electron-donating groups, such as furyl, thienyl, and cycloalkyl, were used, pyrroles were obtained. A gram-scale preparation experiment and further derivatization of pyridazines demonstrated the potential applicability of our synthesis method. Experimental studies and density functional theory calculations unveiled the origin of the chemoselectivity determining the formation of different products.
Collapse
Affiliation(s)
- Qianrui Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jiaming Jiang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xuanzeng Ye
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jiawen Sun
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yao Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yinlin Shao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangjun Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
10
|
Ettahiri W, Salim R, Adardour M, Ech-Chihbi E, Yunusa I, Alanazi MM, Lahmidi S, Barnossi AE, Merzouki O, Iraqi Housseini A, Rais Z, Baouid A, Taleb M. Synthesis, Characterization, Antibacterial, Antifungal and Anticorrosion Activities of 1,2,4-Triazolo[1,5-a]quinazolinone. Molecules 2023; 28:5340. [PMID: 37513216 PMCID: PMC10385296 DOI: 10.3390/molecules28145340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The synthesis of 5,6,7,8-tetrahydro-[1,2,4]triazolo[5,1-b]quinazolin-9(4H)-one (THTQ), a potentially biologically active compound, was pursued, and its structure was determined through a sequence of spectral analysis, including 1H-NMR, 13C-NMR, IR, and HRMS. Four bacterial and four fungal strains were evaluated for their susceptibility to the antibacterial and antifungal properties of the THTQ compound using the well diffusion method. The impact of THTQ on the corrosion of mild steel in a 1 M HCl solution was evaluated using various methods such as weight loss, potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) analysis. The study revealed that the effectiveness of THTQ as an inhibitor increased with the concentration but decreased with temperature. The PDP analysis suggested that THTQ acted as a mixed-type inhibitor, whereas the EIS data showed that it created a protective layer on the steel surface. This protective layer occurs due to the adsorption behavior of THTQ following Langmuir's adsorption isotherm. The inhibition potential of THTQ is also predicted theoretically using DFT at B3LYP and Monte Carlo simulation.
Collapse
Affiliation(s)
- Walid Ettahiri
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
- Laboratory of Molecular Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40001, Morocco
| | - Rajae Salim
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Mohamed Adardour
- Laboratory of Molecular Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40001, Morocco
| | - Elhachmia Ech-Chihbi
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Ismaeel Yunusa
- College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11541, Saudi Arabia
| | - Sanae Lahmidi
- Laboratory of Heterocyclic Organic Chemistry, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10000, Morocco
| | - Azeddin El Barnossi
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco
| | - Oussama Merzouki
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Abdelilah Iraqi Housseini
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco
| | - Zakia Rais
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Abdesselam Baouid
- Laboratory of Molecular Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40001, Morocco
| | - Mustapha Taleb
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
11
|
Ghouse AM, Akondi SM. Dicarbofunctionalization of unactivated alkenes via organo-photoredox catalysis in water: access to cyanoalkylated fused quinazolinones. Org Biomol Chem 2023. [PMID: 37334961 DOI: 10.1039/d3ob00716b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
A visible light-induced C-C bond cleavage/addition/cyclization cascade of oxime esters and unactivated alkenes has been developed using water as the solvent. This green protocol offers an easy access to medicinally valuable cyanoalkylated quinazolinones. Mild reaction conditions, functional group tolerance and late-stage functionalization of complex molecules are the important features of this transformation.
Collapse
Affiliation(s)
- Abuthayir Mohamathu Ghouse
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srirama Murthy Akondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Tan X, Zhao K, Zhong X, Yang L, Dong Y, Wang T, Yu S, Li X, Zhao Z. Synthesis of 1,2-diselenides via potassium persulfate-mediated diselenation of allenamides with diselenides. Org Biomol Chem 2022; 20:6566-6570. [PMID: 35903979 DOI: 10.1039/d2ob00964a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient potassium persulfate-mediated radical addition of allenamides with diselenides was developed to create a workable route to 1,2-diselenide products. The reaction tolerates a wide spectrum of functional groups to deliver the products in good to excellent yields. Mechanistic investigations including a calculation study indicated that the radical cascade proceeds through a vinyl radical intermediate, which is formed via a selenium radical added to the terminal CC double bond of allenamides.
Collapse
Affiliation(s)
- Xiaoju Tan
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Kun Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Xuefang Zhong
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Lan Yang
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Yiming Dong
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Tianmi Wang
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Shengping Yu
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Xiaoxiao Li
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Zhigang Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| |
Collapse
|
13
|
Visible-light-promoted radical alkylation/cyclization of allylic amide with N-hydroxyphthalimide ester: Synthesis of oxazolines. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Lahmidi S, Sert Y, Şen F, Hafi ME, Ettahiri W, Gökce H, Essassi EM, Mague JT, Ucun F. Synthesis, crystal structure, Hirshfeld surface analysis, spectral characterizations and quantum computational assessments of 1‑hydroxy-3-methyl-11H-pyrido[2,1-b] quinazolin-11-one. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
WANG W, Zou PS, PANG L, Pan C, Mo DL, SU GF. Recent Advances on the Synthesis of 2,3-Fused Quinazolinones. Org Biomol Chem 2022; 20:6293-6313. [DOI: 10.1039/d2ob00778a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As one of the most important structural units in pharmaceuticals and medicinal chemistry, quinazolinone and its derivatives exhibit a wide range of biological and pharmacological activities, including anti-inflammatory, antitubercular, antiviral,...
Collapse
|
16
|
Šmit B, Stanić PB, Janković N. Selenocyclization by formation of carbon-nitrogen bonds. Curr Org Synth 2021; 19:293-316. [PMID: 34538232 DOI: 10.2174/1570179418666210917152537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022]
Abstract
Selenium promoted cyclization of unsaturated substrates containing internal nitrogen nucleophiles, such as different amines and amides, including the examples of its application in the synthesis of more complex polycyclic compounds is reviewed. Selenocyclization reactions of some more specific polyfunctional substrates, like Biginelli hybrids and hydantoins, are also covered.
Collapse
Affiliation(s)
- Biljana Šmit
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac. Serbia
| | - Petar B Stanić
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac. Serbia
| | - Nenad Janković
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac. Serbia
| |
Collapse
|
17
|
Sun B, Shi R, Zhang K, Tang X, Shi X, Xu J, Yang J, Jin C. Photoinduced homolytic decarboxylative acylation/cyclization of unactivated alkenes with α-keto acid under external oxidant and photocatalyst free conditions: access to quinazolinone derivatives. Chem Commun (Camb) 2021; 57:6050-6053. [PMID: 34036995 DOI: 10.1039/d1cc02415a] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel and green strategy for the synthesis of acylated quinazolinone derivatives via photo-induced decarboxylative cascade radical acylation/cyclization of quinazolinone bearing unactivated alkenes has been developed. The protocol provides a novel route to access acyl radicals from α-keto acids through a self-catalyzed energy transfer process. Most importantly, the reaction proceeded smoothly without any external photocatalyst, additive or oxidant, and could be easily scaled-up in flow conditions with sunlight irradiation.
Collapse
Affiliation(s)
- Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Rongcheng Shi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Kesheng Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xiaoli Tang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xiayue Shi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jiayun Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Jin Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Can Jin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China. and College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
18
|
Hu S, Han X, Xie X, Fang F, Wang Y, Saidahmatov A, Liu H, Wang J. Synthesis of Pyrazolo[1,2‐a]cinnolines
via
Rhodium(III)‐Catalyzed [4+2] Annulation Reactions of Pyrazolidinones with Sulfoxonium Ylides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100324] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shulei Hu
- China Pharmaceutical University 639 Longmian Avenue, Jiangning District Nanjing 211198 People's Republic of China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Xu Han
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Xiong Xie
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Feifei Fang
- China Pharmaceutical University 639 Longmian Avenue, Jiangning District Nanjing 211198 People's Republic of China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Yong Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Abdusaid Saidahmatov
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Hong Liu
- China Pharmaceutical University 639 Longmian Avenue, Jiangning District Nanjing 211198 People's Republic of China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study UCAS Hangzhou 310024 People's Republic of China
| | - Jiang Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study UCAS Hangzhou 310024 People's Republic of China
| |
Collapse
|
19
|
Zhao Z, Zhang Y, Shao Y, Xiong W, Li R, Chen J. Synthesis of 3-Selenylindoles through Organoselenium-Promoted Selenocyclization of 2-Vinylaniline. J Org Chem 2020; 85:15015-15025. [PMID: 33152246 DOI: 10.1021/acs.joc.0c01918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel metal-free one-pot protocol for the synthesis of potential biologically active molecules 3-selenylindoles via intramolecular cyclization/selenylation with simple 2-vinylaniline has been developed with moderate to good yield, thus representing it as a facile route to diverse substitution patterns around the indole core. The reaction proceeded smoothly with a broad substrate scope and excellent functional group tolerance. Moreover, the present synthetic route could be readily scaled up to gram quantity without difficulty. Mechanistic studies have revealed that in situ formed selenium electrophile species may be the key intermediate for the selenocyclization process.
Collapse
Affiliation(s)
- Zhiwei Zhao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yetong Zhang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yinlin Shao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wenzhang Xiong
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Renhao Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
20
|
Direnko DY, Drevko BI, Drevko YB. The Synthesis of New Selenium-containing Heterocycles by the Oxidation Reaction of 2,4-Diaryltetrahydro-4H-selenochromenes. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200720165656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have explored the reactions of tetrahydro-4H-selenochromenes in the presence
of phosphoric pentachloride, and synthesized new condensate aroylbenzoselenophenes.
During the reactions, tetrahydro-4H-selenochromenes with phosphoric pentachloride underwent
oxidative aromatization and nucleophilic substitution for a chlorine atom of one of
the protons in the alicyclic fragment. Also, the narrowing of the heterocyclic fragment occurred
as in synthesized selenium-containing compounds earlier transformed into the corresponding
condensate aroylbenzoselenophenes.
Collapse
Affiliation(s)
- Dmitriy Yurievich Direnko
- The Chemical Laboratory, Federal State Budgetary Establishment (FSBE) «CRTIMET» of the Russian Ministry of Defense, P.O. Box: 143432, 2 Carbyshev St., Nahabino, Krasnogorsk District, Moscow Region, Russian Federation
| | - Boris Ivanovich Drevko
- The Microbiology, Biotechnology and Chemistry Chair, Saratov State Agrarian University named after N. I. Vavilov, Saratov, Russian Federation
| | - Yaroslav Borisovich Drevko
- The Microbiology, Biotechnology and Chemistry Chair, Saratov State Agrarian University named after N. I. Vavilov, Saratov, Russian Federation
| |
Collapse
|
21
|
Xu Y, Shen M, Zhang X, Fan X. Selective Synthesis of Pyrazolo[1,2- a]pyrazolones and 2-Acylindoles via Rh(III)-Catalyzed Tunable Redox-Neutral Coupling of 1-Phenylpyrazolidinones with Alkynyl Cyclobutanols. Org Lett 2020; 22:4697-4702. [PMID: 32463683 DOI: 10.1021/acs.orglett.0c01475] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An unprecedented divergent synthesis of pyrazolo[1,2-a]pyrazolones and 2-acylindoles via Rh(III)-catalyzed [4 + 1] or [3 + 2] annulation of 1-phenylpyrazolidinones with alkynyl cyclobutanols through redox-neutral multiple bond activation by using -NH and -OH units as directing groups is presented. Notably, different annulation reactions were selectively achieved by simply adjusting the reaction conditions. With features such as simple procedures, easily accessible substrates, and high regio/chemoselectivity, these methods may find wide applications in related areas.
Collapse
Affiliation(s)
- Yuanshuang Xu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengyang Shen
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
22
|
Ma YN, Gao Y, Jing Y, Kang J, Zhang J, Chen X. Syntheses of Bromo-N-heterocycles through Dibromohydantoin-Promoted Tandem C–H Amination/Bromination. J Org Chem 2019; 85:2918-2926. [DOI: 10.1021/acs.joc.9b01833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yan-Na Ma
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan Gao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yi Jing
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jiaxin Kang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuenian Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|