1
|
Gwak S, Park JY, Cho M, Kwon HJ, Han H. Efficient and Inexpensive Synthesis of 15N-Labeled 2-Azido-1,3-dimethylimidazolinium Salts Using Na 15NO 2 Instead of Na 15NNN. ACS OMEGA 2024; 9:6556-6560. [PMID: 38371833 PMCID: PMC10870284 DOI: 10.1021/acsomega.3c07147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 02/20/2024]
Abstract
15N-Labeled azides are important probes for infrared and magnetic resonance spectroscopy and imaging. They can be synthesized by reaction of primary amines with a 15N-labeled diazo-transfer reagent. We present the synthesis of 15N-labeled 2-azido-1,3-dimethylimidazolinium salts 1 as a 15N-labeled diazo-transfer reagent. Nitrosation of 1,3-dimethylimidazolinium-2-yl hydrazine (2) with Na15NO2 under acidic conditions gave 1 as a 1:1 mixture of α- and γ-15N-labeled azides, α- and γ-1, rather than γ-1 alone. The isotopomeric mixture thus obtained was then subjected to the diazo-transfer reaction with primary amines 3 to afford azides 4 as a 1:1 mixture of β-15N-labeled azides β-4 and unlabeled ones 4'. The efficient and inexpensive synthesis of 1 as a 1:1 mixture of α- and γ-1 using Na15NO2 instead of Na15NNN facilitates their wide use as a 15N-labeled diazo-transfer reagent for preparing 15N-labeled azides as molecular probes.
Collapse
Affiliation(s)
- Sungduk Gwak
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Jun Young Park
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- Center
for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
| | - Minhaeng Cho
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- Center
for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
| | - Hyeok-Jun Kwon
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Hogyu Han
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
2
|
Vialon T, Sun H, Formon GJM, Galanopoulo P, Guibert C, Averseng F, Rager MN, Percot A, Guillaneuf Y, Van Zee NJ, Nicolaÿ R. Upcycling Polyolefin Blends into High-Performance Materials by Exploiting Azidotriazine Chemistry Using Reactive Extrusion. J Am Chem Soc 2024; 146:2673-2684. [PMID: 38238037 DOI: 10.1021/jacs.3c12303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The revalorization of incompatible polymer blends is a key obstacle in realizing a circular economy in the plastics industry. Polyolefin waste is particularly challenging because it is difficult to sort into its constituent components. Untreated blends of polyethylene and polypropylene typically exhibit poor mechanical properties that are suitable only for low-value applications. Herein, we disclose a simple azidotriazine-based grafting agent that enables polyolefin blends to be directly upcycled into high-performance materials by using reactive extrusion at industrially relevant processing temperatures. Based on a series of model experiments, the azidotriazine thermally decomposes to form a triplet nitrene species, which subsequently undergoes a complex mixture of grafting, oligomerization, and cross-linking reactions; strikingly, the oligomerization and cross-linking reactions proceed through the formation of nitrogen-nitrogen bonds. When applied to polyolefin blends during reactive extrusion, this combination of reactions leads to the generation of amorphous, phase-separated nanostructures that tend to exist at polymer-polymer interfaces. These nanostructures act as multivalent cross-linkers that reinforce the resulting material, leading to dramatically improved ductility compared with the untreated blends, along with high dimensional stability at high temperatures and excellent mechanical recyclability. We propose that this unique behavior is derived from the thermomechanically activated reversibility of the nitrogen-nitrogen bonds that make up the cross-linking structures. Finally, the scope of this chemistry is demonstrated by applying it to ternary polyolefin blends as well as postconsumer polyolefin feedstocks.
Collapse
Affiliation(s)
- Thomas Vialon
- Chimie Moléculaire, Macromoléculaire, Matériaux, ESPCI Paris, Université PSL, CNRS, 75005Paris ,France
| | - Huidi Sun
- Chimie Moléculaire, Macromoléculaire, Matériaux, ESPCI Paris, Université PSL, CNRS, 75005Paris ,France
| | - Georges J M Formon
- Chimie Moléculaire, Macromoléculaire, Matériaux, ESPCI Paris, Université PSL, CNRS, 75005Paris ,France
| | - Paul Galanopoulo
- Chimie Moléculaire, Macromoléculaire, Matériaux, ESPCI Paris, Université PSL, CNRS, 75005Paris ,France
| | - Clément Guibert
- Laboratoire de Réactivité de Surface, UMR 7197, Sorbonne Université, CNRS, 75005 Paris, France
| | - Frédéric Averseng
- Laboratoire de Réactivité de Surface, UMR 7197, Sorbonne Université, CNRS, 75005 Paris, France
| | - Marie-Noelle Rager
- NMR Facility, Chimie ParisTech, Université PSL, CNRS, 75005Paris ,France
| | - Aline Percot
- MONARIS, UMR 8233, Sorbonne Université, CNRS, 75005Paris ,France
| | - Yohann Guillaneuf
- Institut de Chimie Radicalaire UMR 7273,Aix-Marseille Université, CNRS, 13397Marseille ,France
| | - Nathan J Van Zee
- Chimie Moléculaire, Macromoléculaire, Matériaux, ESPCI Paris, Université PSL, CNRS, 75005Paris ,France
| | - Renaud Nicolaÿ
- Chimie Moléculaire, Macromoléculaire, Matériaux, ESPCI Paris, Université PSL, CNRS, 75005Paris ,France
| |
Collapse
|
3
|
Xu Z, DiBello M, Wang Z, Rose JA, Chen L, Li X, Herzon SB. Stereocontrolled Synthesis of the Fully Glycosylated Monomeric Unit of Lomaiviticin A. J Am Chem Soc 2022; 144:16199-16205. [PMID: 35998350 DOI: 10.1021/jacs.2c07631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a stereocontrolled synthesis of 3, the fully glycosylated monomeric unit of the dimeric cytotoxic bacterial metabolite (-)-lomaiviticin A (2). A novel strategy involving convergent, site- and stereoselective coupling of the β,γ-unsaturated ketone 6 and the naphthyl bromide 7 (92%, 15:1 diastereomeric ratio (dr)), followed by radical-based annulation and silyl ether cleavage, provided the tetracycle 5 (57% overall), which contains the carbon skeleton of the aglycon of 3. The β-linked 2,4,6-trideoxy-4-aminoglycoside l-pyrrolosamine was installed in 73% yield and with 15:1 β:α selectivity using a modified Koenigs-Knorr glycosylation. The diazo substituent was introduced via direct diazo transfer to an electron-rich benzoindene (4 → 27). The α-linked 2,6-dideoxyglycoside l-oleandrose was introduced by gold-catalyzed activation of an o-alkynyl glycosylbenzoate (75%, >20:1 α:β selectivity). A carefully orchestrated endgame sequence then provided efficient access to 3. Cell viability studies indicated that monomer 3 is not cytotoxic at concentrations up to 1 μM, providing conclusive evidence that the dimeric structure of (-)-lomaiviticin A (2) is required for cytotoxic effects. The preparation of 3 provides a foundation to complete the synthesis of (-)-lomaiviticin A (2) itself.
Collapse
Affiliation(s)
- Zhi Xu
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States
| | - Mikaela DiBello
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States
| | - Zechun Wang
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States
| | - John A Rose
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States
| | - Lei Chen
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States
| | - Xin Li
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States.,Departments of Pharmacology and Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut06520, United States
| |
Collapse
|
4
|
New non-symmetric azido-diacetylenic s-triazine monomer for polycycloaddition. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
O'Mahony RM, Lynch D, O'Callaghan KS, Collins SG, Maguire AR. Generation of Tosyl Azide in Continuous Flow Using an Azide Resin, and Telescoping with Diazo Transfer and Rhodium Acetate-Catalyzed O-H Insertion. Org Process Res Dev 2021; 25:2772-2785. [PMID: 34955628 PMCID: PMC8689650 DOI: 10.1021/acs.oprd.1c00377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 01/07/2023]
Abstract
Generation of tosyl azide 12 in acetonitrile in flow under water-free conditions using an azide resin and its use in diazo transfer to a series of aryl acetates are described. Successful telescoping with a rhodium acetate-catalyzed O-H insertion has been achieved, thereby transforming the aryl acetate 8 to α-hydroxy ester 10, a key intermediate in the synthesis of clopidogrel 11, without requiring isolation or handling of either tosyl azide 12 or α-aryl-α-diazoacetate 9, or indeed having significant amounts of either present at any point. Significantly, the solution of α-diazo ester 9 was sufficiently clean to progress directly to the rhodium acetate-catalyzed step without any detrimental impact on the efficiency of the O-H insertion. In addition, the rhodium acetate-catalyzed O-H insertion process is cleaner in flow than under traditional batch conditions. Use of the azide resin offers clear safety advantages and, in addition, this approach complements earlier protocols for the generation of tosyl azide 12 in flow; this protocol is especially useful with less acidic substrates.
Collapse
Affiliation(s)
- Rosella M O'Mahony
- School of Chemistry, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 YN60, Ireland
| | - Denis Lynch
- School of Chemistry, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 YN60, Ireland
| | - Katie S O'Callaghan
- School of Chemistry, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 YN60, Ireland
| | - Stuart G Collins
- School of Chemistry, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 YN60, Ireland
| | - Anita R Maguire
- School of Chemistry and School of Pharmacy, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 YN60, Ireland
| |
Collapse
|
6
|
Wagh MA, Maity R, Bhosale RJ, Semwal D, Tothadi S, Vaidhyanathan R, Sanjayan GJ. Three in One: Triple G-C-T Base-Coded Brahma Nucleobase Amino Acid: Synthesis, Peptide Formation, and Structural Features. J Org Chem 2021; 86:15689-15694. [PMID: 34623156 DOI: 10.1021/acs.joc.1c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This note reports the synthesis and peptide formation of a novel triple G-C-T nucleobase amino acid (NBA) building block featuring three recognition faces: DDA (G mimic), DAA (C mimic), and ADA (T mimic). Readily obtainable in multigram scale in a remarkably easy one-step reaction, this unique NBA building block offers scope for wide ranging applications for nucleic acid recognition and nucleic acid peptide/protein interaction studies.
Collapse
Affiliation(s)
- Mahendra A Wagh
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Rahul Maity
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Dr Homi Bhabha Road Pashan, Pune 411008, India
| | - Rohit J Bhosale
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road Pashan, Pune 411008, India
| | - Divyam Semwal
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road Pashan, Pune 411008, India
| | - Srinu Tothadi
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road Pashan, Pune 411008, India
| | - Ramanathan Vaidhyanathan
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Dr Homi Bhabha Road Pashan, Pune 411008, India
| | - Gangadhar J Sanjayan
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
7
|
Muravyev NV, Zakharov VV, Korsounskii BL, Monogarov KA. Delving into Autocatalytic Liquid-State Thermal Decomposition of Novel Energetic 1,3,5-Triazines with Azido, Trinitroethyl, and Nitramino Groups. J Phys Chem B 2020; 124:11197-11206. [DOI: 10.1021/acs.jpcb.0c08259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nikita V. Muravyev
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119991 Moscow, Russia
| | - Viktor V. Zakharov
- Institute of Problems of Chemical Physics of Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Boris L. Korsounskii
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119991 Moscow, Russia
- Institute of Problems of Chemical Physics of Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Konstantin A. Monogarov
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119991 Moscow, Russia
| |
Collapse
|
8
|
Dallaston MA, Houston SD, Williams CM. Cubane, Bicyclo[1.1.1]pentane and Bicyclo[2.2.2]octane: Impact and Thermal Sensitiveness of Carboxyl-, Hydroxymethyl- and Iodo-substituents. Chemistry 2020; 26:11966-11970. [PMID: 32820575 DOI: 10.1002/chem.202001658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/22/2020] [Indexed: 12/21/2022]
Abstract
With the burgeoning interest in cage motifs for bioactive molecule discovery, and the recent disclosure of 1,4-cubane-dicarboxylic acid impact sensitivity, more research into the safety profiles of cage scaffolds is required. Therefore, the impact sensitivity and thermal decomposition behavior of judiciously selected starting materials and synthetic intermediates of cubane, bicyclo[1.1.1]pentane (BCP), and bicyclo[2.2.2]octane (BCO) were evaluated via hammer test and sealed cell differential scanning calorimetry, respectively. Iodo-substituted systems were found to be more impact sensitive, whereas hydroxymethyl substitution led to more rapid thermodecomposition. Cubane was more likely to be impact sensitive with these substituents, followed by BCP, whereas all BCOs were unresponsive. The majority of derivatives were placed substantially above Yoshida thresholds-a computational indicator of sensitivity.
Collapse
Affiliation(s)
- Madeleine A Dallaston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Sevan D Houston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
9
|
Green SP, Wheelhouse KM, Payne AD, Hallett JP, Miller PW, Bull JA. On the Use of Differential Scanning Calorimetry for Thermal Hazard Assessment of New Chemistry: Avoiding Explosive Mistakes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sebastian P. Green
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus, Wood Lane London W12 0BZ UK
- Department of Chemical Engineering Imperial College London South Kensington Campus, Exhibition Road London SW7 2AZ UK
| | - Katherine M. Wheelhouse
- Chemical Development Product Development & Supply GlaxoSmithKline GSK Medicines Research Centre Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Andrew D. Payne
- Process Safety Clinical Supply Chain GlaxoSmithKline GSK Medicines Research Centre Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Jason P. Hallett
- Department of Chemical Engineering Imperial College London South Kensington Campus, Exhibition Road London SW7 2AZ UK
| | - Philip W. Miller
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus, Wood Lane London W12 0BZ UK
| | - James A. Bull
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus, Wood Lane London W12 0BZ UK
| |
Collapse
|
10
|
Green SP, Wheelhouse KM, Payne AD, Hallett JP, Miller PW, Bull JA. On the Use of Differential Scanning Calorimetry for Thermal Hazard Assessment of New Chemistry: Avoiding Explosive Mistakes. Angew Chem Int Ed Engl 2020; 59:15798-15802. [PMID: 32893978 DOI: 10.1002/anie.202007028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 01/05/2023]
Abstract
Differential scanning calorimetry (DSC) is increasingly used as evidence to support a favourable safety profile of novel chemistry, or to highlight the need for caution. DSC enables preliminary assessment of the thermal hazards of a potentially energetic compound. However, unlike other standard characterisation methods, which have well defined formats for reporting data, the current reporting of DSC results for thermal hazard assessment has shown concerning trends. Around half of all results in 2019 did not include experimental details required to replicate the procedure. Furthermore, analysis for thermal hazard assessment is often only conducted in unsealed crucibles, which could lead to misleading results and dangerously incorrect conclusions. We highlight the specific issues with DSC analysis of hazardous compounds currently in the organic chemistry literature and provide simple "best practice" guidelines which will give chemists confidence in reported DSC results and the conclusions drawn from them.
Collapse
Affiliation(s)
- Sebastian P Green
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK.,Department of Chemical Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK
| | - Katherine M Wheelhouse
- Chemical Development, Product Development & Supply, GlaxoSmithKline, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Andrew D Payne
- Process Safety, Clinical Supply Chain, GlaxoSmithKline, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Jason P Hallett
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK
| | - Philip W Miller
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - James A Bull
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| |
Collapse
|
11
|
Green S, Wheelhouse KM, Payne AD, Hallett JP, Miller PW, Bull JA. Thermal Stability and Explosive Hazard Assessment of Diazo Compounds and Diazo Transfer Reagents. Org Process Res Dev 2020; 24:67-84. [PMID: 31983869 PMCID: PMC6972035 DOI: 10.1021/acs.oprd.9b00422] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 11/29/2022]
Abstract
Despite their wide use in academia as metal-carbene precursors, diazo compounds are often avoided in industry owing to concerns over their instability, exothermic decomposition, and potential explosive behavior. The stability of sulfonyl azides and other diazo transfer reagents is relatively well understood, but there is little reliable data available for diazo compounds. This work first collates available sensitivity and thermal analysis data for diazo transfer reagents and diazo compounds to act as an accessible reference resource. Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and accelerating rate calorimetry (ARC) data for the model donor/acceptor diazo compound ethyl (phenyl)diazoacetate are presented. We also present a rigorous DSC dataset with 43 other diazo compounds, enabling direct comparison to other energetic materials to provide a clear reference work to the academic and industrial chemistry communities. Interestingly, there is a wide range of onset temperatures (T onset) for this series of compounds, which varied between 75 and 160 °C. The thermal stability variation depends on the electronic effect of substituents and the amount of charge delocalization. A statistical model is demonstrated to predict the thermal stability of differently substituted phenyl diazoacetates. A maximum recommended process temperature (T D24) to avoid decomposition is estimated for selected diazo compounds. The average enthalpy of decomposition (ΔH D) for diazo compounds without other energetic functional groups is -102 kJ mol-1. Several diazo transfer reagents are analyzed using the same DSC protocol and found to have higher thermal stability, which is in general agreement with the reported values. For sulfonyl azide reagents, an average ΔH D of -201 kJ mol-1 is observed. High-quality thermal data from ARC experiments shows the initiation of decomposition for ethyl (phenyl)diazoacetate to be 60 °C, compared to that of 100 °C for the common diazo transfer reagent p-acetamidobenzenesulfonyl azide (p-ABSA). The Yoshida correlation is applied to DSC data for each diazo compound to provide an indication of both their impact sensitivity (IS) and explosivity. As a neat substance, none of the diazo compounds tested are predicted to be explosive, but many (particularly donor/acceptor diazo compounds) are predicted to be impact-sensitive. It is therefore recommended that manipulation, agitation, and other processing of neat diazo compounds are conducted with due care to avoid impacts, particularly in large quantities. The full dataset is presented to inform chemists of the nature and magnitude of hazards when using diazo compounds and diazo transfer reagents. Given the demonstrated potential for rapid heat generation and gas evolution, adequate temperature control and cautious addition of reagents that begin a reaction are strongly recommended when conducting reactions with diazo compounds.
Collapse
Affiliation(s)
- Sebastian
P. Green
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K.
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, Exhibition Road, London SW7 2AZ, U.K.
| | - Katherine M. Wheelhouse
- API Chemistry, Product Development & Supply and Process Safety,
Pilot Plant Operations, GlaxoSmithKline,
GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Andrew D. Payne
- API Chemistry, Product Development & Supply and Process Safety,
Pilot Plant Operations, GlaxoSmithKline,
GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Jason P. Hallett
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, Exhibition Road, London SW7 2AZ, U.K.
| | - Philip W. Miller
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K.
| | - James A. Bull
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K.
| |
Collapse
|