1
|
Li Y, Zhao C, Wang Z, Zeng Y. Halogen Bond Catalysis: A Physical Chemistry Perspective. J Phys Chem A 2024; 128:507-527. [PMID: 38214658 DOI: 10.1021/acs.jpca.3c06363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
As important noncovalent interactions, halogen bonds have been widely used in material science, supramolecular chemistry, medicinal chemistry, organocatalysis, and other fields. In the past 15 years, halogen bond catalysis has become a developed field in organocatalysis for the catalysts' advantages of being environmentally friendly, inexpensive, and recyclable. Halogen bonds can induce various organic reactions, and halogen bond catalysis has become a powerful alternative to the fully explored hydrogen bond catalysis. From a physical chemistry view, this perspective provides an overview of the latest progress and key examples of halogen bond catalysis via activation of the lone pair systems of organic functional group, π systems, and metal complexes. The research progresses in halogen bond catalysis by our group were also introduced.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Chang Zhao
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhuo Wang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
2
|
Zhao C, Li Y, Li X, Zeng Y. Iodine(I)-based and iodine(III)-based halogen bond catalysis on the Friedel-Crafts reaction: a theoretical study. Phys Chem Chem Phys 2023; 25:21100-21108. [PMID: 37527332 DOI: 10.1039/d3cp02541a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Halogen bond catalysis, especially iodine derivatives catalysis, has attracted increasing attention in recent years owing to the advantages of relatively cheap, stable, green, easy to handle, and favorable catalytic activity. To obtain insights into the catalytic mechanism and activity of halogen bond donor catalysts, iodine(I)-based and iodine(III)-based halogen bond catalysis on the Friedel-Crafts reaction were investigated in this study. The entire reaction contains several key steps: carbon-carbon bond coupling, proton transfer, hydroxyl departure, indole addition, and deprotonation process. According to the energetic span model, iodine(III)-based donor catalysts exhibit higher catalytic activity than iodine(I)-based catalysts and double cationic catalysts are more potent than single cationic ones. For halogen bond catalysis, the Gibbs energy barriers have linear relation to the electron density at the halogen bond critical points. Furthermore, the Gibbs energy barriers are also linearly related to the integral charge values of the increased region of electron density outside the oxygen atom of reactants. Therefore, the stronger halogen bond results in lower Gibbs energy barrier, and the stronger polarization further benefits the halogen bond catalysis.
Collapse
Affiliation(s)
- Chang Zhao
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Ying Li
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Xiaoyan Li
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
3
|
Li Y, Ge Y, Sun R, Yang X, Huang S, Dong H, Liu Y, Xue H, Ma X, Fu H, Chen Z. Balancing Activity and Stability in Halogen-Bonding Catalysis: Iodopyridinium-Catalyzed One-Pot Synthesis of 2,3-Dihydropyridinones. J Org Chem 2023; 88:11069-11082. [PMID: 37458502 DOI: 10.1021/acs.joc.3c01028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
A one-pot cascade reaction for 2,3-dihydropyridinone synthesis was accomplished with 3-fluoro-2-iodo-1-methylpyridinium triflate as the halogen bond catalyst. The desired [4+2] cycloaddition products, bearing aryl, heteroaryl, alkyl, and alicyclic substituents, were successfully furnished in 28-99% yields. Mechanistic investigations proved that a strong halogen-bonding interaction forged between the iodopyridinium catalyst and imine intermediate was essential to dynamically masking the vulnerable C-I bond on the catalyst and accelerating the following aza-Diels-Alder reaction.
Collapse
Affiliation(s)
- Yi Li
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Yicen Ge
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Rui Sun
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiao Yang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Shipeng Huang
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Huajian Dong
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Yunyao Liu
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Haodan Xue
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Xiaoyan Ma
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zeqin Chen
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| |
Collapse
|
4
|
Vermeersch L, De Proft F, Faulkner V, De Vleeschouwer F. Unravelling the Mechanism and Governing Factors in Lewis Acid and Non-Covalent Diels-Alder Catalysis: Different Perspectives. Int J Mol Sci 2023; 24:ijms24054938. [PMID: 36902369 PMCID: PMC10003447 DOI: 10.3390/ijms24054938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
In the current literature, many non-covalent interaction (NCI) donors have been proposed that can potentially catalyze Diels-Alder (DA) reactions. In this study, a detailed analysis of the governing factors in Lewis acid and non-covalent catalysis of three types of DA reactions was carried out, for which we selected a set of hydrogen-, halogen-, chalcogen-, and pnictogen-bond donors. We found that the more stable the NCI donor-dienophile complex, the larger the reduction in DA activation energy. We also showed that for active catalysts, a significant part of the stabilization was caused by orbital interactions, though electrostatic interactions dominated. Traditionally, DA catalysis was attributed to improved orbital interactions between the diene and dienophile. Recently, Vermeeren and co-workers applied the activation strain model (ASM) of reactivity, combined with the Ziegler-Rauk-type energy decomposition analysis (EDA), to catalyzed DA reactions in which energy contributions for the uncatalyzed and catalyzed reaction were compared at a consistent geometry. They concluded that reduced Pauli repulsion energy, and not enhanced orbital interaction energy, was responsible for the catalysis. However, when the degree of asynchronicity of the reaction is altered to a large extent, as is the case for our studied hetero-DA reactions, the ASM should be employed with caution. We therefore proposed an alternative and complementary approach, in which EDA values for the catalyzed transition-state geometry, with the catalyst present or deleted, can be compared one to one, directly measuring the effect of the catalyst on the physical factors governing the DA catalysis. We discovered that enhanced orbital interactions are often the main driver for catalysis and that Pauli repulsion plays a varying role.
Collapse
|
5
|
Novikov AS, Bolotin DS. Halonium, chalconium, and pnictonium salts as noncovalent organocatalysts: a computational study on relative catalytic activity. Org Biomol Chem 2022; 20:7632-7639. [PMID: 36111866 DOI: 10.1039/d2ob01415g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This theoretical study sheds light on the relative catalytic activity of pnictonium, chalconium, and halonium salts in reactions involving elimination of chloride and electrophilic activation of a carbonyl group. DFT calculations indicate that for cationic aromatic onium salts, values of the electrostatic potential on heteroatom σ-holes gradually increase from pnictogen- to halogen-containing species. The higher values of the potential on the halogen atoms of halonium salts result in the overall higher catalytic activity of these species, but in the case of pnictonium and chalconium cations, weak interactions from the side groups provide an additional stabilization effect on the reaction transition states. Based upon quantum-chemical calculations, the catalytic activity of phosphonium(V) and arsenonium(V) salts is expected to be too low to obtain effective noncovalent organocatalytic compounds, whereas stibonium(V), telluronium(IV) and iodonium(III) salts exhibit higher potential in application as noncovalent organocatalysts.
Collapse
Affiliation(s)
- Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation. .,Infochemistry Scientific Center, ITMO University, Kronverksky Pr. 49, Bldg. A, Saint Petersburg, 197101, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| |
Collapse
|
6
|
Korobeynikov NA, Usoltsev AN, Abramov PA, Novikov AS, Sokolov MN, Adonin SA. Bromine-rich tin(IV) halide complexes: Experimental and theoretical examination of Br···Br noncovalent interactions in crystalline state. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Kriis K, Martõnov H, Miller A, Erkman K, Järving I, Kaasik M, Kanger T. Multifunctional Catalysts in the Asymmetric Mannich Reaction of Malononitrile with N-Phosphinoylimines: Coactivation by Halogen Bonding versus Hydrogen Bonding. J Org Chem 2022; 87:7422-7435. [PMID: 35594434 DOI: 10.1021/acs.joc.2c00674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A multifunctional (noncovalent) catalyst containing halogen-bond donor, hydrogen-bond donor, and Lewis basic sites was developed and applied in an enantioselective Mannich reaction between malononitrile and diphenylphosphinoyl-protected aldimine affording products in high yields (up to 98%) and moderate to high enantiomeric purities (ee up to 89%). Typically, noncovalent catalysts rely on several weak interactions to activate the substrate, with one or two of these giving the most notable contribution to activation. In this instance, instead of the initially proposed coactivation by halogen bonding, it was revealed that hydrogen bonding plays a key role in determining the enantioselectivity.
Collapse
Affiliation(s)
- Kadri Kriis
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Harry Martõnov
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Annette Miller
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Kristin Erkman
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Ivar Järving
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Mikk Kaasik
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Tõnis Kanger
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| |
Collapse
|
8
|
Nieland E, Komisarek D, Hohloch S, Wurst K, Vasylyeva V, Weingart O, Schmidt BM. Supramolecular networks by imine halogen bonding. Chem Commun (Camb) 2022; 58:5233-5236. [PMID: 35388831 DOI: 10.1039/d2cc00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Halogen bonding of neutral donors using imine groups of porous organic cage compounds as acceptors leads to the formation of halogen-bonded frameworks. We report the use of two different imine cages, in combination with three electron-poor halogen bond donors. Four resulting solid-state structures elucidated by single-crystal X-ray analysis are presented and analysed for the first time by plane-wave DFT calculations and QTAIM-analyses of the entire unit cells, demonstrating the formation of halogen bonds within the networks. The supramolecular frameworks can be obtained either from solution or mechanochemically by liquid-assisted grinding.
Collapse
Affiliation(s)
- Esther Nieland
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| | - Daniel Komisarek
- Institut für Anorganische Chemie und Strukturchemie I, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Stephan Hohloch
- Institut für Allgemeine, Anorganische und Theoretische Chemie, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Klaus Wurst
- Institut für Allgemeine, Anorganische und Theoretische Chemie, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Vera Vasylyeva
- Institut für Anorganische Chemie und Strukturchemie I, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Oliver Weingart
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| | - Bernd M Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
9
|
Il'in MV, Sysoeva AA, Novikov AS, Bolotin DS. Diaryliodoniums as Hybrid Hydrogen- and Halogen-Bond-Donating Organocatalysts for the Groebke-Blackburn-Bienaymé Reaction. J Org Chem 2022; 87:4569-4579. [PMID: 35176856 DOI: 10.1021/acs.joc.1c02885] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dibenziodolium and diphenyliodonium triflates display high catalytic activity for the multicomponent reaction that leads to a series of imidazopyridines. Density functional theory (DFT) calculations indicate that both the salts can play the role of hybrid hydrogen- and halogen-bond-donating organocatalysts, which electrophilically activate the carbonyl and imine groups during the reaction process. The ortho-H atoms in the vicinal position to the I atom play a dual role: forming additional noncovalent bonds with the ligated substrate and increasing the maximum electrostatic potential on the σ-hole at the iodine atom owing to the effects of polarization. Dibenziodolium triflate exhibits higher catalytic activity, and the results obtained from 1H nuclear magnetic resonance (NMR) titrations, in conjunction with those from DFT calculations, indicate that this could be explained in terms of the additional energy required for the rotation of the phenyl ring in the diphenyliodonium cation during ligation of the substrate.
Collapse
Affiliation(s)
- Mikhail V Il'in
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Alexandra A Sysoeva
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| |
Collapse
|
10
|
Chiral Ferrocenyl–Iodotriazoles and –Iodotriazoliums as Halogen Bond Donors. Synthesis, Solid State Analysis and Catalytic Properties. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Kase D, Haraguchi R. Fluoride-Mediated Nucleophilic Aromatic Amination of Chloro-1 H-1,2,3-triazolium Salts. Org Lett 2021; 24:90-94. [PMID: 34914400 DOI: 10.1021/acs.orglett.1c03677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a fluoride-mediated nucleophilic aromatic amination of chloro-1H-1,2,3-triazolium salts with aliphatic amines. The reaction proceeded under mild reaction conditions to provide amino-1,2,3-triazolium salts with various functional groups, which can be utilized for further transformations. Moreover, it was found that an amino-1,2,3-triazolium salt was transformed via deprotonation into the N-heterocyclic imine (NHI), which exhibited the excellent catalytic activity for the cyanosilylation of acetophenone with trimethylsilyl cyanide.
Collapse
Affiliation(s)
- Daiya Kase
- Department of Applied Chemistry, Graduate School of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Ryosuke Haraguchi
- Department of Applied Chemistry, Graduate School of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| |
Collapse
|
12
|
Zhao C, Sun C, Li X, Zeng Y. Aza‐Diels‐Alder Reaction of Danishefsky's Diene with Imine Catalyzed by N‐Heterocyclic Imidazole Halogen Bond Donors. ChemistrySelect 2021. [DOI: 10.1002/slct.202103487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chang Zhao
- College of Chemistry and Materials Science Hebei Normal University Shijiazhuang 050024 China
| | - Cuihong Sun
- College of Chemical Engineering Shijiazhuang University Shijiazhuang 050035 China
| | - Xiaoyan Li
- College of Chemistry and Materials Science Hebei Normal University Shijiazhuang 050024 China
| | - Yanli Zeng
- College of Chemistry and Materials Science Hebei Normal University Shijiazhuang 050024 China
| |
Collapse
|
13
|
Dubey G, Awari S, Singh T, Sahoo SC, Bharatam PV. Mesoionic and N-Heterocyclic Carbenes Coordinated N + Center: Experimental and Computational Analysis. Chempluschem 2021; 86:1416-1420. [PMID: 34636173 DOI: 10.1002/cplu.202100281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/17/2021] [Indexed: 11/07/2022]
Abstract
N-Heterocyclic carbenes, carbocyclic carbenes, remote N-heterocyclic carbenes and N-heterocyclic silylenes are known to form L→N+ coordination bonds. However, mesoionic carbenes (MICs) are not reported to form coordination bonds with cationic nitrogen. Herein, synthesis and quantum chemical studies were performed on 1,2,3-triazol-5-ylidene stabilized N+ center. Six compounds with MIC→N+ ←NHC were synthesized. Density functional theory calculations and energy decomposition analysis were carried out to explore the bonding situation between MIC and N+ center. The C→N+ bond lengths were in the range of 1.295-1.342 Å and bond dissociation energies were <400 kcal/mol. Natural bond orbital analysis supported the presence of excess electron density (>3 electrons) at the N+ center. The computational and X-ray diffraction analysis results confirmed the presence of divalent NI character of center nitrogen and MIC→N+ ←NHC coordination interactions.
Collapse
Affiliation(s)
- Gurudutt Dubey
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062, Punjab, India
| | - Shruti Awari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062, Punjab, India
| | - Tejender Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062, Punjab, India
| | - Subash C Sahoo
- Department of Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062, Punjab, India
| |
Collapse
|
14
|
Sysoeva AA, Novikov AS, Il'in MV, Suslonov VV, Bolotin DS. Predicting the catalytic activity of azolium-based halogen bond donors: an experimentally-verified theoretical study. Org Biomol Chem 2021; 19:7611-7620. [PMID: 34323914 DOI: 10.1039/d1ob01158h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This report demonstrates the successful application of electrostatic surface potential distribution analysis for evaluating the relative catalytic activity of a series of azolium-based halogen bond donors. A strong correlation (R2 > 0.97) was observed between the positive electrostatic potential of the σ-hole on the halogen atom and the Gibbs free energy of activation of the model reactions (i.e., halogen abstraction and carbonyl activation). The predictive ability of the applied approach was confirmed experimentally. It was also determined that the catalytic activity of azolium-based halogen bond donors was generally governed by the structure of the azolium cycle, whereas the substituents on the heterocycle had a limited impact on the activity. Ultimately, this study highlighted four of the most promising azolium halogen bond donors, which are expected to exhibit high catalytic activity.
Collapse
Affiliation(s)
- Alexandra A Sysoeva
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| | - Mikhail V Il'in
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| | - Vitalii V Suslonov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| |
Collapse
|
15
|
Weiss R, Golisano T, Pale P, Mamane V. Insight into the Modes of Activation of Pyridinium and Bipyridinium Salts in Non‐Covalent Organocatalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Robin Weiss
- Institute of Chemistry of Strasbourg, UMR 7177 – LASYROC CNRS Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| | - Tamara Golisano
- Institute of Chemistry of Strasbourg, UMR 7177 – LASYROC CNRS Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| | - Patrick Pale
- Institute of Chemistry of Strasbourg, UMR 7177 – LASYROC CNRS Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| | - Victor Mamane
- Institute of Chemistry of Strasbourg, UMR 7177 – LASYROC CNRS Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| |
Collapse
|
16
|
Li C, Manick AD, Yang J, Givaudan D, Biletskyi B, Michaud-Chevalier S, Dutasta JP, Hérault D, Bugaut X, Chatelet B, Martinez A. The Chloroazaphosphatrane Motif for Halogen Bonding in Solution. Inorg Chem 2021; 60:11964-11973. [PMID: 34319095 DOI: 10.1021/acs.inorgchem.1c01005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Chloroazaphosphatranes, the corresponding halogenophosphonium cations of the Verkade superbases, were evaluated as a new motif for halogen bonding (XB). Their modulable synthesis allowed for synthetizing chloroazaphosphatranes with various substituents on the nitrogen atoms. The binding constants determined from NMR titration experiments for Cl-, Br-, I-, AcO-, and CN- anions are comparable to those obtained with conventional iodine-based monodentate XB receptors. Remarkably, the protonated azaphosphatrane counterparts display no affinity for anions under the same conditions. The strength of the XB interaction is, to some extent, related to the basicity of the corresponding Verkade superbase. The halogen bonding abilities of this new class of halogen donor motif were also revealed by the Δδ(31P) NMR shift observed in CD2Cl2 solution in the presence of triethylphosphine oxide (TEPO). Thus, chloroazaphosphatranes constitute a new class of halogen bond donors, expanding the repertory of XB motifs mainly based on CAr-I bonds.
Collapse
Affiliation(s)
- Chunyang Li
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | | | - Jian Yang
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - David Givaudan
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Bohdan Biletskyi
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | | | - Jean-Pierre Dutasta
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, 46 allée d'Italie, F-69364 Lyon, France
| | - Damien Hérault
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Xavier Bugaut
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Bastien Chatelet
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | | |
Collapse
|
17
|
Ueyama K, Hayakawa S, Nishio K, Sawaguchi D, Niitsuma K, Michii S, Tsuruoka R, Ozawa M, Torita K, Morita Y, Komatsu T, Haraguchi R, Fukuzawa S. Halogen‐Bonding‐Donor Catalyzed Cyanosilylation of Aldehydes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kyohei Ueyama
- Department of Applied Chemistry, Graduate School of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Shunsuke Hayakawa
- Department of Applied Chemistry, Graduate School of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Kazuhiro Nishio
- Department of Applied Chemistry, Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Daiki Sawaguchi
- Department of Applied Chemistry, Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Kenta Niitsuma
- Department of Applied Chemistry, Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Shota Michii
- Department of Applied Chemistry, Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Ryoto Tsuruoka
- Department of Applied Chemistry, Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Miyuki Ozawa
- Department of Applied Chemistry, Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Koki Torita
- Department of Applied Chemistry, Institute of Science and Engineering Chuo University 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| | - Yoshitsugu Morita
- Department of Applied Chemistry, Institute of Science and Engineering Chuo University 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Institute of Science and Engineering Chuo University 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| | - Ryosuke Haraguchi
- Department of Applied Chemistry, Graduate School of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
- Department of Applied Chemistry, Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Shin‐ichi Fukuzawa
- Department of Applied Chemistry, Institute of Science and Engineering Chuo University 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| |
Collapse
|
18
|
Arenas JL, Crousse B. An Overview of 4‐ and 5‐Halo‐1,2,3‐triazoles from Cycloaddition Reactions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- José Laxio Arenas
- BioCIS, UMR 8076 CNRS Univ. Paris Saclay, Univ. Paris Sud Chatenay Malabry France
| | - Benoît Crousse
- BioCIS, UMR 8076 CNRS Univ. Paris Saclay, Univ. Paris Sud Chatenay Malabry France
| |
Collapse
|
19
|
Affiliation(s)
- Thiemo Arndt
- Department of Chemistry University of Cologne Greinstraße 4 50939 Köln Germany
| | - Philip K. Wagner
- Department of Chemistry University of Cologne Greinstraße 4 50939 Köln Germany
| | - Jonas J. Koenig
- Department of Chemistry University of Cologne Greinstraße 4 50939 Köln Germany
| | - Martin Breugst
- Department of Chemistry University of Cologne Greinstraße 4 50939 Köln Germany
| |
Collapse
|
20
|
Kaasik M, Martõnova J, Erkman K, Metsala A, Järving I, Kanger T. Enantioselective Michael addition to vinyl phosphonates via hydrogen bond-enhanced halogen bond catalysis. Chem Sci 2021; 12:7561-7568. [PMID: 34163847 PMCID: PMC8171314 DOI: 10.1039/d1sc01029h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/24/2021] [Indexed: 02/01/2023] Open
Abstract
An asymmetric Michael addition of malononitrile to vinyl phosphonates was accomplished by hydrogen bond-enhanced bifunctional halogen bond (XB) catalysis. NMR titration experiments were used to demonstrate that halogen bonding, with the support of hydrogen-bonding, played a key role in the activation of the Michael acceptors through the phosphonate group. This is the first example of the use of XBs for the activation of organophosphorus compounds in synthesis. In addition, the iodo-perfluorophenyl group proved to be a better directing unit than different iodo- and nitro-substituted phenyl groups. The developed approach afforded products with up to excellent yields and diastereoselectivities and up to good enantioselectivities.
Collapse
Affiliation(s)
- Mikk Kaasik
- Department of Chemistry and Biotechnology, Tallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Jevgenija Martõnova
- Department of Chemistry and Biotechnology, Tallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Kristin Erkman
- Department of Chemistry and Biotechnology, Tallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Andrus Metsala
- Department of Chemistry and Biotechnology, Tallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Ivar Järving
- Department of Chemistry and Biotechnology, Tallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Tõnis Kanger
- Department of Chemistry and Biotechnology, Tallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| |
Collapse
|
21
|
Gharpure SJ, Naveen S, Chavan RS, Padmaja. Regioselective Synthesis of Halotriazoles and their Utility in Metal Catalyzed Coupling Reactions. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Santosh J. Gharpure
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Sudi Naveen
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Rupali S. Chavan
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Padmaja
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| |
Collapse
|
22
|
Zhang H, Toy PH. Halogen Bond‐Catalyzed Friedel−Crafts Reactions of Furans Using a 2,2’‐Bipyridine‐Based Catalyst. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Huimiao Zhang
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong People's Republic of China
| | - Patrick H. Toy
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong People's Republic of China
| |
Collapse
|
23
|
Ma J, Ding S. Transition Metal‐Catalyzed Cycloaddition of Azides with Internal Alkynes. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000486] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiahao Ma
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering Beijing University of Chemical Technology North Third Ring Road 15 Beijing 100029 P. R. China
| | - Shengtao Ding
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering Beijing University of Chemical Technology North Third Ring Road 15 Beijing 100029 P. R. China
| |
Collapse
|
24
|
Kaasik M, Kanger T. Supramolecular Halogen Bonds in Asymmetric Catalysis. Front Chem 2020; 8:599064. [PMID: 33195108 PMCID: PMC7609521 DOI: 10.3389/fchem.2020.599064] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Halogen bonding has received a significant increase in attention in the past 20 years. An important part of this interest has centered on catalytic applications of halogen bonding. Halogen bond (XB) catalysis is still a developing field in organocatalysis, although XB catalysis has outgrown its proof of concept phase. The start of this year witnessed the publication of the first example of a purely XB-based enantioselective catalytic reaction. While the selectivity can be improved upon, there are already plenty of examples in which halogen bonds, among other interactions, play a crucial role in the outcome of highly enantioselective reactions. This paper will give an overview of the current state of the use of XBs in catalytic stereoselective processes.
Collapse
Affiliation(s)
| | - Tõnis Kanger
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
25
|
Uno H, Matsuzaki K, Shiro M, Shibata N. Design and Synthesis of a Chiral Halogen-Bond Donor with a Sp 3-Hybridized Carbon-Iodine Moiety in a Chiral Fluorobissulfonyl Scaffold. Molecules 2020; 25:molecules25194539. [PMID: 33022984 PMCID: PMC7583727 DOI: 10.3390/molecules25194539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022] Open
Abstract
The first example of a chiral halogen-bond donor with a sp3-hybridized carbon–iodine moiety in a fluorobissulfonyl scaffold is described. The binaphthyl backbone was designed as a chiral source and the chiral halogen-bond donor (R)-1 was synthesized from (R)-1,1′-binaphthol in 11 steps. An NMR titration experiment demonstrated that (R)-1 worked as a halogen-bond donor. The Mukaiyama aldol reaction and quinoline reduction were examined using (R)-1 as a catalyst to evaluate the asymmetric induction.
Collapse
Affiliation(s)
- Hiroto Uno
- Department of Nanopharmaceutical Sciences, Nagoya, Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan; (H.U.); (K.M.)
| | - Kohei Matsuzaki
- Department of Nanopharmaceutical Sciences, Nagoya, Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan; (H.U.); (K.M.)
| | - Motoo Shiro
- Rigaku Corporation, 3-9-12, Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan;
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya, Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan; (H.U.); (K.M.)
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua 321004, China
- Correspondence: ; Tel./Fax: +81-52-735-7543
| |
Collapse
|
26
|
A robust and tunable halogen bond organocatalyzed 2-deoxyglycosylation involving quantum tunneling. Nat Commun 2020; 11:4911. [PMID: 32999276 PMCID: PMC7527348 DOI: 10.1038/s41467-020-18595-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/26/2020] [Indexed: 11/10/2022] Open
Abstract
The development of noncovalent halogen bonding (XB) catalysis is rapidly gaining traction, as isolated reports documented better performance than the well-established hydrogen bonding thiourea catalysis. However, convincing cases allowing XB activation to be competitive in challenging bond formations are lacking. Herein, we report a robust XB catalyzed 2-deoxyglycosylation, featuring a biomimetic reaction network indicative of dynamic XB activation. Benchmarking studies uncovered an improved substrate tolerance compared to thiourea-catalyzed protocols. Kinetic investigations reveal an autoinductive sigmoidal kinetic profile, supporting an in situ amplification of a XB dependent active catalytic species. Kinetic isotopic effect measurements further support quantum tunneling in the rate determining step. Furthermore, we demonstrate XB catalysis tunability via a halogen swapping strategy, facilitating 2-deoxyribosylations of D-ribals. This protocol showcases the clear emergence of XB catalysis as a versatile activation mode in noncovalent organocatalysis, and as an important addition to the catalytic toolbox of chemical glycosylations. Halogen bonding (HB) catalysis is rapidly gaining momentum, however, cases of XB activation for challenging bonds formation are rare. Here, the authors show a robust XB catalyzed 2-deoxyglycosylation with broad scope and featuring a quantum tunneling phenomenon in the proton transfer rate determining step.
Collapse
|
27
|
Affiliation(s)
- Martin Breugst
- Department für Chemie Universität zu Köln Greinstraße 4 50939 Köln Germany
| | - Jonas J. Koenig
- Department für Chemie Universität zu Köln Greinstraße 4 50939 Köln Germany
| |
Collapse
|
28
|
Affiliation(s)
- Xuelei Liu
- Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong People's Republic of China 28592167
| | - Patrick H. Toy
- Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong People's Republic of China 28592167
| |
Collapse
|
29
|
Phosphine Oxides as Spectroscopic Halogen Bond Descriptors: IR and NMR Correlations with Interatomic Distances and Complexation Energy. Molecules 2020; 25:molecules25061406. [PMID: 32204523 PMCID: PMC7144381 DOI: 10.3390/molecules25061406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
An extensive series of 128 halogen-bonded complexes formed by trimethylphosphine oxide and various F-, Cl-, Br-, I- and At-containing molecules, ranging in energy from 0 to 124 kJ/mol, is studied by DFT calculations in vacuum. The results reveal correlations between R–X⋅⋅⋅O=PMe3 halogen bond energy ΔE, X⋅⋅⋅O distance r, halogen’s σ-hole size, QTAIM parameters at halogen bond critical point and changes of spectroscopic parameters of phosphine oxide upon complexation, such as 31P NMR chemical shift, ΔδP, and P=O stretching frequency, Δν. Some of the correlations are halogen-specific, i.e., different for F, Cl, Br, I and At, such as ΔE(r), while others are general, i.e., fulfilled for the whole set of complexes at once, such as ΔE(ΔδP). The proposed correlations could be used to estimate the halogen bond properties in disordered media (liquids, solutions, polymers, glasses) from the corresponding NMR and IR spectra.
Collapse
|
30
|
Voelkel MHH, Wonner P, Huber SM. Preorganization: A Powerful Tool in Intermolecular Halogen Bonding in Solution. ChemistryOpen 2020; 9:214-224. [PMID: 32071831 PMCID: PMC7011185 DOI: 10.1002/open.201900355] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/21/2020] [Indexed: 11/25/2022] Open
Abstract
Preorganization is a powerful tool in supramolecular chemistry which has been utilized successfully in intra- and intermolecular halogen bonding. In previous work, we had developed a bidentate bis(iodobenzimidazolium)-based halogen bond donor which featured a central trifluoromethyl substituent. This compound showed a markedly increased catalytic activity compared to unsubstituted bis(iodoimidazolium)-based Lewis acids, which could be explained either by electronic effects (the electron withdrawal by the fluorinated substituent) or by preorganization (the hindered rotation of the halogen bonding moieties). Herein, we systematically investigate the origin of this increased Lewis acidity via a comparison of the two types of compounds and their respective derivatives with or without the central trifluoromethyl group. Calorimetric measurements of halide complexations indicated that preorganization is the main reason for the higher halogen bonding strength. The performance of the catalysts in a series of benchmark reactions corroborates this finding.
Collapse
Affiliation(s)
- Martin H. H. Voelkel
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Patrick Wonner
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Stefan Matthias Huber
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
31
|
Nakamura T, Okuno K, Nishiyori R, Shirakawa S. Hydrogen‐Bonding Catalysis of Alkyl‐Onium Salts. Chem Asian J 2020; 15:463-472. [DOI: 10.1002/asia.201901652] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Takumi Nakamura
- Department of Environmental ScienceGraduate School of Fisheries and Environmental SciencesNagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Ken Okuno
- Department of Environmental ScienceGraduate School of Fisheries and Environmental SciencesNagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Ryuichi Nishiyori
- Department of Environmental ScienceGraduate School of Fisheries and Environmental SciencesNagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Seiji Shirakawa
- Department of Environmental ScienceGraduate School of Fisheries and Environmental SciencesNagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| |
Collapse
|
32
|
Xu X, Huang S, Zhang Z, Cao L, Yan X. Halogen-bonding-induced diverse aggregation of 4,5-diiodo-1,2,3-triazolium salts with different anions. Beilstein J Org Chem 2020; 16:78-87. [PMID: 32082427 PMCID: PMC7006493 DOI: 10.3762/bjoc.16.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/27/2019] [Indexed: 12/24/2022] Open
Abstract
The synthesis of 4,5-diiodo-1,3-dimesityl-1,2,3-triazolium salts with different anions have been developed. These triazolium salts show diverse aggregation via halogen bonding between C-I bonds and anions. Triazolium with halide anions exists as a tetramer with saddle conformation. Triazolium tetrafluoroborate exists as a trimer with Chinese lantern shape conformation. Triazolium trifluoroacetate and acetate exist as dimers, respectively, while the former shows boat conformation and the latter forms rectangle conformation. Triazolium salts form a linear polymer with polyiodide.
Collapse
Affiliation(s)
- Xingyu Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, People’s Republic of China
| | - Shiqing Huang
- Department of Chemistry, Renmin University of China, Beijing 100872, People’s Republic of China
| | - Zengyu Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, People’s Republic of China
| | - Lei Cao
- Department of Chemistry, Renmin University of China, Beijing 100872, People’s Republic of China
| | - Xiaoyu Yan
- Department of Chemistry, Renmin University of China, Beijing 100872, People’s Republic of China
| |
Collapse
|
33
|
Amer MM, Olaizola O, Carter J, Abas H, Clayden J. An Aliphatic Bischler-Napieralski Reaction: Dihydropyridones by Cyclocarbonylation of 3-Allylimidazolidin-4-ones. Org Lett 2020; 22:253-256. [PMID: 31846338 DOI: 10.1021/acs.orglett.9b04250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The N-chloroformylimidazolidinone derivative of enantiopure l-alanine was deprotonated to form an enolate and functionalized with a series of allylic halides. Treatment of the resulting carbamoyl chlorides with potassium iodide led to cyclization of the allylic substituent onto the carbonyl group in an intramolecular aliphatic Friedel-Crafts-type acylation that corresponds to an aliphatic Bischler-Napieralski reaction. The product 3,4-dihydropyridinones were amenable to further functionalization, and finally hydrolysis, to deliver a series of enantio-enriched pipecolic acid derivatives.
Collapse
Affiliation(s)
- Mostafa M Amer
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| | - Olatz Olaizola
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| | - Jennifer Carter
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| | - Hossay Abas
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| | - Jonathan Clayden
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| |
Collapse
|
34
|
Schendera E, Unkel LN, Huyen Quyen PP, Salkewitz G, Hoffmann F, Villinger A, Brasholz M. Visible-Light-Mediated Aerobic Tandem Dehydrogenative Povarov/Aromatization Reaction: Synthesis of Isocryptolepines. Chemistry 2020; 26:269-274. [PMID: 31553081 PMCID: PMC6973160 DOI: 10.1002/chem.201903921] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Indexed: 01/25/2023]
Abstract
A metal‐free, photoinduced aerobic tandem amine dehydrogenation/Povarov cyclization/aromatization reaction between N‐aryl glycine esters and indoles leads to tetracyclic 11H‐indolo[3,2‐c]quinolines under mild conditions and with high yields. The reaction can be performed by using molecular iodine along with visible light, or by combining an organic photoredox catalyst with a halide anion. Mechanistic studies reveal that product formation occurs through a combination of radical‐mediated oxidation steps with an iminium ion or N‐haloiminium ion [4+2]‐cycloaddition, and the N‐heterocyclic products constitute new analogues of the antiplasmodial natural alkaloid isocryptolepine.
Collapse
Affiliation(s)
- Eva Schendera
- Institute of Chemistry, Organic Chemistry, University of Rostock, Albert-Einstein-Strasse 3A, 18059, Rostock, Germany
| | - Lisa-Natascha Unkel
- Institute of Chemistry, Organic Chemistry, University of Rostock, Albert-Einstein-Strasse 3A, 18059, Rostock, Germany
| | - Phung Phan Huyen Quyen
- Institute of Chemistry, Organic Chemistry, University of Rostock, Albert-Einstein-Strasse 3A, 18059, Rostock, Germany
| | - Gwen Salkewitz
- Institute of Chemistry, Organic Chemistry, University of Rostock, Albert-Einstein-Strasse 3A, 18059, Rostock, Germany
| | - Frank Hoffmann
- Department of Chemistry, Institute of Inorganic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Alexander Villinger
- Institute of Chemistry, Inorganic Chemistry, University of Rostock, Albert-Einstein-Strasse 3A, 18059, Rostock, Germany
| | - Malte Brasholz
- Institute of Chemistry, Organic Chemistry, University of Rostock, Albert-Einstein-Strasse 3A, 18059, Rostock, Germany
| |
Collapse
|
35
|
Torita K, Haraguchi R, Morita Y, Kemmochi S, Komatsu T, Fukuzawa SI. Lewis acid–base synergistic catalysis of cationic halogen-bonding-donors with nucleophilic counter anions. Chem Commun (Camb) 2020; 56:9715-9718. [DOI: 10.1039/d0cc04013d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,3,4-Triaryl-5-iodotriazolium iodides have been developed as halogen-bonding based bifunctional catalysts for simultaneous activation of nucleophiles and electrophiles.
Collapse
Affiliation(s)
- Koki Torita
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Chuo University
- 1-13-27 Kasuga
- Bunkyo-ku
| | - Ryosuke Haraguchi
- Department of Applied Chemistry
- Faculty of Engineering
- Chiba Institute of Technology
- 2-17-1 Tsudanuma
- Narashino
| | - Yoshitsugu Morita
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Chuo University
- 1-13-27 Kasuga
- Bunkyo-ku
| | - Satoshi Kemmochi
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Chuo University
- 1-13-27 Kasuga
- Bunkyo-ku
| | - Teruyuki Komatsu
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Chuo University
- 1-13-27 Kasuga
- Bunkyo-ku
| | - Shin-ichi Fukuzawa
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Chuo University
- 1-13-27 Kasuga
- Bunkyo-ku
| |
Collapse
|
36
|
Yamanaka M, Shirakawa S, Mochizuki A, Nakamura T, Maruoka K. Trialkylsulfonium and Tetraalkylammonium Salts as Hydrogen-Bonding Catalysts in an Aza-Diels-Alder Reaction: Experimental and Computational Studies. HETEROCYCLES 2020. [DOI: 10.3987/com-19-s(f)48] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Bamberger J, Ostler F, Mancheño OG. Frontiers in Halogen and Chalcogen-Bond Donor Organocatalysis. ChemCatChem 2019; 11:5198-5211. [PMID: 31894187 PMCID: PMC6919929 DOI: 10.1002/cctc.201901215] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Indexed: 01/01/2023]
Abstract
Non-covalent molecular interactions on the basis of halogen and chalcogen bonding represent a promising, powerful catalytic activation mode. However, these "unusual" non-covalent interactions are typically employed in the solid state and scarcely exploited in catalysis. In recent years, an increased interest in halogen and chalcogen bonding has been awaken, as they provide profound characteristics that make them an appealing alternative to the well-explored hydrogen bonding. Being particularly relevant in the binding of "soft" substrates, the similar strength to hydrogen bonding interactions and its higher directionality allows for solution-phase applications with halogen and chalcogen bonding as the key interaction. In this mini-review, the special features, state-of-the-art and key examples of these so-called σ-hole interactions in the field of organocatalysis are presented.
Collapse
Affiliation(s)
- Julia Bamberger
- Organic Chemistry InstituteMünster UniversityCorrensstraße 40MünsterD-48149Germany
| | - Florian Ostler
- Organic Chemistry InstituteMünster UniversityCorrensstraße 40MünsterD-48149Germany
| | - Olga García Mancheño
- Organic Chemistry InstituteMünster UniversityCorrensstraße 40MünsterD-48149Germany
| |
Collapse
|
38
|
Liu X, Ma S, Toy PH. Halogen Bond-Catalyzed Friedel–Crafts Reactions of Aldehydes and Ketones Using a Bidentate Halogen Bond Donor Catalyst: Synthesis of Symmetrical Bis(indolyl)methanes. Org Lett 2019; 21:9212-9216. [DOI: 10.1021/acs.orglett.9b03578] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xuelei Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. of China
| | - Shuang Ma
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. of China
| | - Patrick H. Toy
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. of China
| |
Collapse
|
39
|
Filimonov VO, Dianova LN, Beryozkina TV, Mazur D, Beliaev NA, Volkova NN, Ilkin VG, Dehaen W, Lebedev AT, Bakulev VA. Water/Alkali-Catalyzed Reactions of Azides with 2-Cyanothioacetamides. Eco-Friendly Synthesis of Monocyclic and Bicyclic 1,2,3-Thiadiazole-4-carbimidamides and 5-Amino-1,2,3-triazole-4-carbothioamides. J Org Chem 2019; 84:13430-13446. [PMID: 31547663 DOI: 10.1021/acs.joc.9b01599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The reactions of thioamides with azides in water were studied. It was reliably shown that the reaction of 2-cyanothioacetamides 1 with various types of azides 2 in water in the presence of alkali presents an efficient, general, one-step, atom-economic, and eco-friendly method for the synthesis of 1,2,3-thiadiazol-4-carbimidamides 5 and 1,2,3-triazole-4-carbothioamides 4. This method can be extended to the one-pot reaction of sulfonyl chlorides and 6-chloropyrimidines 2'o with sodium azide, leading to final products in higher yields, that is, avoiding the isolation of unsafe sulfonyl azides. The method was furthermore applied to the reaction of N,N'-bis-(2-cyanothiocarbonyl)pyrazine 1h with sulfonyl azides to afford bicyclic 1,2,3-thiadiazoles 8 and 1,2,3-triazoles 9 connected via a 1,1'-piperazinyl linker. 2-Cyanothioacetamides 1 were also shown to react with aromatic azides in water in the presence of alkali to afford 1-aryl-5-amino-1,2,3-triazole-4-carbothioamides 11. In contrast to aromatic azides and similarly to sulfonyl azides, 6-azidopyrimidine-2,4-diones 2o-q react with cyanothioacetamides to form N-pyrimidin-6-yl-5-dialkylamino-1,2,3-thiadiazole-4-N-l-carbimidamides 12. A mechanism was proposed to rationalize the role of water in changing the reactivity of azides toward 2-cyanothioacetamides.
Collapse
Affiliation(s)
| | - Lidia N Dianova
- Ural Federal University , 19 Mira St. , Yekaterinburg 620002 , Russia
| | | | - Dmitrii Mazur
- Department of Chemistry , Lomonosov Moscow State University , Moscow 119991 , Russia
| | - Nikolai A Beliaev
- Ural Federal University , 19 Mira St. , Yekaterinburg 620002 , Russia
| | - Natalia N Volkova
- Ural Federal University , 19 Mira St. , Yekaterinburg 620002 , Russia
| | - Vladimir G Ilkin
- Ural Federal University , 19 Mira St. , Yekaterinburg 620002 , Russia
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , Leuven B-3001 , Belgium
| | - Albert T Lebedev
- Department of Chemistry , Lomonosov Moscow State University , Moscow 119991 , Russia
| | - Vasiliy A Bakulev
- Ural Federal University , 19 Mira St. , Yekaterinburg 620002 , Russia
| |
Collapse
|
40
|
Affiliation(s)
- Revannath L. Sutar
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| | - Stefan M. Huber
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| |
Collapse
|
41
|
Squitieri RA, Fitzpatrick KP, Jaworski AA, Scheidt KA. Synthesis and Evaluation of Azolium‐Based Halogen‐Bond Donors. Chemistry 2019; 25:10069-10073. [DOI: 10.1002/chem.201902298] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Richard A. Squitieri
- Department of ChemistryCenter for Molecular Innovation and Drug DiscoveryNorthwestern University, Silverman Hall Evanston Illinois 60208 USA
| | - Keegan P. Fitzpatrick
- Department of ChemistryCenter for Molecular Innovation and Drug DiscoveryNorthwestern University, Silverman Hall Evanston Illinois 60208 USA
| | - Ashley A. Jaworski
- Department of ChemistryCenter for Molecular Innovation and Drug DiscoveryNorthwestern University, Silverman Hall Evanston Illinois 60208 USA
| | - Karl A. Scheidt
- Department of ChemistryCenter for Molecular Innovation and Drug DiscoveryNorthwestern University, Silverman Hall Evanston Illinois 60208 USA
| |
Collapse
|
42
|
Ser CT, Yang H, Wong MW. Iodoimidazolinium-Catalyzed Reduction of Quinoline by Hantzsch Ester: Halogen Bond or Brønsted Acid Catalysis. J Org Chem 2019; 84:10338-10348. [DOI: 10.1021/acs.joc.9b01494] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Cher Tian Ser
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Hui Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
43
|
Peterson A, Kaasik M, Metsala A, Järving I, Adamson J, Kanger T. Tunable chiral triazole-based halogen bond donors: assessment of donor strength in solution with nitrogen-containing acceptors. RSC Adv 2019; 9:11718-11721. [PMID: 35517004 PMCID: PMC9063393 DOI: 10.1039/c9ra01692a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/04/2019] [Indexed: 12/15/2022] Open
Abstract
Strong halogen bond (XB) donors are needed for the activation of neutral substrates. We demonstrate that XB donor properties of iodo-triazoles can be significantly enhanced by quaternization in combination with varying the counterion and aromatic substituent, exemplified by association constants with quinuclidine as high as 1.1 × 104 M-1.
Collapse
Affiliation(s)
- Anna Peterson
- Chemical Physics Laboratory, National Institute of Chemical Physics and Biophysics Akadeemia tee 23 12618 Tallinn Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Mikk Kaasik
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Andrus Metsala
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Ivar Järving
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Jasper Adamson
- Chemical Physics Laboratory, National Institute of Chemical Physics and Biophysics Akadeemia tee 23 12618 Tallinn Estonia
| | - Tõnis Kanger
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| |
Collapse
|