1
|
Jiang L, Tang Y, Li S, Peng X, Saffar Andaloussi R, Chen XY. Visible Light-Driven Metal- and Photocatalyst-Free Synthesis of β-Trifluoromethylated Enamines via Trifluoromethyl Thianthrenium Salts. Chem Asian J 2024:e202401129. [PMID: 39469779 DOI: 10.1002/asia.202401129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
A novel protocol for the visible-light-driven synthesis of β-trifluoromethylated enamines has been developed, which operates without the use of transition metals or any photocatalysts, utilizing trifluoromethylthiosulfonium salts as the source of trifluoromethyl groups under mild conditions. According to this new protocol, more than 40 products have been prepared in moderate to good yields. In addition to eliminating the need for expensive or toxic transition metals and photocatalysts, this new methodology proves its potential scalability through air-stability, the use of safe and readily available reagents, a two-step one-pot procedure, and effective gram-scale reactions. This innovative approach not only demonstrates promise for green chemical synthesis but also offers a new pathway for the advancement of fluorine chemistry in sustainable organic synthesis.
Collapse
Affiliation(s)
- Liang Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
| | - Yisong Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
- School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510275, China
| | - Shaxuan Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
| | - Xing Peng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
| | - Rim Saffar Andaloussi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
| | - Xiao Yun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
| |
Collapse
|
2
|
Veth L, Windhorst AD, Vugts DJ. [ 18F]Trifluoroiodomethane - Enabling Photoredox-mediated Radical [ 18F]Trifluoromethylation for Positron Emission Tomography. Angew Chem Int Ed Engl 2024:e202416901. [PMID: 39349368 DOI: 10.1002/anie.202416901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
The development of new tracers for positron emission tomography (PET) is highly dependent on the available synthetic tools for their radiosynthesis. Herein, we present the radiosynthesis and application of [18F]trifluoroiodomethane - the first reagent for broad scope radical [18F]trifluoromethylation chemistry in high molar activity. CF2 18FI can be prepared from [18F]fluoroform with 67±5 % AY and >99 % RCP. Its synthetic utility is demonstrated by the radiosynthesis of previously unprecedented 18F-labeled α-trifluoromethyl ketones and 18F-labeled trifluoromethyl sulfides, important motifs that are present in a range of bioactive compounds. Both protocols are Ru- and photo-mediated and proceed under mild reaction conditions. They show good functional group tolerance evidenced by the respective reaction scopes and make use of easily obtainable starting materials. The products can be isolated in 8.3-11.1 GBq/μmol (starting from ca. 5 GBq [18F]fluoride). The applicability to PET tracer synthesis is shown by the radiolabeling of bioactive compounds, such as derivatives of probenecid and febuxostat. In a broader context, this work opens the door to the utilization of radical [18F]trifluoromethylation chemistry for the radiolabeling of PET tracers in high molar activity.
Collapse
Affiliation(s)
- Lukas Veth
- Dept. of Radiology and Nuclear Medicine Amsterdam UMC, location Vrije Universiteit, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Albert D Windhorst
- Dept. of Radiology and Nuclear Medicine Amsterdam UMC, location Vrije Universiteit, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Danielle J Vugts
- Dept. of Radiology and Nuclear Medicine Amsterdam UMC, location Vrije Universiteit, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Zhao X, Zhong B, Dong L, Zhang YS, Luo HT, Yang JD, Cheng JP. Hydroxylamine-Mediated C(sp 2)-H Trifluoromethylation of Terminal Alkenes. Chemistry 2024; 30:e202400995. [PMID: 38600034 DOI: 10.1002/chem.202400995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/12/2024]
Abstract
Introduction of the trifluoromethyl (CF3) group into organic compounds has garnered substantial interest because of its significant role in pharmaceuticals and agrochemicals. Here, we report a hydroxylamine-mediated radical process for C(sp2)-H trifluoromethylation of terminal alkenes. The reaction shows good reactivity, impressive E/Z selectivity (up to >20 : 1), and broad functional group compatibility. Expansion of this approach to perfluoroalkylation and late-stage trifluoromethylation of bioactive molecules demonstrates its promising application potential. Mechanistic studies suggest that the reaction follows a radical addition and subsequent elimination pathway.
Collapse
Affiliation(s)
- Xiao Zhao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bing Zhong
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Likun Dong
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu-Shan Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hai-Tian Luo
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jin-Dong Yang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Jin-Pei Cheng
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
4
|
Li QY, Lambert EC, Kaur R, Hammer NI, Delcamp JH. Symmetric dicyanobenzothiadiazole (DCBT) dyes with a 1.5 eV excited state reduction potential range. RSC Adv 2024; 14:6521-6531. [PMID: 38390512 PMCID: PMC10880648 DOI: 10.1039/d3ra06575h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Strong molecular photooxidants are important in many disciplines including organic synthesis and renewable energy. In these fields, strongly oxidizing chromophores are employed to drive various transformations from challenging bond formations to energy storage systems. A range of photooxidant strengths are needed to drive these processes. A series of 8 symmetrically bisarylated 5,6-dicyano[2,1,3]benzothiadiazole (DCBT) dyes were studied for their tunability toward breadth of light absorption and photooxidant strength. The dye oxidation strength and light absorption tunability is the result of appending various aryl substituents on the periphery of the DCBT core which shows remarkable tunability of the final chromophore. The dyes are studied via steady-state absorption and emission, time-correlated single photon counting, computational analysis, and cyclic voltammetry. In changing the peripheral aryl substituents via electronics, sterics, and π-conjugation length, a series of dyes are arrived at with a dramatic 1.5 eV range in oxidizing strength and >200 nm (0.95 eV) absorption maxima tunability. Furthermore, two dyes in the series exhibit strong oxidizing strength while still approaching red light absorbance (>650 nm onset) which provides unique opportunities for the use of lower energy light to affect chemical transformations. Ultimately, this series provides options for photooxidations that allow for energetic tuning and selectivity for a given chemical transformation.
Collapse
Affiliation(s)
- Qing Yun Li
- Department of Chemistry and Biochemistry, University of Mississippi University, 322 Coulter Hall MS 38677 USA
| | - Ethan C Lambert
- Department of Chemistry and Biochemistry, University of Mississippi University, 322 Coulter Hall MS 38677 USA
| | - Ravinder Kaur
- Department of Chemistry and Biochemistry, University of Mississippi University, 322 Coulter Hall MS 38677 USA
| | - Nathan I Hammer
- Department of Chemistry and Biochemistry, University of Mississippi University, 322 Coulter Hall MS 38677 USA
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi University, 322 Coulter Hall MS 38677 USA
- Materials and Manufacturing Directorate, Air Force Research Laboratory 2230 Tenth Street, Wright-Patterson AFB OH 45433 USA
| |
Collapse
|
5
|
Lin D, Coe M, Krishnamurti V, Ispizua-Rodriguez X, Surya Prakash GK. Recent Advances in Visible Light-Mediated Radical Fluoro-alkylation, -alkoxylation, -alkylthiolation, -alkylselenolation, and -alkylamination. CHEM REC 2023; 23:e202300104. [PMID: 37212421 DOI: 10.1002/tcr.202300104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Indexed: 05/23/2023]
Abstract
In the last few years, many reagents and protocols have been developed to allow for the efficient fluorofunctionalization of a diverse set of scaffolds ranging from alkanes, alkenes, alkynes, and (hetero)arenes. The concomitant rise of organofluorine chemistry and visible light-mediated synthesis have synergistically expanded the fields and have mutually benefitted from developments in both fields. In this context, visible light driven formations of radicals containing fluorine have been a major focus for the discovery of new bioactive compounds. This review details the recent advances and progress made in visible light-mediated fluoroalkylation and heteroatom centered radical generation.
Collapse
Affiliation(s)
- Daniel Lin
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Matthew Coe
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Vinayak Krishnamurti
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Xanath Ispizua-Rodriguez
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| |
Collapse
|
6
|
Hyeon Ka C, Kim S, Jin Cho E. Visible Light-Induced Metal-Free Fluoroalkylations. CHEM REC 2023; 23:e202300036. [PMID: 36942971 DOI: 10.1002/tcr.202300036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Fluoroalkylation is a crucial synthetic process that enables the modification of molecules with fluoroalkyl groups, which can enhance the properties of compounds and have potential applications in medicine and materials science. The utilization of visible light-induced, metal-free methods is of particular importance as it provides an environmentally friendly alternative to traditional methods and eliminates the potential risks associated with metal-catalyst toxicity. This Account describes our studies on visible light-induced, metal-free fluoroalkylation processes, which include the use of organic photocatalysts or EDA complexes. We have utilized organophotocatalysts such as Nile red, tri(9-anthryl)borane, and an indole-based tetracyclic complex, as well as catalyst-free EDA chemistry through photoactive halogen bond formation or an unconventional transient ternary complex formation with nucleophilic fluoroalkyl source. A variety of π-systems including arenes/heteroarenes, alkenes, and alkynes have been successfully fluoroalkylated under the developed reaction conditions.
Collapse
Affiliation(s)
- Cheol Hyeon Ka
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Seoyeon Kim
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| |
Collapse
|
7
|
Wang H, Sun X, Linghu C, Deng Y, Wang Y, Wei C, Wang J, Zhang L. Catalyst-free direct C H trifluoromethylation of indoles with Togni’s reagent. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
8
|
Chernov GI, Levin VV, Dilman AD. Photocatalytic reactions of fluoroalkyl iodides with alkenes. Russ Chem Bull 2023. [DOI: 10.1007/s11172-023-3714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
9
|
Tang L, Lv G, Fu Y, Chang XP, Cheng R, Wang L, Zhou Q. Bifunctional 1,8-Diazabicyclo[5.4.0]undec-7-ene for Visible Light-Induced Heck-Type Perfluoroalkylation of Alkenes. J Org Chem 2022; 87:14763-14777. [DOI: 10.1021/acs.joc.2c02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
- China Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang, Henan 464000, China
| | - Ge Lv
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Ya Fu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Ruimin Cheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Lingling Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| |
Collapse
|
10
|
Adachi Y, Yamada K, Ohshita J. Synthesis and Optical Properties of Anthryl-Substituted Tetracyclic Borepins. CHEM LETT 2022. [DOI: 10.1246/cl.220139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yohei Adachi
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Kohei Yamada
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Joji Ohshita
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
- Division of Materials Model-Based Research, Digital Monozukuri (Manufacturing) Education and Research Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan
| |
Collapse
|
11
|
Tang K, Chen Y, Guan J, Wang Z, Chen K, Xiang H, Yang H. Visible-light-promoted olefinic trifluoromethylation of enamides with CF 3SO 2Na. Org Biomol Chem 2021; 19:7475-7479. [PMID: 34612366 DOI: 10.1039/d1ob01410b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A visible-light-promoted olefinic C-H trifluoromethylation of enamides was developed by employing cheap and stable Langlois' reagent as the CF3 source. A series of β-CF3 enamides were obtained in moderate to good yields with high E-isomer selectivity under mild conditions. Preliminary mechanistic studies suggest that molecular oxygen acts as the terminal oxidant for this net oxidative process, and the E isomer selectivity could be well explained by a base-assisted deprotonation of the cation intermediate.
Collapse
Affiliation(s)
- Kai Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Mei L, Moutet J, Stull SM, Gianetti TL. Synthesis of CF 3-Containing Spirocyclic Indolines via a Red-Light-Mediated Trifluoromethylation/Dearomatization Cascade. J Org Chem 2021; 86:10640-10653. [PMID: 34255497 DOI: 10.1021/acs.joc.1c01313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A red-light-mediated nPr-DMQA+-catalyzed cascade intramolecular trifluoromethylation and dearomatization of indole derivatives with Umemoto's reagent has been developed. This protocol provides a facile and efficient approach for the construction of functionalized and potentially biologically important CF3-containing 3,3-spirocyclic indolines with moderate to high yields and excellent diastereoselectivities under mild conditions. The success of multiple gram-scale (1 and 10 g) experiments further highlights the robustness and practicality of this protocol and the merit of the employment of red light. Mechanistic studies support the formation of a crucial CF3 radical species and a dearomatized benzyl carbocation intermediate.
Collapse
Affiliation(s)
- Liangyong Mei
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jules Moutet
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Savannah M Stull
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Thomas L Gianetti
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
13
|
Abstract
The increasing importance of visible light photoredox catalysis as a powerful strategy
for the activation of small molecules require the development of new effective radical
sources and photocatalysts. The unique properties of organoboron compounds have contributed
significantly to the rapid progress of photocatalysis. Since the first work on the topic in
2005, many researchers have appreciated the role of boron-containing compounds in photocatalysis,
and this is reflected in several publications. In this review, we highlight the utility of
organoboron compounds in various photocatalytic reactions enabling the construction of carbon-
carbon and carbon-heteroatom bonds. The dual role of organoboron compounds in photocatalysis
is highlighted by their applications as reactants and as well as organic photocatalysts.
Collapse
Affiliation(s)
- Tomasz Kliś
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Marcin Kublicki
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
14
|
Fan S, Zheng C, Zheng K, Li J, Liu Y, Yan F, Xiao H, Feng YS, Zhu YY. Copper-Catalyzed Perfluoroalkylation of Alkynyl Bromides and Terminal Alkynes. Org Lett 2021; 23:3190-3194. [PMID: 33792322 DOI: 10.1021/acs.orglett.1c00906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A copper-catalyzed one-pot perfluoroalkylation of alkynyl bromides and terminal alkynes has been disclosed, and the corresponding perfluoroalkylated alkynes could be attained in good to excellent yields. The new straightforward transformation shows high efficiency (0.01-0.5 mol % catalyst loading), broad substrate scope, and remarkable functional group tolerance and provides a facile approach for useful application in life and material sciences.
Collapse
Affiliation(s)
- Shilu Fan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chenggong Zheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China
| | - Kaiting Zheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China
| | - Junlan Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China
| | - Yaomei Liu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China
| | - Fangpei Yan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China
| | - Hua Xiao
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China
| | - Yi-Si Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China
| | - Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China
| |
Collapse
|
15
|
Nakao S, Nishimoto Y, Yasuda M. Tuning of Lewis Acidity of Phebox-Al Complexes by Substituents on the Benzene Backbone and Unexpected Photocatalytic Activity for Hydrodebromination of Aryl Bromide. CHEM LETT 2021. [DOI: 10.1246/cl.200894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shuichi Nakao
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Nishimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Ren S, Fu J, Cheng D, Li X, Xu X. A facile access for multisubstituted trifluoromethyl olefins by visible light catalysis. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Zhao K, Guo JY, Guan T, Wang YX, Tao JY, Zhang Y, Zhang QH, Ni K, Loh TP. Photoinitiated stereoselective direct C(sp 2)–H perfluoroalkylation and difluoroacetylation of enamides. Org Chem Front 2021. [DOI: 10.1039/d1qo00605c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoinitiated regio- and stereoselective C(sp2)–H perfluoroalkylation and difluoroacetylation of enamides are developed, furnishing biologically and physiologically privileged fluoro-containing enamide scaffolds.
Collapse
Affiliation(s)
- Kai Zhao
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Jing-Yu Guo
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Ting Guan
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Ying-Xue Wang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Ji-Yu Tao
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Yu Zhang
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Qing-Hong Zhang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Kun Ni
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Teck-Peng Loh
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| |
Collapse
|
18
|
Tang L, Yang F, Yang Z, Chen H, Cheng H, Zhang S, Zhou Q, Rao W. Application of Bifunctional 2-Amino-1,4-naphthoquinones in Visible-Light-Promoted Photocatalyst-Free Alkene Perfluoroalkyl-Alkenylation. Org Lett 2020; 23:519-524. [PMID: 33382626 DOI: 10.1021/acs.orglett.0c04036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A simple and practical photochemical strategy for intermolecular perfluoroalkyl-alkenylation of alkenes with 2-amino-1,4-naphthoquinones and perfluoroalkyl iodides has been demonstrated under visible-light irradiation. Mechanistic studies reveal that easily available 2-amino-1,4-naphthoquinone substrates can serve as efficient photosensitizers to activate perfluoroalkyl iodides through a photoredox process. Therefore, the developed radical relay reaction proceeds smoothly without additional transition metals and photocatalysts.
Collapse
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.,Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the Sourth of Henan, Xinyang 464000, China
| | - Fang Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Zhen Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Hanfei Chen
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Hao Cheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Shuaifei Zhang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Weihao Rao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
19
|
Zhang S, Weniger F, Ye F, Rabeah J, Ellinger S, Zaragoza F, Taeschler C, Neumann H, Brückner A, Beller M. Selective nickel-catalyzed fluoroalkylations of olefins. Chem Commun (Camb) 2020; 56:15157-15160. [PMID: 33210679 DOI: 10.1039/d0cc06652d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mild and selective nickel-catalyzed trifluoromethylation and perfluoroalkylation reactions of alkenes were developed to provide fluorinated olefins, including natural products, pharmaceuticals, and variety of synthetic building blocks in good to excellent yields (38 examples). Control experiments, kinetic measurements and in situ EPR studies reveal the importance of radical species and the formation of 1,2-adducts as intermediates.
Collapse
Affiliation(s)
- Shaoke Zhang
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Barata‐Vallejo S, Postigo A. New Visible‐Light‐Triggered Photocatalytic Trifluoromethylation Reactions of Carbon–Carbon Multiple Bonds and (Hetero)Aromatic Compounds. Chemistry 2020; 26:11065-11084. [DOI: 10.1002/chem.202000856] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Sebastian Barata‐Vallejo
- Department of Organic ChemistryUniversidad de Buenos Aires, Facultad de Farmacia y Bioquímica Junin 954 CP 1113 Buenos Aires Argentina
- ISOFConsiglio Nazionale delle Ricerche Via P. Gobetti 101 40129 Bologna Italy
| | - Al Postigo
- Department of Organic ChemistryUniversidad de Buenos Aires, Facultad de Farmacia y Bioquímica Junin 954 CP 1113 Buenos Aires Argentina
| |
Collapse
|
22
|
Li J, Liu L, Zheng K, Zheng C, Xiao H, Fan S. Silver-Mediated Perfluoroalkylation of Terminal Alkynes with Perfluoroalkyl Iodides. J Org Chem 2020; 85:8723-8731. [PMID: 32508092 DOI: 10.1021/acs.joc.0c00894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The incorporation of a perfluoroalkyl group (RF) into drug candidates has become an increasingly important strategy in drug molecule design. In this study, the silver-mediated perfluoroalkylation reaction based on the addition-elimination process of terminal alkynes which was initiated by a perfluoroalkyl radical to form a C(sp)-RF bond has been developed. The reaction proceeds under mild conditions using readily available, low-cost perfluoroalkyl iodides as the sources of the RF group. This method allows access to a variety of perfluoroalkylated alkynes.
Collapse
Affiliation(s)
- Junlan Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, People's Republic of China
| | - Lihua Liu
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230009, China
| | - Kaiting Zheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, People's Republic of China
| | - Chenggong Zheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, People's Republic of China
| | - Hua Xiao
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230009, China
| | - Shilu Fan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, People's Republic of China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
23
|
Hys VY, Shevchuk OI, Vashchenko BV, Karpenko OV, Gorlova AO, Grygorenko OO. Functionalization of 2-Trifluoromethyl-1H
-pyrrole: A Convenient Entry into Advanced Fluorinated Building Blocks Including all Isomeric 2-(Trifluoromethyl)prolines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Vasyl Yu. Hys
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | | | - Bohdan V. Vashchenko
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | | | - Alina O. Gorlova
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- Institute of Organic Chemistry; National Academy of Sciences of Ukraine; Murmanska Street 5 02094 Kyiv Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| |
Collapse
|
24
|
Ellman JA, Ackermann L, Shi BF. The Breadth and Depth of C-H Functionalization. J Org Chem 2020; 84:12701-12704. [PMID: 31623443 DOI: 10.1021/acs.joc.9b02663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Lutz Ackermann
- Institut fuer Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen
| | | |
Collapse
|
25
|
Hasegawa E, Tanaka T, Izumiya N, Kiuchi T, Ooe Y, Iwamoto H, Takizawa SY, Murata S. Protocol for Visible-Light-Promoted Desulfonylation Reactions Utilizing Catalytic Benzimidazolium Aryloxide Betaines and Stoichiometric Hydride Donor Reagents. J Org Chem 2020; 85:4344-4353. [PMID: 32073264 DOI: 10.1021/acs.joc.0c00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An unprecedented photocatalytic system consisting of benzimidazolium aryloxide betaines (BI+-ArO-) and stoichiometric hydride reducing reagents was developed for carrying out desulfonylation reactions of N-sulfonyl-indoles, -amides, and -amines, and α-sulfonyl ketones. Measurements of absorption spectra and cyclic voltammograms as well as density functional theory (DFT) calculations were carried out to gain mechanistic information. In the catalytic system, visible-light-activated benzimidazoline aryloxides (BIH-ArO-), generated in situ by hydride reduction of the corresponding betaines BI+-ArO-, donate both an electron and a hydrogen atom to the substrates. A modified protocol was also developed so that a catalytic quantity of more easily prepared hydroxyaryl benzimidazolines (BIH-ArOH) is used along with a stoichiometric hydride donor to promote the photochemical desulfonylation reactions.
Collapse
Affiliation(s)
- Eietsu Hasegawa
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tsukasa Tanaka
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Norihiro Izumiya
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Takehiro Kiuchi
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Yuuki Ooe
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Shin-Ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Shigeru Murata
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
26
|
Koike T. Frontiers in Radical Fluoromethylation by Visible‐Light Organic Photocatalysis. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000058] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Takashi Koike
- Laboratory for Chemistry and Life Science Institute of Innovative ResearchTokyo Institute of Technology R1-27, 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
27
|
Yang HB, Wang ZH, Li JM, Wu C. Modular synthesis of α-aryl β-perfluoroalkyl ketones via N-heterocyclic carbene catalysis. Chem Commun (Camb) 2020; 56:3801-3804. [DOI: 10.1039/d0cc00293c] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new strategy of assembling alkene, aldehyde and perfluoroalkyl reagents under the catalysis of an N-heterocyclic carbene afforded valuable α-aryl β-perfluoroalkyl ketones.
Collapse
Affiliation(s)
- Hai-Bin Yang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P. R. China
| | - Zhi-Hou Wang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P. R. China
| | - Jin-Mei Li
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P. R. China
| | - Chuande Wu
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P. R. China
- State Key Laboratory of Silicon Materials
| |
Collapse
|