1
|
Paul S, Das S, Choudhuri T, Sikdar P, Bagdi AK. PIDA as an Iodinating Reagent: Visible-Light-Induced Iodination of Pyrazolo[1,5-a]pyrimidines and Other Heteroarenes. Chem Asian J 2025; 20:e202401101. [PMID: 39494570 DOI: 10.1002/asia.202401101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/05/2024]
Abstract
We have developed a visible-light-mediated convenient and efficient strategy for the iodination of heteroarenes using diacetoxyiodobenzene (PIDA) under photocatalyst-free conditions. This unique approach is the first report on photocatalytic C-H iodination employing PIDA as the iodinating agent. The new photocatalyst-free strategy is applicable to a wide range of pyrazolo[1,5-a]pyrimidine derivatives with various functionalities. Iodination of other electron-rich heterocycles like imidazo[1,2-a]pyridine, imidazo[1,2-a]pyrimidine, imidazo[2,1-b]thiazole, benzo[d]imidazo[2,1-b]thiazole, and pyrazoles has been accomplished employing this benign protocol. The usefulness of 3-iodo pyrazolo[1,5-a]pyrimidine as a synthetic intermediate in synthesizing various functionalized pyrazolo[1,5-a]pyrimidines has been demonstrated.
Collapse
Affiliation(s)
- Suvam Paul
- Department of Chemistry, University of Kalyani, Kalyani, 741235, India
| | - Sourav Das
- Department of Chemistry, University of Kalyani, Kalyani, 741235, India
| | | | - Papiya Sikdar
- Department of Chemistry, University of Kalyani, Kalyani, 741235, India
| | - Avik Kumar Bagdi
- Department of Chemistry, University of Kalyani, Kalyani, 741235, India
| |
Collapse
|
2
|
Pathare AS, Selvakumar S. Metal-Free Synthesis of 4-Bromoisoquinolines through Brominative Annulation of 2-Alkynyl Arylimidate Using In Situ-Generated Transient Bromoiodane. J Org Chem 2025; 90:814-823. [PMID: 39680662 DOI: 10.1021/acs.joc.4c02867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Herein, we report the in situ-generated transient bromoiodane-mediated brominative annulation of 2-alkynyl arylimidate for the synthesis of 4-bromoisoquinolines at room temperature. Using a simple hypervalent iodine reagent PIDA as a mild oxidant and potassium bromide as the halogen source, a broad range of valuable 4-bromoisoquinolines can be synthesized in excellent yields. The reaction features readily available chemicals, mild metal-free conditions, and high functional group tolerance, providing an efficient alternative for the construction of halogenated isoquinolines.
Collapse
Affiliation(s)
- Akshay S Pathare
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Sermadurai Selvakumar
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
3
|
Hernández-Velázquez ED, Granados-López AJ, López JA, Solorio-Alvarado CR. Multidrug Resistance Reversed by Maleimide Interactions. A Biological and Synthetic Overview for an Emerging Field. Chembiochem 2025; 26:e202400640. [PMID: 39383297 DOI: 10.1002/cbic.202400640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Multidrug Resistance (MDR) can be considered one of the most frightening adaptation types in bacteria, fungi, protozoa, and eukaryotic cells. It allows the organisms to survive the attack of many drugs used in the daily basis. This forces the development of new and more complex, highly specific drugs to fight diseases. Given the high usage of medicaments, poor variation in active chemical cores, and self-medication, the appearance of MDR is more frequent each time, and has been established as a serious medical and social problem. Over the years it has been possible the identification of several genes and proteins responsible for MDR and with that the development of blockers of them to reach MDR reversion and try to avoid a global problem. These mechanisms also have been observed in cancer cells, and several calcium channel blockers have been successful in MDR reversion, and the maleimide can be found included in them. In this review, we explore particularly the tree main proteins involved in cancer chemoresistance, MRP1 (encoded by ABCC1), BCRP (encoded by ABCG2) and P-gp (encoded by ABCB1). The participation of P-gp is remarkably important, and several aspects of its regulations are discussed. Additionally, we address the history, mechanisms, reversion efforts, and we specifically focused on the maleimide synthesis as MDR-reversers in co-administration, as well as on how their biological applications are imperative to expand the available information and explore a very plausible MDR reversion source.
Collapse
Affiliation(s)
- Edson D Hernández-Velázquez
- Campus Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Gto., México
| | | | - Jesús Adrián López
- Laboratorio de MicroRNAs y Cáncer, Universidad Autónoma de Zacatecas, 98066, Zacatecas, México
| | - César R Solorio-Alvarado
- Campus Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Gto., México
| |
Collapse
|
4
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
5
|
Zhou J, Huang X, Yu X, Yang L, Han JY, Lhazom T, Cui HL. HCl/DMSO/HFIP-Mediated Chlorination of Pyrrolo[2,1- a]isoquinolines and Other Electron-Rich Heteroarenes. J Org Chem 2024; 89:9789-9799. [PMID: 38920085 DOI: 10.1021/acs.joc.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
An efficient oxidative chlorination of pyrrolo[2,1-a]isoquinolines has been established using HCl (aq) as the chlorine source and DMSO as the terminal oxidant in HFIP at ambient temperature. A variety of chlorinated pyrrolo[2,1-a]isoquinoline derivatives have been prepared readily in 23 to 99% yields. This chlorination strategy can be expanded to the functionalization of other electron-rich heteroarenes including substituted pyrroles, indoles, and naphthols.
Collapse
Affiliation(s)
- Jing Zhou
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Xiang Huang
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Xin Yu
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Liu Yang
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Jia-Yi Han
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Tsesong Lhazom
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| |
Collapse
|
6
|
Juárez-Ornelas KA, Solís-Hernández M, Navarro-Santos P, Jiménez-Halla JOC, Solorio-Alvarado CR. Divergent role of PIDA and PIFA in the AlX 3 (X = Cl, Br) halogenation of 2-naphthol: a mechanistic study. Beilstein J Org Chem 2024; 20:1580-1589. [PMID: 39076287 PMCID: PMC11285080 DOI: 10.3762/bjoc.20.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
The reaction mechanism for the chlorination and bromination of 2-naphthol with PIDA or PIFA and AlX3 (X = Cl, Br), previously reported by our group, was elucidated via quantum chemical calculations using density functional theory. The chlorination mechanism using PIFA and AlCl3 demonstrated a better experimental and theoretical yield compared to using PIDA. Additionally, the lowest-energy chlorinating species was characterized by an equilibrium of Cl-I(Ph)-OTFA-AlCl3 and [Cl-I(Ph)][OTFA-AlCl3], rather than PhICl2 being the active species. On the other hand, bromination using PIDA and AlBr3 was more efficient, wherein the intermediate Br-I(Ph)-OAc-AlBr3 was formed as active brominating species. Similarly, PhIBr2 was higher in energy than our proposed species. The reaction mechanisms are described in detail in this work and were found to be in excellent agreement with the experimental yield. These initial results confirmed that our proposed mechanism was energetically favored and therefore more plausible compared to halogenation via PhIX2.
Collapse
Affiliation(s)
- Kevin A Juárez-Ornelas
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Gto, Noria Alta S/N 36050, Guanajuato, México
| | - Manuel Solís-Hernández
- CONAHCYT - Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Múgica S/N 58030, Morelia, Michoacán, México
| | - Pedro Navarro-Santos
- CONAHCYT - Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Múgica S/N 58030, Morelia, Michoacán, México
| | - J Oscar C Jiménez-Halla
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Gto, Noria Alta S/N 36050, Guanajuato, México
| | - César R Solorio-Alvarado
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Gto, Noria Alta S/N 36050, Guanajuato, México
| |
Collapse
|
7
|
Segura-Quezada LA, Hernández-Velázquez ED, Corrales-Escobosa AR, de León-Solis C, Solorio-Alvarado CR. Ningalins, Pyrrole-Bearing Metabolites Isolated from Didemnum spp. Synthesis and MDR-Reversion Activity in Cancer Therapy. Chem Biodivers 2024; 21:e202300883. [PMID: 38010267 DOI: 10.1002/cbdv.202300883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Multi-Drug Resistance (MDR) is one of the most frequent problems observed in the course of cancer chemotherapy. Cells under treatment, tend to develop survival mechanisms to drug-action thus generating drug-resistance. One of the most important mechanism to get it is the over expression of P-gp glycoprotein, which acts as an efflux-pump releasing the drug outside of the cancer cell. A strategy for a succesfull treatment consists in the co-administration of one compound that acts against P-gp and another which acts against the cell during chemotherapy. Ningalins are pyrrole-containing naturally occurring compounds isolated mainly from the marine tunicate Didemnum spp and also they are some of the top reversing agents in MDR treatment acting on P-gp. Considering the relevance displayed for some of these isolated alkaloids or their core as a drug for co-administration in cancer therapy, all the total synthesis described to date for the members of ningalins family are reviewed herein.
Collapse
Affiliation(s)
- Luis A Segura-Quezada
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato., Noria Alta S/N, 36050, Guanajuato, Gto., México
| | - Edson D Hernández-Velázquez
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato., Noria Alta S/N, 36050, Guanajuato, Gto., México
| | - Alma R Corrales-Escobosa
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato., Noria Alta S/N, 36050, Guanajuato, Gto., México
| | - Claudia de León-Solis
- Instituto de Investigaciones Químicas, Biológicas, Biomédicas y Biofísicas., Universidad Mariano Gálvez, Guatemala, Guatemala
| | - César R Solorio-Alvarado
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato., Noria Alta S/N, 36050, Guanajuato, Gto., México
| |
Collapse
|
8
|
Wei W, Cheung KK, Lin R, Kong LC, Chan KL, Sung HHY, Williams ID, Tong R, Lin Z, Jia G. [2+2+1+1] Cycloaddition for de novo Synthesis of Densely Functionalized Phenols. Angew Chem Int Ed Engl 2023; 62:e202307251. [PMID: 37428447 DOI: 10.1002/anie.202307251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
A unique benzannulation strategy for regioselective de novo synthesis of densely functionalized phenols is described. Through metal-mediated formal [2+2+1+1] cycloaddition of two different alkynes and two molecules of CO, a series of densely functionalized phenols were obtained. The benzannulation strategy allows efficient regioselective installation up to five different substituents on a phenol ring. The resulting phenols have a substitution pattern different from those obtained from Dötz and Danheiser benzannulations.
Collapse
Affiliation(s)
- Wei Wei
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ka Key Cheung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ran Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lam Cheung Kong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ka Lok Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Herman H Y Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ian D Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
9
|
Cui HL, Chen XH. POCl 3/Sulfoxide and AcCl/Sulfoxide Mediated Chlorination of Pyrrolo[2,1- a]isoquinolines. J Org Chem 2023; 88:11935-11944. [PMID: 37550603 DOI: 10.1021/acs.joc.3c01200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
We have developed an efficient chlorination of pyrrolo[2,1-a]isoquinoline derivatives using POCl3 as the chlorine source and tetramethylene sulfoxide as a promoter. A series of pyrrolo[2,1-a]isoquinolines, polysubstituted pyrroles, and naphthols have been readily chlorinated under mild reaction conditions (26 examples, up to >99% yield). AcCl can also act as the chlorine source competently in this chlorination reaction.
Collapse
Affiliation(s)
- Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| | - Xiao-Hui Chen
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| |
Collapse
|
10
|
Sikdar P, Choudhuri T, Paul S, Das S, Bagdi AK. K 2S 2O 8-Promoted Consecutive Tandem Cyclization/Oxidative Halogenation: Access to 3-Halo-Pyrazolo[1,5- a]pyrimidines. ACS OMEGA 2023; 8:23851-23859. [PMID: 37426282 PMCID: PMC10323951 DOI: 10.1021/acsomega.3c02270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
A one-pot methodology has been developed to synthesize 3-halo-pyrazolo[1,5-a]pyrimidine derivatives through the three-component reaction of amino pyrazoles, enaminones (or chalcone), and sodium halides. The use of easily accessible 1,3-biselectrophilic reagents like enaminones and chalcone offers a straightforward approach for the synthesis of 3-halo-pyrazolo[1,5-a]pyrimidines. The reaction proceeded through a cyclocondensation reaction between amino pyrazoles with enaminones/chalcone in the presence of K2S2O8 followed by oxidative halogenations by NaX-K2S2O8. Mild and environmentally benign reaction conditions, wide functional group tolerance, and scalability of the reaction are the attractive facet of this protocol. The combination of NaX-K2S2O8 is also beneficial for the direct oxidative halogenations of pyrazolo[1,5-a]pyrimidines in water.
Collapse
|
11
|
Metformin, a biological and synthetic overview. Bioorg Med Chem Lett 2023; 86:129241. [PMID: 36933671 DOI: 10.1016/j.bmcl.2023.129241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Metformin is the most widely known anti-hyperglycemic, officially acquired by the USA government in 1995 and in 2001 it became the most prescribed treatment for type II diabetes. But how did it become the must-use drug for this disease in such a short period of time? it all started with traditional medicine, by using a plant known as "goat's rue" for the reduction of blood glucose levels. Its use arose in 1918 and evolved to the metformin synthesis in laboratories a couple of years later, using very rudimentary methods which involved melting and strong heating. Thus, a first synthetic route that allowed the preparation of the initial metformin derivates was established. Some of these resulted toxics, and others outperformed the metformin, reducing the blood glucose levels in such efficient way. Nevertheless, the risk and documented cases of lactic acidosis increased with metformin derivatives like buformin and phenformin. Recently, metformin has been widely studied, and it has been associated and tested in the treatment of type II diabetes, cancer, polycystic ovarian syndrome, cell differentiation to oligodendrocytes, reduction of oxidative stress in cells, weight reduction, as anti-inflammatory and even in the recent COVID-19 disease. Herein we briefly review and analyze the history, synthesis, and biological applications of metformin and its derivates.
Collapse
|
12
|
Zhao B, Li X, Wang X, Jiang L, Li Z, Du Y. Synthesis of 3-Haloindoles via Cascade Oxidative Cyclization/Halogenation of 2-Alkenylanilines Mediated by PIDA and LiBr/KI. J Org Chem 2023; 88:1493-1503. [PMID: 36631394 DOI: 10.1021/acs.joc.2c02480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The treatment of 2-alkenylanilines with phenyliodine(III) diacetate (PIDA) and LiBr or KI in HFIP was found to afford the corresponding 3-haloindoles via cascade oxidative cyclization/halogenation encompassing oxidative C-N/C-X (X = Br, I) bond formations. A plausible mechanism involving the in situ formation of the reactive AcO-X (X = Br, I) from the reaction of PIDA and LiBr/KI was postulated.
Collapse
Affiliation(s)
- Bingyue Zhao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoxian Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaofan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Luchen Jiang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhe Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
13
|
Liu J, Chen J, Liu T, Liu J, Zeng Y. Recent Advances in the Reactions of β-Naphthol at α-Position. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
14
|
Torres‐Carbajal KR, Segura‐Quezada LA, Ortíz‐Alvarado R, Chávez‐Rivera R, Tapia‐Juárez M, González‐Domínguez MI, Ruiz‐Padilla AJ, Zapata‐Morales JR, de León‐Solís C, Solorio Alvarado CR. Indomethacin Synthesis, Historical Overview of Their Structural Modifications. ChemistrySelect 2022. [DOI: 10.1002/slct.202201897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Karina R. Torres‐Carbajal
- Universidad de Guanajuato Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato. Noria Alta S/N 36050 Guanajuato Gto. México
| | - Luis A. Segura‐Quezada
- Universidad de Guanajuato Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato. Noria Alta S/N 36050 Guanajuato Gto. México
| | - Rafael Ortíz‐Alvarado
- Universidad Michoacana de San Nicolás de Hidalgo. Facultad de Químico Farmacobiología. Tzintzuntzan 173 col. Matamoros Morelia Mich. México
| | - Rubén Chávez‐Rivera
- Universidad Michoacana de San Nicolás de Hidalgo. Facultad de Químico Farmacobiología. Tzintzuntzan 173 col. Matamoros Morelia Mich. México
| | - Melissa Tapia‐Juárez
- Universidad Michoacana de San Nicolás de Hidalgo Instituto de Ciencias Químico Biológicas Av. Universidad S/N 58000 Morelia Mich., México
| | - Martha I. González‐Domínguez
- Dra. Martha I. Gozález-Domínguez Universidad de la Ciénega del Estado de Michoacán de Ocampo. Avenida Universidad 3000 Col. Lomas de la Universidad 59103 Sahuayo, Mich México
| | - Alan J. Ruiz‐Padilla
- Universidad de Guanajuato Departamento de Farmacia, División de Ciencias Naturales y Exactas, Campus Guanajuato. Noria Alta S/N 36050 Guanajuato Gto. México
| | - Juan R. Zapata‐Morales
- Universidad de Guanajuato Departamento de Farmacia, División de Ciencias Naturales y Exactas, Campus Guanajuato. Noria Alta S/N 36050 Guanajuato Gto. México
| | - Claudia de León‐Solís
- Instituto de Investigaciones Químicas Biológicas Biomédicas y Biofísicas. Universidad Mariano Gálvez. Guatemala Guatemala
| | - César R. Solorio Alvarado
- Universidad de Guanajuato Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato. Noria Alta S/N 36050 Guanajuato Gto. México
| |
Collapse
|
15
|
Segura-Quezada LA, Torres-Carbajal KR, Juárez-Ornelas KA, Alonso-Castro AJ, Ortiz-Alvarado R, Dohi T, Solorio-Alvarado CR. Iodine(III) reagents for oxidative aromatic halogenation. Org Biomol Chem 2022; 20:5009-5034. [PMID: 35703407 DOI: 10.1039/d2ob00741j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iodine(III) reagents have attracted chemical relvance in organic synthesis by their use as safe, non-toxic, green and easy to handle reagents in different transformations. These characteristics make them important alternatives to procedures involving hazardous and harsh reaction conditions. Their versatility as oxidants has been exploited in the functionalization of different aromatic cores, which allow the introduction of several groups. Metal-free arylation using iodine(III) reagents is by far one of the most described topics in the literature; however, other highly relevant non-aromatic groups have been also introduced. Herein, we summarize the most representative developed procedures for the functionalization of aryls and heteroaryls by introducing halogens, using different iodine(III) reagents.
Collapse
Affiliation(s)
- Luis A Segura-Quezada
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato, Cerro de la Venada S/N, 36040, Guanajuato, Gto., Mexico.
| | - Karina R Torres-Carbajal
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato, Cerro de la Venada S/N, 36040, Guanajuato, Gto., Mexico.
| | - Kevin A Juárez-Ornelas
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato, Cerro de la Venada S/N, 36040, Guanajuato, Gto., Mexico.
| | - Angel J Alonso-Castro
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato, Cerro de la Venada S/N, 36040, Guanajuato, Gto., Mexico.
| | - Rafael Ortiz-Alvarado
- Universidad Michoacana de San Nicolás de Hidalgo, Facultad de Químico Farmacobiología, Tzintzuntzan 173, col. Matamoros, Morelia, Mich., Mexico.
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga, 525-8577, Japan.
| | - César R Solorio-Alvarado
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato, Cerro de la Venada S/N, 36040, Guanajuato, Gto., Mexico.
| |
Collapse
|
16
|
Bauer JO, Koschabek S, Falk A. Interplay of Hydrogen and Halogen Bonding in the Crystal Structures of 2,6‐Dihalogenated Phenols. ChemistrySelect 2021. [DOI: 10.1002/slct.202101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jonathan O. Bauer
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie Universität Regensburg Universitätsstraße 31 D-93053 Regensburg Germany
| | - Sarah Koschabek
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie Universität Regensburg Universitätsstraße 31 D-93053 Regensburg Germany
| | - Alexander Falk
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie Universität Regensburg Universitätsstraße 31 D-93053 Regensburg Germany
| |
Collapse
|
17
|
Lin Y, Jin J, Wang C, Wan JP, Liu Y. Electrochemical C-H Halogenations of Enaminones and Electron-Rich Arenes with Sodium Halide (NaX) as Halogen Source for the Synthesis of 3-Halochromones and Haloarenes. J Org Chem 2021; 86:12378-12385. [PMID: 34392684 DOI: 10.1021/acs.joc.1c01347] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Without employing an external oxidant, the simple synthesis of 3-halochromones and various halogenated electron-rich arenes has been realized with electrode oxidation by employing the simplest sodium halide (NaX, X = Cl, Br, I) as halogen source. This electrochemical method is advantageous for the simple and mild room temperature operation, environmental friendliness as well as broad substrate scope in both C-H bond donor and halogen source components.
Collapse
Affiliation(s)
- Yan Lin
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| | - Jun Jin
- BioDuro-Sundia, 233 North FuTe Road, Shanghai200131, People's Republic of China
| | - Chaoli Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| |
Collapse
|
18
|
Palav A, Misal B, Chaturbhuj G. NCBSI/KI: A Reagent System for Iodination of Aromatics through In Situ Generation of I-Cl. J Org Chem 2021; 86:12467-12474. [PMID: 34339212 DOI: 10.1021/acs.joc.1c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In situ iodine monochloride (I-Cl) generation followed by iodination of aromatics using NCBSI/KI system has been developed. The NCBSI reagent requires no activation due to longer bond length, lower bond dissociation energy, and higher absolute charge density on nitrogen. The system is adequate for mono- and diiodination of a wide range of moderate to highly activated arenes with good yield and purity. Moreover, the precursor N-(benzenesulfonyl)benzenesulfonamide can be recovered and transformed to NCBSI, making the protocol eco-friendly and cost-effective.
Collapse
Affiliation(s)
- Amey Palav
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400 019, India.,Loba Chemie Pvt. Ltd., Research, and Development Center, Tarapur, Thane 401 506, India
| | - Balu Misal
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400 019, India.,Loba Chemie Pvt. Ltd., Research, and Development Center, Tarapur, Thane 401 506, India
| | - Ganesh Chaturbhuj
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| |
Collapse
|
19
|
Lin X, Zeng C, Liu C, Fang Z, Guo K. C-5 selective chlorination of 8-aminoquinoline amides using dichloromethane. Org Biomol Chem 2021; 19:1352-1357. [PMID: 33475130 DOI: 10.1039/d0ob02055a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An oxidant-free electrochemical regioselective chlorination of 8-aminoquinoline amides at ambient temperature in batch and continuous-flow was achieved. Inert DCM was used as the chlorinating reagent. Owing to the continuous-flow setup, the reaction scale up can be achieved conveniently with higher productivity. Moreover, this method has good position-control, and water and air tolerance. Costly quaternary ammonium salts were avoided. Radical-trapping, H/D exchange, KIE and cyclic voltammetry experiments were conducted to gain insight into the reaction mechanism.
Collapse
Affiliation(s)
- Xinxin Lin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China.
| | - Cuilian Zeng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China.
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China.
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China.
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China. and State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| |
Collapse
|
20
|
Qu Z, Zhu H, Grimme S. Mechanistic Insights for Iodane Mediated Aromatic Halogenation Reactions. ChemCatChem 2020. [DOI: 10.1002/cctc.202001392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zheng‐Wang Qu
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4 53115 Bonn Germany
| | - Hui Zhu
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4 53115 Bonn Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4 53115 Bonn Germany
| |
Collapse
|
21
|
Satkar Y, Wrobel K, Trujillo-González DE, Ortiz-Alvarado R, Jiménez-Halla JOC, Solorio-Alvarado CR. The Diaryliodonium(III) Salts Reaction With Free-Radicals Enables One-Pot Double Arylation of Naphthols. Front Chem 2020; 8:563470. [PMID: 33195052 PMCID: PMC7593783 DOI: 10.3389/fchem.2020.563470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/17/2020] [Indexed: 11/13/2022] Open
Abstract
The chemoselective reaction of the C- followed by the O-centered naphthyl radicals with the more electron-deficient hypervalent bond of the diaryliodonium(III) salts is described. This discovered reactivity constitutes a new activation mode of the diaryliodonium(III) salts which enabled a one-pot doubly arylation of naphthols through the sequentialC s p 2 -C s p 2 /O-C s p 2 bond formation. The naphthyl radicals were generated in the reaction by the tetramethylpiperidinyl radical (TMP·) which resulted from the homolytic fragmentation of the precursor TMP2O. Experimental and DFT calculations provided a complete panorama of the reaction mechanism.
Collapse
Affiliation(s)
- Yuvraj Satkar
- División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Guanajuato, Mexico
| | - Kazimierz Wrobel
- División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Guanajuato, Mexico
| | - Daniel E. Trujillo-González
- División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Guanajuato, Mexico
| | - Rafael Ortiz-Alvarado
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - J. Oscar C. Jiménez-Halla
- División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Guanajuato, Mexico
| | - César R. Solorio-Alvarado
- División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
22
|
Cai J, Wang Z, Zhang Y, Yao F, Hu X, Liu W. Synthesis of Polysubstituted 2‐Naphthols by Palladium‐Catalyzed Intramolecular Arylation/Aromatization Cascade. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jinhui Cai
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular SciencesWuhan University Hubei 430072 People's Republic of China
| | - Zhen‐Kai Wang
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular SciencesWuhan University Hubei 430072 People's Republic of China
| | - Yun‐Hao Zhang
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular SciencesWuhan University Hubei 430072 People's Republic of China
| | - Fei Yao
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular SciencesWuhan University Hubei 430072 People's Republic of China
| | - Xu‐Dong Hu
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular SciencesWuhan University Hubei 430072 People's Republic of China
| | - Wen‐Bo Liu
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular SciencesWuhan University Hubei 430072 People's Republic of China
| |
Collapse
|
23
|
Liu T, Li Y, Jiang L, Wang J, Jin K, Zhang R, Duan C. Photo-mediated synthesis of halogenated spiro[4,5]trienones of N-aryl alkynamides with PhI(OCOCF 3) 2 and KBr/KCl. Org Biomol Chem 2020; 18:1933-1939. [PMID: 32101242 DOI: 10.1039/d0ob00057d] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel and convenient photo-mediated halogenated spirocyclization of N-(p-methoxyaryl)propiolamides has been developed. The photolysis of phenyliodine bis(trifluoroacetate) (PIFA) as an iodination reagent led to iodinated ipso-cyclization under the irradiation of a xenon lamp, while brominated ipso-cyclization or chlorinated ipso-cyclization was achieved by irradiating a mixture of PIFA and KBr/KCl under a blue LED. The present protocol simply utilizes light as the safe and clean energy source and doesn't require any external photocatalyst providing various 3-halospiro[4,5]trienones in good to excellent yields (up to 93%).
Collapse
Affiliation(s)
- Tong Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Yaming Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Linlin Jiang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Jiaao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Kun Jin
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Rong Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| |
Collapse
|
24
|
Yahuaca-Juárez B, González G, Ramírez-Morales MA, Alba-Betancourt C, Deveze-Álvarez MA, Mendoza-Macías CL, Ortiz-Alvarado R, Juárez-Ornelas KA, Solorio-Alvarado CR, Maruoka K. Iodine(III)-catalyzed benzylic oxidation by using the (PhIO)n/Al(NO3)3 system. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2019.1707225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Berencie Yahuaca-Juárez
- Facultad de Químicofarmacobiología, Universidad Michoacana de San Nicolás de Hidalgo , Morelia , Michoacán , México
| | - Gerardo González
- División de Ciencias Naturales y Exactas Departamento de Química, Universidad de Guanajuato , Gto , México
| | - Marco A. Ramírez-Morales
- División de Ciencias Naturales y Exactas Departamento de Química, Universidad de Guanajuato , Gto , México
| | - Calara Alba-Betancourt
- División de Ciencias Naturales y Exactas Departamento de Química, Universidad de Guanajuato , Gto , México
| | - Martha A. Deveze-Álvarez
- División de Ciencias Naturales y Exactas Departamento de Química, Universidad de Guanajuato , Gto , México
| | - Claudia L. Mendoza-Macías
- División de Ciencias Naturales y Exactas Departamento de Química, Universidad de Guanajuato , Gto , México
| | - Rafael Ortiz-Alvarado
- Facultad de Químicofarmacobiología, Universidad Michoacana de San Nicolás de Hidalgo , Morelia , Michoacán , México
| | - Kevin A. Juárez-Ornelas
- División de Ciencias Naturales y Exactas Departamento de Química, Universidad de Guanajuato , Gto , México
| | - César R. Solorio-Alvarado
- División de Ciencias Naturales y Exactas Departamento de Química, Universidad de Guanajuato , Gto , México
| | - Keiji Maruoka
- Department of Chemistry, Graduate School of Sciences, Kyoto University , Sakyo , Kyoto , Japan
| |
Collapse
|
25
|
Ma X, Yu J, Jiang M, Wang M, Tang L, Wei M, Zhou Q. Mild and Regioselective Bromination of Phenols with TMSBr. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiantao Ma
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang Henan China
| | - Jing Yu
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang Henan China
| | - Mengyuan Jiang
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang Henan China
| | - Mengyu Wang
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang Henan China
| | - Lin Tang
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang Henan China
| | - Mengmeng Wei
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang Henan China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang Henan China
| |
Collapse
|