1
|
Li Z, He Z, Huang Q, Kan M, Li H. Tuning Regioselectivity in the [3 + 2] Cycloaddition of Alkynyl Sulfonium Salts with Binucleophilic N-Aryl Amidines. Org Lett 2024. [PMID: 38788170 DOI: 10.1021/acs.orglett.4c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
A tunable reaction manifold of alkynyl sulfonium salts with binucleophilic N-aryl amidines in the absence of any transition metal catalyst is first reported. This methodology involves sequential addition/cyclization that is perfectly tuned by stepwise addition of K2CO3, affording a plethora of valuable 1,2,4- and 1,2,5-trisubstituted imidazoles in good yields with high regioselectivity. Importantly, trapping and isolation of the reactive intermediate unveiled the reaction mechanism of β-attack on the triple bond in this [3 + 2] cycloaddition reaction.
Collapse
Affiliation(s)
- Zhi Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhengjun He
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Qiang Huang
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Mei Kan
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
2
|
Doraghi F, Mohaghegh F, Qareaghaj OH, Larijani B, Mahdavi M. Synthesis of N-, O-, and S-heterocycles from aryl/alkyl alkynyl aldehydes. RSC Adv 2023; 13:13947-13970. [PMID: 37181524 PMCID: PMC10167737 DOI: 10.1039/d3ra01778h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023] Open
Abstract
In the field of heterocyclic synthesis, alkynyl aldehydes serve as privileged reagents for cyclization reactions with other organic compounds to construct a broad spectrum of N-, O-, and S-heterocycles. Due to the immense application of heterocyclic molecules in pharmaceuticals, natural products, and material chemistry, the synthesis of such scaffolds has received wide attention. The transformations occurred under metal-catalyzed, metal-free-promoted, and visible-light-mediated systems. The present review article highlights the progress made in this field over the past two decades.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Farid Mohaghegh
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
3
|
Saha N, Wanjari PJ, Dubey G, Mahawar N, Bharatam PV. Metal-free synthesis of imidazoles and 2-aminoimidazoles. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Xu H, Chen H, Hu X, Xuan G, Li P, Zhang Z. Synthesis of Fully Substituted 5-( o-Hydroxybenzoyl)imidazoles via Iodine-Promoted Domino Reaction of Aurones with Amidines. J Org Chem 2022; 87:16204-16212. [PMID: 36414000 DOI: 10.1021/acs.joc.2c01680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An iodine-promoted domino reaction of aurones with amidines has been successfully explored. The reaction proceeds in a consecutive manner containing Michael addition, iodination, cyclization from intramolecular nucleophilic substitution, and dehydrogenative aromatization from spiro ring opening. Following this novel strategy, a variety of 1,2,4-trisubstituted 5-(o-hydroxybenzoyl)imidazoles were efficiently synthesized in moderate to good yields from readily available starting materials. A plausible mechanism has been proposed.
Collapse
Affiliation(s)
- Hui Xu
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Hong Chen
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Xiao Hu
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Guang Xuan
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Pinhua Li
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Ze Zhang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| |
Collapse
|
5
|
Zhang S, Xu G, Yan H, Wu Q, Meng J, Duan J, Guo K. Electrooxidative [3 + 2] annulation of amidines with alkenes for the synthesis of spiroimidazolines. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Zhao M, Yang Z, Yang D. Recent Progress in Synthesis of Polysubstituted Imidazoles by Cyclization Reaction. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Valiey E, Dekamin MG. Pyromellitic diamide-diacid bridged mesoporous organosilica nanospheres with controllable morphologies: a novel PMO for the facile and expeditious synthesis of imidazole derivatives. NANOSCALE ADVANCES 2021; 4:294-308. [PMID: 36132961 PMCID: PMC9418939 DOI: 10.1039/d1na00738f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 05/08/2023]
Abstract
In this work, novel pyromellitic diamide-diacid bridged mesoporous organosilica (PMAMOS) nanospheres with controllable morphologies and Brønsted acid catalytic centers were designed and prepared through a convenient method by altering the addition sequence of precursors, solvent, and aging time. The obtained PMAMOSs demonstrate high surface areas and uniform pore sizes. FESEM, HRTEM, BET, EDX, XRD, FTIR and TGA analyses were performed to characterize and examine the effective factors for the preparation of PMAMOS nanospheres. Due to the appropriate physicochemical properties including Brønsted acid centers, suitable surface area and thermal stability of the PMAMOS nanosphere material, it was explored in the three-component reaction of benzyl or benzoin, ammonium acetate, and different aldehyde derivatives as a case study of multicomponent reactions. Corresponding imidazole derivatives were obtained in EtOH under reflux conditions in high to quantitative yields and short reaction times. It was also shown that the heterogeneous solid acid can be reused at least five times with negligible loss of its catalytic activity, indicating the appropriate stability and high activity of the newly introduced mesoporous organosilica.
Collapse
Affiliation(s)
- Ehsan Valiey
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Iran
| |
Collapse
|
8
|
Ye X, Wu X, Guo SR, Huang D, Sun X. Recent advances of sodium sulfinates in radical reactions. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Liu X, Zhou J, Lin J, Zhang Z, Wu S, He Q, Cao H. Controllable Site-Selective Construction of 2- and 4-Substituted Pyrimido[1,2- b]indazole from 3-Aminoindazoles and Ynals. J Org Chem 2021; 86:9107-9116. [PMID: 34132097 DOI: 10.1021/acs.joc.1c01094] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A straightforward and novel controllable site-selective construction of 2- and 4-substituted pyrimido[1,2-b]indazole from 3-aminoindazoles and ynals has been developed. The high regioselectivity of this reaction could be easily switched by converting different catalytic systems. In this way, a series of 2- and 4-substituted pyrimido[1,2-b]indazole derivatives were obtained in moderate to good yields. In addition, the photophysical properties of compound 3a prepared by the present method were discussed.
Collapse
Affiliation(s)
- Xiang Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Jinlei Zhou
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Jiatong Lin
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Zemin Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Suying Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Qiuxing He
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| |
Collapse
|
10
|
Guo LP, Yang J, Zhou L, Wang S, Kang CZ, Huck CW. Simultaneous Quantification of 14 Compounds in Achillea millefolium by GC-MS Analysis and Near-Infrared Spectroscopy Combined with Multivariate Techniques. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:5566612. [PMID: 34123458 PMCID: PMC8166488 DOI: 10.1155/2021/5566612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
The proposed work is focused on the simultaneous quantification of 14 compounds in the medicinal plant Achillea millefolium based on Near-Infrared Spectroscopy (NIR). The regression model of single-compound models (SCMs) and multicompound model (MCM) were created by partial least-squares regression (PLSR). Also, these models were calibrated by gas chromatographic mass spectroscopy (GC-MS). The results showed that the averaged standard errors of prediction (SEP) for the SCMs and MCM were 0.49 and 0.62, respectively, and most of the 14 compounds were significantly correlated. 43 correlations were significant at the 0.01 level (47.25% of the total), and 11 correlations were significant at the 0.05 level (12.09% of the total). The first three principal components (PCs) of principal component analysis (PCA) can explain >78% of the total variance. According to the component matrix and the communality table, octadecanoic acid has the largest influence on PC 1 (extraction squared = 46.72%), whose extraction was 0.932. The communality of neophytadiene, Z,Z,Z-9,12,15-octadecatrienoic acid, and oleic acid was also found to be large, whose extractions were 0.955, 0.937, and 0.859, respectively. These results indicate that if one compound shows a linear relationship with the NIR absorbance signal (SCM) also, an MCM can be created due to the close interrelations of these compounds. In this context, the present work highlights a suitable sample preparation technique to perform NIR analysis of raw plant material to benefit from robust and precise calibrations. To sum up, this NIR spectroscopic approach offers a precise, rapid, and cost-effective high-throughput analytical technique to simultaneously and noninvasively perform quantitative analysis of raw plant materials.
Collapse
Affiliation(s)
- Lan-Ping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijng 100700, China
| | - Jian Yang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijng 100700, China
| | - Li Zhou
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijng 100700, China
| | - Sheng Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijng 100700, China
| | - Chuan-Zhi Kang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijng 100700, China
| | - Christian W. Huck
- Head of Spectroscopy Group, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80, Innsbruck 6020, Austria
| |
Collapse
|
11
|
Xu Z, Xian N, Chen H, Deng G, Huang H. Cu‐Catalyzed
Cascade Cyclization of Ketoxime Acetates and Alkynals Enabling Synthesis of Acylpyrroles. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Zhenhua Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Ning Xian
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Hongbiao Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| |
Collapse
|
12
|
Reddy RJ, Kumari AH. Synthesis and applications of sodium sulfinates (RSO 2Na): a powerful building block for the synthesis of organosulfur compounds. RSC Adv 2021; 11:9130-9221. [PMID: 35423435 PMCID: PMC8695481 DOI: 10.1039/d0ra09759d] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/31/2021] [Indexed: 12/15/2022] Open
Abstract
This review highlights the preparation of sodium sulfinates (RSO2Na) and their multifaceted synthetic applications. Substantial progress has been made over the last decade in the utilization of sodium sulfinates emerging as sulfonylating, sulfenylating or sulfinylating reagents, depending on reaction conditions. Sodium sulfinates act as versatile building blocks for preparing many valuable organosulfur compounds through S-S, N-S, and C-S bond-forming reactions. Remarkable advancement has been made in synthesizing thiosulfonates, sulfonamides, sulfides, and sulfones, including vinyl sulfones, allyl sulfones, and β-keto sulfones. The significant achievement of developing sulfonyl radical-triggered ring-closing sulfonylation and multicomponent reactions is also thoroughly discussed. Of note, the most promising site-selective C-H sulfonylation, photoredox catalytic transformations and electrochemical synthesis of sodium sulfinates are also demonstrated. Holistically, this review provides a unique and comprehensive overview of sodium sulfinates, which summarizes 355 core references up to March 2020. The chemistry of sodium sulfinate salts is divided into several sections based on the classes of sulfur-containing compounds with some critical mechanistic insights that are also disclosed.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University Hyderabad 500 007 India
| | - Arram Haritha Kumari
- Department of Chemistry, University College of Science, Osmania University Hyderabad 500 007 India
| |
Collapse
|
13
|
Liu W, He J, Liu X, Yu Y, Pei Y, Zhu B, Cao H. Controllable Site-Selective Construction of 4- and 5-Hydroxyalkyl-Substituted Imidazoles from Amidines, Ynals, and Water. J Org Chem 2020; 85:14954-14962. [PMID: 33147029 DOI: 10.1021/acs.joc.0c01715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first example of controllable site-selective pathways to construct 4- and 5-hydroxyalkyl-substituted imidazoles through a three-component reaction of amidines, ynals, and water has been documented. Particularly, the high regioselectivity of the reaction was simply switched by changing the additives. In addition, further 18O-labeled experiments to probe a plausible mechanism and the gram-scale synthesis were studied.
Collapse
Affiliation(s)
- Wei Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. of China
| | - Jiaming He
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. of China
| | - Xiang Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. of China
| | - Yue Yu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. of China
| | - Yongyan Pei
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. of China
| | - Baofu Zhu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. of China
| |
Collapse
|
14
|
Allahresani A, Naghdi E, Ali Nasseri M. Catalytic activity of Co(II) Salen@KCC-1 on the synthesis of 2,4,5-triphenyl-1H-imidazoles and benzimidazoles. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Mulina OM, Ilovaisky AI, Parshin VD, Terent'ev AO. Oxidative Sulfonylation of Multiple Carbon‐Carbon bonds with Sulfonyl Hydrazides, Sulfinic Acids and their Salts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000708] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Olga M. Mulina
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexey I. Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Vadim D. Parshin
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| |
Collapse
|
16
|
Wang Y, Liu X, Zhu B, Guo P, Pei Y, He Q, Cao H. Cu(I)-Catalyzed Three-Component Cyclization for the Construction of Functionalized Thiazoles. J Org Chem 2020; 85:10118-10124. [PMID: 32610902 DOI: 10.1021/acs.joc.0c01381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel and straightforward strategy for the synthesis of functionalized thiazoles from thioamides, ynals, and alcohols via a copper(I)-catalyzed three-component reaction has been described. Through the formation of new C-S, C-N, and C-O bonds in one pot, it is easy to produce various valuable thiazoles fixed with aryl or heteroaryl groups. In addition, the reaction also exhibits other unique advantages, such as high step economics, good functional group tolerance, and good regioselectivity.
Collapse
Affiliation(s)
- Yajun Wang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. of China
| | - Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. of China
| | - Baofu Zhu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. of China
| | - Pengfeng Guo
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. of China
| | - Yongyan Pei
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. of China
| | - Qiuxing He
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. of China
| |
Collapse
|
17
|
Liu X, Wang Y, Zhou J, Yu Y, Cao H. Triflic Acid-Catalyzed Cycloisomerization of 1,6-Enynes: Facile Access to Carbo- and Azaheterocycles. J Org Chem 2020; 85:2406-2414. [PMID: 31870155 DOI: 10.1021/acs.joc.9b03112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new and efficient strategy for enynes cyclization catalyzed by triflic acid has been described. Various valuable carbocycle-fused and heterocycle-fused ketones were easily accessed by the formation of new C-C and C-O bond under benign reaction conditions. This protocol also provides another opportunity to construct polycyclic single-nitrogen ketones via a cation-induced cascade cyclization of polyenynes. Furthermore, antiviral bioassays revealed that a few compounds exhibited good antiviral activity against tobacco mosaic virus at a concentration of 200 μg mL-1.
Collapse
Affiliation(s)
- Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center , Guangdong Pharmaceutical University , Zhongshan 528458 , P. R. of China
| | - Yuhan Wang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center , Guangdong Pharmaceutical University , Zhongshan 528458 , P. R. of China
| | - Jinlei Zhou
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center , Guangdong Pharmaceutical University , Zhongshan 528458 , P. R. of China
| | - Yue Yu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center , Guangdong Pharmaceutical University , Zhongshan 528458 , P. R. of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center , Guangdong Pharmaceutical University , Zhongshan 528458 , P. R. of China
| |
Collapse
|