1
|
Jackson SA, Duan M, Zhang P, Ihua MW, Stengel DB, Duan D, Dobson ADW. Isolation, identification, and biochemical characterization of a novel bifunctional phosphomannomutase/phosphoglucomutase from the metagenome of the brown alga Laminaria digitata. Front Microbiol 2022; 13:1000634. [PMID: 36212884 PMCID: PMC9537760 DOI: 10.3389/fmicb.2022.1000634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Macroalgae host diverse epiphytic bacterial communities with potential symbiotic roles including important roles influencing morphogenesis and growth of the host, nutrient exchange, and protection of the host from pathogens. Macroalgal cell wall structures, exudates, and intra-cellular environments possess numerous complex and valuable carbohydrates such as cellulose, hemi-cellulose, mannans, alginates, fucoidans, and laminarin. Bacterial colonizers of macroalgae are important carbon cyclers, acquiring nutrition from living macroalgae and also from decaying macroalgae. Seaweed epiphytic communities are a rich source of diverse carbohydrate-active enzymes which may have useful applications in industrial bioprocessing. With this in mind, we constructed a large insert fosmid clone library from the metagenome of Laminaria digitata (Ochrophyta) in which decay was induced. Subsequent sequencing of a fosmid clone insert revealed the presence of a gene encoding a bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM) enzyme 10L6AlgC, closely related to a protein from the halophilic marine bacterium, Cobetia sp. 10L6AlgC was subsequently heterologously expressed in Escherichia coli and biochemically characterized. The enzyme was found to possess both PMM and PGM activity, which had temperature and pH optima of 45°C and 8.0, respectively; for both activities. The PMM activity had a K m of 2.229 mM and V max of 29.35 mM min-1 mg-1, while the PGM activity had a K m of 0.5314 mM and a V max of 644.7 mM min-1 mg-1. Overall characterization of the enzyme including the above parameters as well as the influence of various divalent cations on these activities revealed that 10L6AlgC has a unique biochemical profile when compared to previously characterized PMM/PGM bifunctional enzymes. Thus 10L6AlgC may find utility in enzyme-based production of biochemicals with different potential industrial applications, in which other bacterial PMM/PGMs have previously been used such as in the production of low-calorie sweeteners in the food industry.
Collapse
Affiliation(s)
- Stephen A. Jackson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Maohang Duan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Pengyan Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Maureen W. Ihua
- School of Microbiology, University College Cork, Cork, Ireland
| | - Dagmar B. Stengel
- Botany and Plant Science, School of Natural Sciences, Ryan Institute for Environmental, Marine and Energy Research, University of Galway, Galway, Ireland
| | - Delin Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Yan K, Stanley M, Kowalski B, Raimi OG, Ferenbach AT, Wei P, Fang W, van Aalten DMF. Genetic validation of Aspergillus fumigatus phosphoglucomutase as a viable therapeutic target in invasive aspergillosis. J Biol Chem 2022; 298:102003. [PMID: 35504355 PMCID: PMC9168620 DOI: 10.1016/j.jbc.2022.102003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/09/2023] Open
Abstract
Aspergillus fumigatus is the causative agent of invasive aspergillosis, an infection with mortality rates of up to 50%. The glucan-rich cell wall of A. fumigatus is a protective structure that is absent from human cells and is a potential target for antifungal treatments. Glucan is synthesized from the donor uridine diphosphate glucose, with the conversion of glucose-6-phosphate to glucose-1-phosphate by the enzyme phosphoglucomutase (PGM) representing a key step in its biosynthesis. Here, we explore the possibility of selectively targeting A. fumigatus PGM (AfPGM) as an antifungal treatment strategy. Using a promoter replacement strategy, we constructed a conditional pgm mutant and revealed that pgm is required for A. fumigatus growth and cell wall integrity. In addition, using a fragment screen, we identified the thiol-reactive compound isothiazolone fragment of PGM as targeting a cysteine residue not conserved in the human ortholog. Furthermore, through scaffold exploration, we synthesized a para-aryl derivative (ISFP10) and demonstrated that it inhibits AfPGM with an IC50 of 2 μM and exhibits 50-fold selectivity over the human enzyme. Taken together, our data provide genetic validation of PGM as a therapeutic target and suggest new avenues for inhibiting AfPGM using covalent inhibitors that could serve as tools for chemical validation.
Collapse
Affiliation(s)
- Kaizhou Yan
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mathew Stanley
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Bartosz Kowalski
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Olawale G Raimi
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Andrew T Ferenbach
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Pingzhen Wei
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Wenxia Fang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
3
|
Frasse PM, Miller JJ, Polino AJ, Soleimani E, Zhu JS, Jakeman DL, Jez JM, Goldberg DE, Odom John AR. Enzymatic and structural characterization of HAD5, an essential phosphomannomutase of malaria-causing parasites. J Biol Chem 2022; 298:101550. [PMID: 34973333 PMCID: PMC8808168 DOI: 10.1016/j.jbc.2021.101550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/05/2022] Open
Abstract
The malaria-causing parasite Plasmodium falciparum is responsible for over 200 million infections and 400,000 deaths per year. At multiple stages during its complex life cycle, P. falciparum expresses several essential proteins tethered to its surface by glycosylphosphatidylinositol (GPI) anchors, which are critical for biological processes such as parasite egress and reinvasion of host red blood cells. Targeting this pathway therapeutically has the potential to broadly impact parasite development across several life stages. Here, we characterize an upstream component of parasite GPI anchor biosynthesis, the putative phosphomannomutase (PMM) (EC 5.4.2.8), HAD5 (PF3D7_1017400). We confirmed the PMM and phosphoglucomutase activities of purified recombinant HAD5 by developing novel linked enzyme biochemical assays. By regulating the expression of HAD5 in transgenic parasites with a TetR-DOZI-inducible knockdown system, we demonstrated that HAD5 is required for malaria parasite egress and erythrocyte reinvasion, and we assessed the role of HAD5 in GPI anchor synthesis by autoradiography of radiolabeled glucosamine and thin layer chromatography. Finally, we determined the three-dimensional X-ray crystal structure of HAD5 and identified a substrate analog that specifically inhibits HAD5 compared to orthologous human PMMs in a time-dependent manner. These findings demonstrate that the GPI anchor biosynthesis pathway is exceptionally sensitive to inhibition in parasites and that HAD5 has potential as a specific, multistage antimalarial target.
Collapse
Affiliation(s)
- Philip M Frasse
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Justin J Miller
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Alexander J Polino
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ebrahim Soleimani
- College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Chemistry, Razi University, Kermanshah, Iran
| | - Jian-She Zhu
- College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David L Jakeman
- College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Audrey R Odom John
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
4
|
The Effects of HP0044 and HP1275 Knockout Mutations on the Structure and Function of Lipopolysaccharide in Helicobacter pylori Strain 26695. Biomedicines 2022; 10:biomedicines10010145. [PMID: 35052824 PMCID: PMC8773439 DOI: 10.3390/biomedicines10010145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori infection is associated with several gastric diseases, including gastritis, peptic ulcer, gastric adenocarcinoma and mucosa-associated lymphatic tissue (MALT) lymphoma. Due to the prevalence and severeness of H. pylori infection, a thorough understanding of this pathogen is necessary. Lipopolysaccharide, one of the major virulence factors of H. pylori, can exert immunomodulating and immunostimulating functions on the host. In this study, the HP0044 and HP1275 genes were under investigation. These two genes potentially encode GDP-D-mannose dehydratase (GMD) and phosphomannomutase (PMM)/phosphoglucomutase (PGM), respectively, and are involved in the biosynthesis of fucose. HP0044 and HP1275 knockout mutants were generated; both mutants displayed a truncated LPS, suggesting that the encoded enzymes are not only involved in fucose production but are also important for LPS construction. In addition, these two gene knockout mutants exhibited retarded growth, increased surface hydrophobicity and autoaggregation as well as being more sensitive to the detergent SDS and the antibiotic novobiocin. Furthermore, the LPS-defective mutants also had significantly reduced bacterial infection, adhesion and internalization in the in vitro cell line model. Moreover, disruptions of the HP0044 and HP1275 genes in H. pylori altered protein sorting into outer membrane vesicles. The critical roles of HP0044 and HP1275 in LPS biosynthesis, bacterial fitness and pathogenesis make them attractive candidates for drug inventions against H. pylori infection.
Collapse
|
5
|
Handling Several Sugars at a Time: a Case Study of Xyloglucan Utilization by Ruminiclostridium cellulolyticum. mBio 2021; 12:e0220621. [PMID: 34749527 PMCID: PMC8576529 DOI: 10.1128/mbio.02206-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xyloglucan utilization by Ruminiclostridium cellulolyticum was formerly shown to imply the uptake of large xylogluco-oligosaccharides, followed by cytosolic depolymerization into glucose, galactose, xylose, and cellobiose. This raises the question of how the anaerobic bacterium manages the simultaneous presence of multiple sugars. Using genetic and biochemical approaches targeting the corresponding metabolic pathways, we observed that, surprisingly, all sugars are catabolized, collectively, but glucose consumption is prioritized. Most selected enzymes display unusual features, especially the GTP-dependent hexokinase of glycolysis, which appeared reversible and crucial for xyloglucan utilization. In contrast, mutant strains lacking either galactokinase, cellobiose-phosphorylase, or xylulokinase still catabolize xyloglucan but display variably altered growth. Furthermore, the xylogluco-oligosaccharide depolymerization process appeared connected to the downstream pathways through an intricate network of competitive and noncompetitive inhibitions. Altogether, our data indicate that xyloglucan utilization by R. cellulolyticum relies on an energy-saving central carbon metabolism deviating from current bacterial models, which efficiently prevents carbon overflow. IMPORTANCE The study of the decomposition of recalcitrant plant biomass is of great interest as the limiting step of terrestrial carbon cycle and to produce plant-derived valuable chemicals and energy. While extracellular cellulose degradation and catabolism have been studied in detail, few publications describe the complete metabolism of hemicelluloses and, to date, the published models are limited to the extracellular degradation and sequential entry of simple sugars. Here, we describe how the model anaerobic bacterium Ruminiclostridium cellulolyticum deals with the synchronous intracellular release of glucose, galactose, xylose, and cellobiose upon cytosolic depolymerization of imported xyloglucan oligosaccharides. The described novel metabolic strategy involves the simultaneous activity of different metabolic pathways coupled to a network of inhibitions controlling the carbon flux and is distinct from the ubiquitously observed sequential uptake and metabolism of carbohydrates known as the diauxic shift. Our results highlight the diversity of cellular responses related to a complex environment.
Collapse
|
6
|
Linclau B, Ardá A, Reichardt NC, Sollogoub M, Unione L, Vincent SP, Jiménez-Barbero J. Fluorinated carbohydrates as chemical probes for molecular recognition studies. Current status and perspectives. Chem Soc Rev 2021; 49:3863-3888. [PMID: 32520059 DOI: 10.1039/c9cs00099b] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review provides an extensive summary of the effects of carbohydrate fluorination with regard to changes in physical, chemical and biological properties with respect to regular saccharides. The specific structural, conformational, stability, reactivity and interaction features of fluorinated sugars are described, as well as their applications as probes and in chemical biology.
Collapse
Affiliation(s)
- Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, Southampton SO171BJ, UK
| | - Ana Ardá
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain.
| | | | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Luca Unione
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Stéphane P Vincent
- Department of Chemistry, Laboratory of Bio-organic Chemistry, University of Namur (UNamur), B-5000 Namur, Belgium
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain. and Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain and Department of Organic Chemistry II, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
7
|
Stiers KM, Hansen RP, Daghlas BA, Mason KN, Zhu JS, Jakeman DL, Beamer LJ. A missense variant remote from the active site impairs stability of human phosphoglucomutase 1. J Inherit Metab Dis 2020; 43:861-870. [PMID: 32057119 DOI: 10.1002/jimd.12222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022]
Abstract
Missense variants of human phosphoglucomutase 1 (PGM1) cause the inherited metabolic disease known as PGM1 deficiency. This condition is categorised as both a glycogen storage disease and a congenital disorder of glycosylation. Approximately 20 missense variants of PGM1 are linked to PGM1 deficiency, and biochemical studies have suggested that they fall into two general categories: those affecting the active site and catalytic efficiency, and those that appear to impair protein folding and/or stability. In this study, we characterise a novel variant of Arg422, a residue distal from the active site of PGM1 and the site of a previously identified disease-related variant (Arg422Trp). In prior studies, the R422W variant was found to produce insoluble protein in a recombinant expression system, precluding further in vitro characterisation. Here we investigate an alternative variant of this residue, Arg422Gln, which is amenable to experimental characterisation presumably due to its more conservative physicochemical substitution. Biochemical, crystallographic, and computational studies of R422Q establish that this variant causes only minor changes in catalytic efficiency and 3D structure, but is nonetheless dramatically reduced in stability. Unexpectedly, binding of a substrate analog is found to further destabilise the protein, in contrast to its stabilising effect on wild-type PGM1 and several other missense variants. This work establishes Arg422 as a lynchpin residue for the stability of PGM1 and supports the impairment of protein stability as a pathomechanism for variants that cause PGM1 deficiency. SYNOPSIS: Biochemical and structural studies of a missense variant far from the active site of human PGM1 identify a residue with a key role in enzyme stability.
Collapse
Affiliation(s)
- Kyle M Stiers
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Reed P Hansen
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Bana A Daghlas
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Kelly N Mason
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Jian-She Zhu
- College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David L Jakeman
- College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Lesa J Beamer
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|